# CALIFORNIA DEPARTMENT OF WATER RESOURCES # NORTHERN DISTRICT # **ENLARGED SHASTA RESERVOIR STUDY** WATER QUALITY SUMMARY 1986 ### ENLARGED SHASTA RESERVOIR STUDY # Water Quality Summary The Northern District of the Department of Water Resources was responsible for identifying study needs and developing and conducting water quality and biological studies to allow evaluation of the ecosystem alterations from the proposed enlargement of Shasta Reservoir. These studies were developed to satisfy both State and Federal statutes, as well as to examine the probable principal effects from reservoir enlargement. The California Environmental Quality Act (CEQA) and the National Environmental Policy Act (NEPA) require impact evaluation for any project for which the State or a Federal agency, respectively, have responsibility. The studies undertaken by the Northern District were designed to characterize the present system so that probable impacts associated with enlargement of Shasta Reservoir could be evaluated. Enlargement of the reservoir would inundate several abandoned mines and spoils areas, and a large quantity of organic material (trees, brush, duff, etc.). Inundation of the mines and spoils areas would allow leaching of toxic heavy metals and acids, with subsequent detrimental effects on fish, wildlife, and agricultural users downstream. Inundation of large quantities of organic materials could lead to nutrient enrichment and excessive algal production, and oxygen deficiencies in the lower strata with adverse effects on aquatic life. The studies were designed to evaluate these impacts resulting from inundation. Furthermore, enlargement of Shasta Reservoir could lead to altered temperature and turbidity characteristics in the reservoir as well as downstream in the Sacramento River. Data were to be collected under the study program to allow evaluation of probable effects and for model development and verification by the Bureau of Reclamation. The study rationale and proposal are attached (Attachment A). Briefly, at Shasta Reservoir seven stations were established with four additional stations at the mouths of the principal tributaries (Pit River, Squaw Creek, McCloud River, and Sacramento River) for physical and chemical analyses (Figure 1). Ten primary stations were established on the Sacramento River below Shasta Reservoir for physical and chemical analyses, with ten additional sites selected for only physical analyses (Figure 2). Parameters sampled monthly at all of the stations included temperature, dissolved oxygen, pH, electrical conductivity, turbidity, and alkalinity. Monthly chemical analyses at the seven reservoir, four tributary, and ten primary river stations included nutrients and minerals, with heavy metals sampled every other month. Temperature and conductivity recorders were maintained at several of the stations on the Sacramento River. The study was planned to be conducted in stages, with emphasis on the physical and chemical parameters during the first year, and increasing emphasis on the biological parameters in succeeding years. The biological parameters intended to be examined included distribution and productivity of phytoplankton, zooplankton, and benthic macroinvertebrates, effects of heavy metal and nutrient changes on the food web, and requirements of benthic organisms in the Sacramento River, particularly in relation to temperature and flow. Funding cuts after the first year of study prevented collection of biological data. Studies on the Sacramento River were also terminated after the first year, but physical and chemical data collection were continued on Shasta Reservoir and the four main tributaries to provide data necessary for the Bureau of Reclamation to complete the modeling studies. The Department's Bryte Chemical Laboratory conducted the chemical analyses of the samples. The Northern District conducted field analyses using a Yellow Springs Instruments Model 57 dissolved oxygen/temperature meter calibrated using the azide modification of the iodometric method and an ASTM grade laboratory thermometer, calibrated pocket thermometer, Hellige Pocket Comparator and Beckman Digital 110 Meter for pH, Beckman RB3 Solu-Bridge and Beckman RC-19 Conductivity Bridge for electrical conductivity, titrametric method for alkalinity, and Hach Model 2100A Turbidimeter for turbidity. All methods used conformed to the current (1980) edition of Standard Methods for the Examination of Water and Wastewater. Attachment A contains the study rationale and proposal. Attachment B contains physical data collected from the Sacramento River monitoring stations. Attachment C contains physical data collected from the main tributaries to Shasta Reservoir. Data obtained from profile measurements at Shasta Reservoir are contained in Attachment D, while chemical analyses from both Shasta Reservoir and the Sacramento River are contained in Attachment E. Data obtained from the temperature and electrical conductivity recorders on the Sacramento River are contained in Attachments F and G, respectively. Figure I. Monitoring station locations of Shasta Reservoir. Figure 2. Monitoring station locations on the Sacramento River. # ATTACHMENT A STUDY RATIONALE AND PROPOSAL #### INTRODUCTION Enlargement of Shasta Reservoir poses concern for several water quality and related biological problems. One of the principal water quality concerns is the inundation of old mines and mining waste dumps. These areas are laden with acids and heavy metals, predominantly iron, copper, and zinc bearing materials. The solution (leaching) of these materials following inundation and transport into Shasta Reservoir, the Sacramento River, the Delta, and ultimately to water users poses substantial concern for detrimental impacts on fish, wildlife, and agriculture. Fish kills have periodically been reported from Shasta Reservoir, some of which have been associated with inflow of mine drainage. Dead fish not associated with effluent inflow are believed to have succumbed due to unidentified limnological conditions, such as low dissolved oxygen levels. Certain fish stocks in the reservoir appear to be declining and have led the Department of Fish and Game to introduce the Florida strain largemouth bass in an attempt to revive the largemouth bass fishery. The exact cause of the fishery decline has not been identified. Possible causes include toxic inhibition (primarily by copper) of algal production which forms the basis of the food chain; loss of nutrients important for primary production through binding in bottom reservoir sediments or being released from the hypolimnion during summer stratification through the turbine intakes; inadequate secondary productivity of zooplankton and aquatic macroinvertebrates possibly due to heavy metal inhibition or excessive grazing pressure; and direct toxic effects of metals on various life stages of fish. Enlargement of Shasta Reservoir may aggravate or ameliorate water quality problems already present through changes in concentrations of acids and heavy metals, increased turnover times for nutrients in bottom sediments and the hypolimnion, alteration of the physical habitat of biological organisms necessary to maintain the fishery, and, at least for the first several years, increased organic loading which may lead to oxygen deficiencies upon decomposition in the hypolimnion, excessive algal production, and general impairment of aesthetic, recreation, and other beneficial uses. In order to adequately assess possible impacts of an enlarged reservoir and to properly plan enlarged reservoir features to avoid as much as possible impacting downstream resources and beneficial uses, it is necessary to understand the present system. This includes sources and sinks of nutrients, minerals, and acid and heavy metal effluents; effects of inflowing effluents on biological organisms in open water as well as bottom sediments; distribution, movements, abundance, and productivity of organisms forming the basis of the food web, including phytoplankton, zooplankton, and benthic macroinvertebrates, in relation to the physical and chemical parameters existing in the reservoir; and physical cycling of the reservoir, including stratification, turnovers, and seasonal and diel fluctuations in parameters such as dissolved oxygen, temperature, pH, conductivity, and turbidity. Alterations of water quality and biological productivity from an enlarged reservoir will cause impacts on downstream resources that must be evaluated. Of primary concern, from the viewpoint of the Department of Fish and Game, are the impacts of possible altered temperature and turbidity regimes on fish resources. Other river water quality parameters that could be altered by enlarging the reservoir are dissolved oxygen, nutrient/organic material levels, and heavy metal concentrations. Increased productivity during the first few years of enlarged reservoir operation may lead to river releases of water devoid or low in dissolved oxygen, rich in nutrients and organic materials, and laden with toxic heavy metals. River temperatures may also be altered from those presently occurring depending on location of intakes. Lower winter river flows below the reservoir and higher summer flows may impact gravel and sediment transport capabilities. Impairment of the ability of the river to support a fishery, either through direct effects on fish or indirect effects on organisms essential to fish as food sources, may result from river water quality alteration. The magnitude of possible effects and the extent down river that they may occur can be evaluated by conducting the previously described reservoir studies and conducting studies to define the present water quality and lower food web organisms, mainly macroinvertebrates and periphyton, in the Sacramento River below Shasta Reservoir. Enlargement of the existing reservoir will inundate areas that may possess organisms that are of significance due to rare or endangered status. The Shasta crayfish (Pacifastacus fortis), the Shasta salamander (Hydromantes shastae), and a sunflower (Eupatorium shastense) are all rare species known to exist in the area affected by an enlarged Shasta Reservoir. The effects of enlarging the reservoir on these and other aquatic invertebrates and plants needs to be ascertained. The Department of Fish and Game is developing a program to determine the impacts of enlarging the reservoir on reptiles and amphibians, and rare or endangered invertebrates. Therefore, though possessing appropriate personnel, the Water Quality and Biology Section will not pursue studies relating to impacts on rare or endangered reptiles, amphibians, or invertebrates. As alternatives to the enlargement of the existing reservoir become clarified, impact evaluation will become necessary. Such alternatives may include construction of new dams below or above the existing dam. These can be expected to have impacts in the areas where construction occurs and may also alter water quality. #### METHODS ### Reservoir Limnology # Physical The objective of this portion of the study is to determine the physical limnological conditions that exist in the present Shasta Reservoir. The information derived will be used to aid in interpretation of other studies designed to define the chemical and biological limnological processes, both within the reservoir system and the Sacramento River below the reservoir, as well as to predict the physical limnology of an enlarged reservoir. Eleven stations will be established to compare physical processes at various locations in the reservoir and major tributaries. These data will be used to determine the general water quality conditions present in various areas of the reservoir. Water column parameters to be monitored include water temperature, dissolved oxygen, pH, conductivity, alkalinity, turbidity, light penetration (secchi disc and photometer), and light transmission at depth (transmissometer). Stations will be monitored for these parameters at monthly intervals for the initial year of study. This schedule may be modified for subsequent study years as the data may indicate. #### Chemical The objective of this portion of the study is to determine the chemical limnological conditions that exist in the present Shasta Reservoir. This information will be used to determine the present biological productivity potential, concentrations and fates of heavy metals in inflows, chemical cycling between the bottom sediments and overlying water, and to predict the chemical limnology of an enlarged reservoir. Samples for nutrient, mineral, and heavy metal analyses will be collected from surface and bottom waters during surveys from the monitoring stations. Nutrient analyses will include dissolved nitrate and nitrite, dissolved ammonia, total Kjeldahl (ammonia and organic) nitrogen, dissolved orthophosphate, and total phosphorus. Mineral analyses will include dissolved calcium, magnesium, sodium, potassium, sulfate, chloride, and boron, as well as total dissolved solids and alkalinity. Heavy metal analyses from the monitoring stations will include total arsenic, cadmium, chromium (all valences), aluminum, lead, mercury, nickel, selenium, copper, iron, manganese, and zinc. After the first year of monitoring, analyses will be reduced for all but a few indicator elements and those that present water quality problems as long as general indicators (EC, alkalinity) remain unchanged from samples collected during approximately the same period the year before. Monitoring stations for heavy metal analyses may be modified after the first year of data collection in areas where problem concentrations become identified. Water samples will be collected from a station below the dam on four different occasions during the first year of study to determine asbestos fiber content. If asbestos is found, further studies will be recommended to determine sources of the asbestos. These data will be used to determine the significance and fate of asbestos production from the watershed. Sediments from Shasta Reservoir will be collected from the monitoring stations to determine concentrations and general distributions of significant heavy metals. Additional monitoring will be conducted to better define concentrations and distributions of critical elements in areas where the data indicate potential water quality impacts. Available literature will be reviewed to determine the rate and concentration materials are likely to be cycled from the bottom sediments into the water column. Materials researched will include nutrients, minerals, and heavy metals. This information will be used to evaluate the current chemical and biological limnology in Shasta Reservoir, and to predict the effects of enlargement on reservoir water quality. Mines and mining waste dumps will be located. Evaluation will be made of these areas of their potential contribution of heavy metals, acids, and other materials to an enlarged reservoir. Methods of dealing with mine spoils will be reviewed and recommendations made to alleviate potential impacts. #### Biological The objective of this portion of the study is to determine the biological limnological conditions that exist in the present Shasta Reservoir. The information obtained will be used to determine the distribution and productivity of phytoplankton, zooplankton, and benthic invertebrates, and the impacts of heavy metal and nutrient changes and reservoir enlargement on these organisms. Net tows for identification of phytoplankton and zooplankton populations will be taken from the monitoring stations at monthly intervals, and analyzed for phytoplankton and zooplankton distribution, and types and quantity of organisms present. Bottom samples will be collected beginning the second year of this study from all the monitoring stations on a bimonthly basis to determine the type, quantity, and general distribution of benthic macroinvertebrates. Additional bottom sampling stations will be established to determine the impacts of heavy metal inflows on benthic species composition, abundance, and distribution where the data indicates impacts. ### River Limnology A great deal of information has been generated by various agencies concerning physical, chemical, and biological conditions that exist in the Sacramento River below Shasta Reservoir. Much of this information may be useful in evaluating the overall conditions and suitability of the Sacramento River and to predict impacts from enlarging Shasta Reservoir, but some areas of concern may require additional data for updating or clarification. The objectives of this portion of the study are to determine the physical, chemical, and biological conditions that exist in the upper Sacramento River below Shasta Reservoir, and to evaluate impacts that may result from reservoir enlargement. Possible impacts include altered temperature and flow regimes and organic or heavy metal loading that may affect the beneficial uses of river water, such as for agriculture or maintenance of the aquatic food web. The initial portion of the river studies will concentrate on assembling and reviewing data and reports generated by various agencies on water quality and lower food web organisms of the Sacramento River. Following review of the available information, recommendations will be made regarding the need for any additional information required to predict impacts in the Sacramento River that may result from enlargement of Shasta Reservoir. The key concerns are for physical and chemical water quality deterioration, altered substrate distribution, and effects on distribution and composition of benthic macroinvertebrate communities. Data presently foreseen as needed include information on general water quality parameters and benthic macroinvertebrate characterization. Monthly surveys will be conducted at ten stations between Shasta Dam and Sacramento to determine the general physical conditions that exist and to enable identification of potential impacts or sensitive areas requiring more in-depth study. Emphasis will be placed on that portion of the river lying in the Redding basin, since this is where the most significant impacts are likely to occur. Water quality samples will be collected monthly from all the stations. Parameters analyzed from the samples will be the same as those analyzed from the reservoir samples. Temperature and electrical conductivity recorders will be placed at the upstream stations plus additional stations to enable determination of the zone of influence of release waters. Diel studies will be conducted in the spring, summer, and fall periods to determine fluctuations in the physical water quality parameters. Benthic samples will be collected initially from the monitoring stations. Additional benthic monitoring stations may be required if changes in community structure between stations is apparent or water quality parameters between stations are significantly different. # ATTACHMENT B SACRAMENTO RIVER MONITORING STATIONS DATA Sta. A0 2100.00 Sacramento River @ Sacramento | | | Temp. E.C. | | | | | | | | | |----------|------|------------|------|-------|-----|--------|------|-------|--------|--------| | | | (° | | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-28-83 | 1000 | 63 | 52 | 10.6 | 7.2 | 80 | 72 | 15 | 29 | _ | | 6-16-83 | 1000 | 84 | 61 | 10.0 | 6.9 | 88 | 84 | 12 | 30 | 21.4 | | 7-14-83 | 1040 | 84 | 65 | 9.2 | 7.2 | 96 | 88 | 7.5 | 36 | 20.1 | | 8-16-83 | 1000 | 84 | 69 | 8.6 | 8.1 | 100 | 98 | 7.5 | 38 | 21.5 | | 9-20-83 | 1100 | 79 | 66 | 9.0 | 7.3 | 98 | 88 | 12 | 34 | 72.5 | | 10-19-83 | 1100 | 68.5 | 61.5 | 9.4 | 7.2 | 79 | 78 | 2.6 | 27 | 16.0 | | 11-29-83 | 1100 | 60 | 52 | 10.6 | 7.6 | 58 | 57 | 17 | 20 | 21.3 | | 1-10-84 | 1000 | 46 | 49 | 11.3 | 7.1 | 85 | 87 | 13 | 33 | 18.1 | | 2-22-84 | 1110 | 59 | 49 | 11.6 | 7.1 | 75 | 78 | 7.4 | 29 | 10.4 | | 3-27-84 | 1325 | 71 | 54 | 10.8 | 7.3 | 100 | 98 | 4.3 | 40 | 9.7 | | 5- 1-84 | 1010 | 60 | 56 | 9.8 | 7.4 | 112 | 107 | 10 | 42 | - | | 6-20-84 | 1045 | 75.5 | 71 | 9.7 | 7.6 | 123 | 138 | 4.2 | 52 | _ | Sta. AO 2112.00 Sacramento River @ Elkhorn Ferry | | Temp. | | | | | | ١. | | | | |----------|-------|--------|------------------|---------|--------|--------|-------|---------|--------|--------| | | | (° | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H <sub>2</sub> O | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 6-16-83 | 1045 | 85 | 64.5 | 9.6 | 7.1 | 110 | 103 | 18 | 39 | 42.9 | | 7-14-83 | 1115 | 88 | 68 | 8.7 | 7.3 | 135 | 120 | 15 | 49 | 44.9 | | 8-16-83 | 1045 | 88 | 71 | 8.3 | 7.4 | 150 | 145 | 13 | 57 | 33.5 | | 9-20-83 | 1200 | 85 | 66 | 8.8 | 7.4 | 175 | 162 | 14 | 63 | 52.9 | | 10-19-83 | 1140 | 67 | 60 | 9.5 | 7.5 | 140 | 132 | 4.8 | 55 | 20.5 | | 11-29-83 | NO | T SAMP | LED. | AREA FL | OODED, | ACCES | S NOT | POSSIBL | Ε. | | | 1-10-84 | 1100 | 46.5 | 49 | 11.0 | 7.2 | 124 | 130 | 18 | 50 | 29.4 | | 2-22-84 | 1140 | 50 | 50 | 11.1 | 7.2 | 140 | 140 | 17 | 43 | 32.1 | | 3-27-84 | 1300 | 69 | 56 | 10.6 | 7.5 | 145 | 137 | 13 | 56 | 27.0 | | 5- 1-84 | 1040 | 63 | 60 | 9.7 | 7.5 | 164 | 163 | 14 | 55 | 24.2 | | 6-20-84 | 1105 | 86.5 | 72 | 8.6 | 7.4 | 162 | 164 | 5.9 | 60 | _ | Sta. AO 2230.02 Sacramento River above Colusa Basin Drain | | | Temp. E.C. | | | | | | | | | |----------|------|------------|------|-------|-----|--------|------|-------|--------|--------| | | | (° | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 6-16-83 | 1215 | 79 | 64.5 | 9.5 | 7.1 | 128 | 120 | 19 | 49 | 4.7 | | 7-14-83 | 1200 | 90 | 69 | 8.9 | 7.4 | 128 | 117 | 14 | 47 | 33.3 | | 8-16-83 | 1130 | 93 | 71 | 8.7 | 7.5 | 130 | 125 | 12 | 48 | 17.0 | | 9-20-83 | 1250 | 87 | 69 | 8.9 | 7.4 | 165 | 151 | 8.0 | 60 | 26.8 | | 10-19-83 | 1220 | - | 59.5 | 9.6 | 7.4 | 137 | 123 | 2.7 | 55 | 7.0 | | 11-29-83 | 1200 | 56.5 | 51.5 | 10.7 | 7.3 | 159 | 157 | 46 | 62 | 99.2 | | 1-10-84 | 1130 | 48.5 | 48 | 11.0 | 7.3 | 158 | 158 | 23 | 61 | 61.1 | | 2-22-84 | 1220 | 53 | 51 | 11.0 | 7.3 | 160 | 161 | 12 | 65 | 29.7 | | 3-27-84 | 1230 | 69 | 56 | 10.7 | 7.4 | 150 | 143 | 11 | 60 | 30.4 | | 5- 1-84 | 1120 | 65 | 58 | 9.9 | 7.5 | 160 | 156 | 8.5 | 64 | 16.4 | | 6-20-84 | 1130 | _ | 76 | 8.9 | 7.4 | 147 | 153 | 5.0 | 58 | - | Sta. AÕ 2320.00 Sacramento River near Grimes | | | Temp. E.C. | | | | | | | | | |----------|------|------------|------|-------|-----|--------|------|-------|--------|--------| | | | (° | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-28-83 | 1330 | 62 | 55 | 9.9 | 7.3 | 150 | 138 | 34 | 56 | - | | 6-16-83 | 1300 | 89.5 | 64.5 | 9.6 | 7.3 | 119 | 113 | 15 | 43 | 35.5 | | 7-14-83 | 1245 | 89 | 68 | 9.2 | 7.5 | 115 | 107 | 12 | 44 | 19.3 | | 8-16-83 | 1230 | 99 | 69 | 9.2 | 7.4 | 115 | 108 | 4.7 | 44 | 17.1 | | 9-20-83 | 1345 | 87 | 66 | 9.0 | 7.5 | 135 | 127 | 7.0 | 56 | 29.1 | | 10-19-83 | 1315 | 74 | 59 | 9.8 | 7.3 | 137 | 123 | 2.8 | 50 | 9.9 | | 11-29-83 | 1300 | 54.5 | 51 | 10.8 | 7.3 | 147 | 145 | 38 | 61 | 90.1 | | 1-10-84 | 1215 | 51 | 49 | 11.1 | 7.3 | 130 | 137 | 20 | 54 | 50.4 | | 2-22-84 | 1305 | 58 | 51 | 11.0 | 7.3 | 153 | 149 | 12 | 61 | 31.2 | | 3-27-84 | 1145 | 70 | 55 | 10.5 | 7.4 | 140 | 136 | 9.4 | 59 | 24.6 | | 5- 1-84 | 1200 | 61 | 58 | 10.2 | 7.4 | 150 | 151 | 4.5 | 63 | 14.0 | | 6-20-84 | 1210 | 92 | 70 | 9.1 | 7.5 | 140 | 142 | 1.2 | 55 | _ | Sta. AO 2500.00 Sacramento River @ Butte City | | | Te | mp. | | | E.C | | | | | |----------|------|------|------|-------|-----|--------|------|-------|--------|--------| | D-4- | m.t | | F) | D.O. | ** | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | Н20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-28-83 | 1430 | 66 | 54 | 10.3 | 7.3 | 140 | 127 | 62 | 55 | - | | 6- 3-83 | 0950 | - | 59 | - | - | 110 | 104 | 14 | 43 | - | | 6-16-83 | 1350 | 86 | 62.5 | _ | | 120 | 110 | 14 | 46 | - | | 7-14-83 | 1350 | 88 | 66.5 | - | ••• | 120 | 105 | 10 | 44 | - | | 8-16-83 | 1330 | 91 | 67 | _ | - | 110 | 105 | 4.0 | 43 | _ | | 9- 7-83 | 1300 | - | 67 | | - | - | 114 | 4.3 | _ | - | | 9-20-83 | 1450 | 88 | 64 | _ | - | 128 | 119 | 4.0 | 51 | _ | | 10-19-83 | 1420 | 74 | 59 | 10.2 | 7.3 | 127 | 122 | 2.2 | 50 | - | | 11- 9-83 | - | - | 53.5 | | - | - | 123 | 7.9 | 46 | - | | 11-29-83 | 1345 | 53.5 | 51 | 10.6 | 7.5 | 130 | 131 | 19 | 55 | - | | 12-21-83 | 0930 | 52 | 49 | 10.9 | 7.1 | 121 | 111 | 28 | 52 | - | | 1-10-84 | 1330 | 53 | 48 | 11.1 | 7.2 | 130 | 135 | 17 | 55 | - | | 2- 2-84 | 0910 | 59.5 | 49 | 11.2 | 7.2 | _ | 151 | 10 | 63 | - | | 2-22-84 | 1400 | 60 | 50 | 11.2 | 7.4 | 138 | 135 | 10 | 54 | - | | 3-15-84 | 0905 | 75 | 53.5 | 10.2 | 7.6 | 146 | 139 | 14 | 58 | - | | 3-27-84 | 1100 | 68 | 55 | 10.7 | 7.4 | 140 | 139 | 5.8 | 59 | - | | 4-19-84 | 0900 | 61 | 55 | 10.1 | 7.4 | 162 | 161 | 3.5 | 67 | | | 5- 1-84 | 1305 | 63 | 58 | 10.6 | 7.5 | 144 | 147 | 3.4 | 62 | - | | 5-24-84 | 1310 | 92 | 65 | 10.4 | 7.8 | 140 | 131 | 3.6 | 57 | _ | | 6-20-84 | 1300 | 86.5 | 68 | 10.1 | 7.4 | 138 | 140 | 3.9 | 55 | _ | Sta. AO 2570.00 Sacramento River @ Ord Ferry | | | Te | mp. | | | E.C. | | | | | |----------|------|------|------------------|-------|-----|--------|------|-------|--------|--------| | | | (° | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H <sub>2</sub> O | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 6- 3-83 | 0910 | - | 57.5 | - | - | 108 | 105 | 10 | 42 | _ | | 6-16-83 | 1420 | 96 | 62 | | - | 115 | 105 | 10 | 44 | | | 7-14-83 | 1420 | 92 | 64 | _ | - | 120 | 105 | 7.0 | 44 | | | 8-16-83 | 1400 | 95 | 65 | - | - | 110 | 103 | 3.9 | 43 | - | | 9- 7-83 | 1340 | - | 64 | - | | _ | 114 | 3.7 | - | - | | 9-20-83 | 1520 | 87 | 64 | - | - | 122 | 115 | 3.0 | 49 | - | | 10-19-83 | 1450 | 75 | 59.5 | 10.1 | 7.4 | 123 | 118 | 2.0 | 48 | _ | | 11- 9-83 | - | 54 | - | - | | - | 115 | 5.0 | 45 | | | 11-29-83 | 1415 | 50 | 51.5 | 10.6 | 7.3 | 130 | 128 | 12 | 56 | - | | 12-21-83 | 1000 | 47.5 | 49 | _ | 7.2 | 121 | 110 | 16 | 48 | - | | 1-10-84 | 1400 | 54 | 48 | 11.3 | 7.2 | 130 | 134 | 14 | 56 | - | | 2- 2-84 | 0950 | 60 | 49 | 11.2 | 7.2 | - | 146 | 9.0 | 61 | - | | 2-22-84 | 1430 | 67 | 49 | 11.2 | 7.3 | 140 | 135 | 9.0 | 56 | - | | 3-15-84 | 0940 | 73 | 54 | 10.4 | 7.4 | 145 | 135 | 10 | 57 | - | | 3-27-84 | 1030 | 61 | 53.5 | 10.8 | 7.4 | 140 | 137 | 5.0 | 58 | | | 4-19-84 | 0930 | 61 | 54 | 10.2 | 7.3 | 160 | 157 | 3.5 | 64 | _ | | 5- 1-84 | 1340 | 65 | 57 | 10.7 | 7.5 | 142 | 144 | 8.7 | 59 | _ | | 5-24-84 | 1340 | 92 | 65 | 10.7 | 7.7 | 138 | 127 | 3.8 | 58 | _ | Sta. AO 2630.00 Sacramento River @ Hamilton City | | | Te | mp. | E.C. | | | | | | | |----------|------|-----|------|-------|-----|------------|------|-------|--------|--------| | _ | | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | Н20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-28-83 | 1515 | 66 | 53 | 10.3 | 7.3 | 120 | 108 | 52 | 46 | _ | | 5-10-83 | 1415 | - | 53.5 | - | _ | | - | - | _ | - | | 6- 3-83 | 0845 | - | 56 | - | - | 105 | 102 | 11 | 41 | - | | 6-16-83 | 1445 | 92 | 63 | 10.2 | 7.0 | 108 | 105 | 6.2 | 43 | 11.4 | | 7-14-83 | 1500 | 90 | 62.5 | 10.1 | 7.4 | 110 | 102 | 4.9 | 42 | 9.9 | | 8-16-83 | 1430 | 97 | 63 | 10.0 | 7.4 | 105 | 100 | 2.9 | 41 | 5.6 | | 9- 7-83 | 1405 | - | 62 | - | - | - | 113 | 4.0 | - | - | | 9-20-83 | 1600 | 90 | 63 | 10.1 | 7.5 | 120 | 112 | 3.0 | 45 | 15.6 | | 10-19-83 | 1530 | 75 | 58 | 10.5 | 7.3 | 119 | 112 | 2.0 | 47 | 3.7 | | 11- 9-83 | - | - | 53 | | - | · <b>-</b> | 103 | 3.5 | 46 | - | | 11-29-83 | 1505 | 52 | 52 | 10.6 | 7.3 | 120 | 120 | 8.6 | 52 | 33.3 | | 12-21-83 | 1030 | 52 | 49 | 11.4 | 7.2 | 118 | 107 | 14 | 46 | - | | 1-10-84 | 1415 | 51 | 48 | 11.3 | 7.3 | 124 | 130 | 12 | 54 | 34.8 | | 2- 2-84 | 1015 | 62 | 48.5 | 11.4 | 7.2 | - | 133 | 8.0 | 57 | - | | 2-22-84 | 1505 | 58 | 49 | 11.5 | 7.2 | 127 | 130 | 9.0 | 53 | 17.7 | | 3-15-84 | 1030 | 64 | 53 | 10.4 | 7.3 | 139 | 127 | 27 | 53 | - | | 3-27-84 | 1000 | 60 | 51.5 | 11.0 | 7.3 | 135 | 132 | 4.4 | 56 | 5.4 | | 4-19-84 | 1010 | 60 | 54 | 10.4 | 7.4 | 151 | 150 | 3.2 | 58 | - | | 5- 1-84 | 1410 | 61 | 57 | 10.9 | 7.4 | 130 | 137 | 3.6 | 56 | 17.5 | | 5-24-84 | 1410 | 85 | 63 | 10.7 | 7.5 | 128 | 123 | 2.5 | 56 | - | | 6-22-84 | 0820 | 77 | 59 | 10.0 | 7.4 | 130 | 129 | 4.6 | 52 | - | Sta. A0 2700.00 Sacramento River @ Woodson Bridge | | | Temp. E.C. | | | | | | | | | |----------|------|------------|------------------|-------|-----|--------|--------------|-------|--------|--------| | _ | | (° | | D.O. | | (umhos | <del> </del> | Turb. | Alk. | TSS | | Date | Time | Air | H <sub>2</sub> O | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 6- 3-83 | 0800 | - | 55.5 | - | - | 105 | 100 | 9.6 | 42 | - | | 6-16-83 | 1630 | - | 62 | - | - | 105 | 103 | 6.7 | 42 | - | | 7-14-83 | 1550 | 94 | 63 | - | - | 110 | 100 | 5.4 | 40 | - | | 8-16-83 | 1530 | 96 | 64 | - | - | 105 | 98 | 3.0 | 41 | | | 9- 7-83 | 1435 | - | 65 | - | - | _ | 111 | 3.5 | - | - | | 9-20-83 | 1650 | 88 | 62 | - | - | 110 | 104 | 3.0 | 43 | - | | 10-19-83 | 1615 | 74 | 58 | 10.8 | 7.5 | 112 | 108 | 1.6 | 46 | - | | 11- 9-83 | - | - | 53.5 | - | - | - | 107 | 3.9 | 43 | - | | 11-29-83 | 1540 | 55.5 | 52.5 | 10.8 | - | 122 | 119 | 6.8 | 52 | - | | 12-21-83 | 1130 | 53.5 | 49 | 11.4 | 7.2 | 118 | 105 | 10 | 46 | - | | 1-10-84 | 1500 | 49.5 | 48 | 11.3 | 7.2 | 119 | 118 | 16 | 50 | _ | | 2- 2-84 | 1115 | 72 | 50 | 11.6 | 7.2 | _ | 130 | 9.0 | 56 | - | | 2-22-84 | 1600 | 58 | 49 | 11.9 | 7.3 | 119 | 120 | 13 | 50 | - | | 3-15-84 | 1110 | 64 | 52 | 10.8 | 7.4 | 127 | 120 | 28 | 48 | - | | 3-27-84 | 0915 | 54 | 52 | 11.1 | 7.3 | 130 | 127 | 4.9 | 55 | - | | 4-19-84 | 1045 | 62 | 55 | 10.9 | 7.4 | 142 | 144 | 5.9 | 56 | - | | 5- 4-84 | 0745 | 57.5 | 54.5 | 10.7 | 7.4 | 131 | 132 | 3.1 | 56 | - | | 5-24-84 | 1430 | 90 | 64 | 11.1 | 7.9 | 127 | 119 | 3.0 | 56 | - | | 6-22-84 | 0900 | 81 | 61 | 10.4 | 7.4 | 121 | 125 | 3.0 | 48 | - | Sta. AO 2731.00 Sacramento River @ Tehama | | | | mp. | E.C. | | | | | | | |----------|------|-----------|------------------|-------|-----|--------|------------|-------|--------|--------| | | | <u>(°</u> | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H <sub>2</sub> O | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-28-83 | 1630 | 58 | 53 | 10.4 | 7.3 | 125 | 118 | 73 | 91 | - | | 5-10-83 | 1100 | ~ | 52 | _ | | 120 | 110 | 17 | 48 | - | | 6- 2-83 | 1345 | - | 56.5 | - | | 105 | 104 | 13 | 42 | - | | 6-16-83 | 1600 | 88 | 60 | 10.6 | 7.2 | 112 | 106 | 6.6 | 45 | 11.7 | | 7-14-83 | 1630 | 86 | 61 | 10.4 | 7.4 | 115 | <b>9</b> 8 | 4.7 | 41 | 5.6 | | 8-16-83 | 1600 | 88 | 62 | 10.5 | 7.5 | 105 | 96 | 2.6 | 40 | 4.0 | | 9- 7-83 | 1500 | - | 61 | - | - | _ | 107 | 3.1 | | - | | 9-20-83 | 1730 | 80 | 61 | 10.5 | 7.6 | 117 | 106 | 2.0 | 43 | 2.1 | | 10-19-83 | 1700 | 63 | 58.5 | 10.5 | 7.3 | 112 | 107 | 1.9 | 44 | 9.5 | | 11- 9-83 | - | - | 53 | ~ | _ | - | 105 | 4.0 | 43 | - | | 12- 1-83 | 0915 | 52.5 | 53.5 | 10.7 | 7.2 | 123 | 121 | 5.1 | 53 | 11.5 | | 12-21-83 | 1215 | 54.5 | 49 | 11.5 | 7.2 | 120 | 108 | 13 | 47 | - | | 1-10-84 | 1530 | 48 | 48 | 11.3 | 7.2 | 125 | 127 | 11 | 53 | 15.7 | | 2- 2-84 | 1145 | 68 | 49 | 11.8 | 7.3 | - | 129 | 7.0 | 57 | - | | 2-23-84 | 0830 | 40 | 45 | 11.8 | 7.3 | 140 | 137 | 6.2 | 57 | 10.3 | | 3-15-84 | 1140 | 66 | 53 | 10.6 | 7.4 | 150 | 140 | 21 | 54 | - | | 3-27-84 | 0820 | 56 | 51 | 11.0 | 7.4 | 137 | 132 | 4.0 | 56 | 6.0 | | 4-19-84 | 1120 | 66 | 52 | 11.5 | 7.5 | 142 | 140 | 3.6 | 56 | - | | 5- 4-84 | 0815 | 63 | 54.5 | 11.0 | 7.3 | 138 | 133 | 3.6 | 55 | 10.8 | | 5-29-84 | 0730 | 77 | 58.5 | 10.2 | 7.5 | 128 | 121 | 2.5 | 57 | - | | 6-22-84 | 1000 | 84.5 | 58 | 10.7 | 7.4 | 125 | 124 | 3.2 | 49 | | Sta. AO 2737.00 Sacramento River @ Sacramento Bar | | | Te | mp.<br>F) | D 0 | | E.C | | m1 | | <b></b> | |----------|------|------|------------------|---------------|-----|-----------------|------|----------------|----------------|---------------| | Date | Time | Air | H <sub>2</sub> O | D.O.<br>(ppm) | pН | (umhos<br>Field | Lab. | Turb.<br>(NTU) | Alk.<br>(mg/L) | TSS<br>(mg/L) | | 6- 2-83 | 1320 | - | 55 | _ | - | 100 | 98 | 7.6 | 39 | | | 6-16-83 | 1635 | 92 | 60 | _ | - | 100 | 98 | 5.6 | 43 | - | | 7-14-83 | 1730 | 85 | 58.5 | - | _ | 105 | 97 | 4.4 | 39 | . <b>-</b> | | 8-16-83 | 1700 | 91 | 60 | - | - | 100 | 97 | 2.8 | 41 | _ | | 9- 7-83 | 1540 | - | 62 | - | - | _ | 102 | 3.2 | _ | - | | 9-20-83 | 1820 | 72 | 60 | - | - | 105 | 99 | 2.0 | 42 | - | | 10-21-83 | 0730 | 54.5 | 55 | 10.7 | 7.2 | 103 | 101 | 1.8 | 41 | - | | 11- 9-83 | - | - | 54.5 | - | | - | 105 | 3.5 | 43 | - | | 12- 1-83 | 0950 | 54.5 | 53.5 | 10.7 | 7.2 | 122 | 115 | 4.4 | 51 | - | | 12-21-83 | 1300 | 52.5 | 50 | 11.5 | 7.2 | 116 | 101 | 7.6 | 46 | _ | | 1-10-84 | 1620 | 51 | 48 | 11.3 | 7.2 | 116 | 116 | 9.0 | 47 | - | | 2- 2-84 | 1230 | 72 | 49 | 12.0 | 7.3 | _ | 116 | 7.0 | 47 | _ | | 2-23-84 | 0910 | 41 | 47 | 12.1 | 7.3 | 120 | 123 | 5.9 | 49 | | | 3-15-84 | 1230 | 68 | 52.5 | 10.7 | 7.4 | 138 | 128 | 17 | 53 | | | 3-27-84 | 0800 | 56 | 51 | 11.0 | 7.4 | 137 | 125 | 4.2 | 55 | - | | 4-19-84 | 1155 | 68 | 52 | 11.6 | 7.5 | 135 | 130 | 5.3 | 53 | | | 5- 4-84 | 0910 | 65 | 55 | 11.2 | 7.4 | 130 | 126 | 3.5 | 52 | - | | 5-29-84 | 0800 | 83 | 58 | 10.9 | 7.5 | 122 | 113 | 2.7 | 54 | - | | 6-22-84 | 0930 | 84.5 | 59 | 10.8 | 7.6 | 120 | 120 | 2.8 | 49 | - | Sta. AO 2755.00 Sacramento River below Red Bluff Diversion Dam | | | Te | mp. | | | E.C | | | | | |-------------|------|------|------|-------|-----|--------|------|-------|--------|--------| | <del></del> | | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 5- 9-83 | 1515 | _ | 51 | - | - | - | - | _ | - | - | | 6- 2-83 | 1425 | - | 55 | - | | 105 | 102 | 11 | 41 | - | | 6-17-83 | 0730 | 82 | 56 | - | - | 95 | 95 | 5.1 | 42 | - | | 7-15-83 | 0745 | 74 | 58 | - | - | 110 | 95 | 4.2 | 39 | _ | | 8-17-83 | 0715 | 80 | 58 | - | - | 100 | 97 | 2.7 | 40 | _ | | 9-12-83 | 0815 | - | 58 | - | - | - | 99 | 2.5 | - | - | | 9-21-83 | 0700 | 64 | 57 | 10.9 | 7.5 | 101 | 97 | 3.0 | 42 | - | | 10-21-83 | 0920 | 63.5 | 56 | 11.1 | 7.3 | 104 | 101 | 2.6 | 42 | - | | 11- 9-83 | - | - | 54 | - | _ | | 108 | 5.1 | 44 | | | 12- 1-83 | 0830 | 51 | 53.5 | 10.6 | 7.2 | 124 | 117 | 3.2 | 51 | - | | 12-22-83 | 1500 | 47.5 | 50 | 11.3 | 7.2 | 116 | 105 | 9.6 | 46 | _ | | 1-11-84 | 0800 | 42 | 47 | 11.5 | 7.2 | 126 | 124 | 9.6 | 51 | _ | | 2- 2-84 | 1345 | 72 | 48.5 | 12.0 | 7.3 | - | 118 | 6.0 | 49 | *** | | 2-23-84 | 0950 | 43 | 47 | 12.3 | 7.4 | 120 | 127 | 5.5 | 50 | | | 3-15-84 | 1315 | 66 | 52.5 | 11.2 | 7.3 | 130 | 124 | 51 | 50 | - | | 3-28-84 | 0830 | 61 | 51 | 11.7 | 7.3 | 132 | 122 | 3.7 | 55 | - | | 4-19-84 | 1240 | 66 | 51 | 11.8 | 7.4 | 135 | 130 | 4.1 | 53 | - | | 5- 4-84 | 1030 | 72 | 55 | 11.2 | 7.4 | 125 | 126 | 3.6 | 52 | - | | 5-30-84 | 0930 | 90 | 60.5 | 10.7 | 7.4 | 120 | 111 | 2.9 | 54 | *** | | 6-21-84 | 0730 | 69 | 56 | 10.6 | 7.3 | 120 | 120 | 4.0 | 48 | | Sta. AO 2769.00 Sacramento River @ Red Bluff Elks Lodge | | | Te | mp. | E.C. | | | : <b>.</b> | | | | |----------|------|------|------|-------|-----|--------|------------|-------|--------|--------------| | | | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 51183 | 1200 | - | 51 | | - | - | _ | | | - | | 6- 2-83 | 1245 | - | 54 | | - | 100 | 98 | 7.3 | 40 | - | | 6-17-83 | 0815 | 86 | 54 | | - | 95 | 94 | 4.6 | 41 | - | | 7-15-83 | 0815 | 74 | 57 | _ | - | 106 | 98 | 4.7 | 44 | - | | 8-17-83 | 0740 | 74 | 58 | _ | - | 100 | 95 | 2.8 | 41 | - | | 9-12-83 | 0800 | - | 58 | _ | - | - | 100 | 2.9 | | <del>-</del> | | 9-21-83 | 0740 | 65 | 58 | 9.9 | 7.4 | 101 | 98 | 2.0 | 40 | - | | 10-21-83 | 0850 | 62 | 55.5 | 10.2 | 7.3 | 103 | 100 | 2.6 | 42 | - | | 11- 9-83 | - | | 54 | ••• | - | _ | 109 | 5.5 | 44 | _ | | 12- 1-83 | 1030 | 53.5 | 53.5 | 10.4 | 7.2 | 120 | 115 | 3.9 | 51 | _ | | 12-22-83 | 1430 | 49 | 50 | 11.6 | 7.2 | 110 | 100 | 7.7 | 45 | - | | 1-11-84 | 0830 | 44 | 47 | _ | 7.2 | 120 | 118 | 9.7 | 47 | - | | 2- 3-84 | 0800 | 37.5 | 48 | 11.5 | 7.3 | - | 111 | 6.0 | 47 | _ | | 2-23-84 | 1020 | 48 | 47 | 11.7 | 7.3 | 118 | 122 | 5.2 | 50 | - | | 3-14-84 | 0740 | 54 | 53 | 10.5 | 7.4 | 140 | 137 | 10 | 54 | | | 3-28-84 | 0900 | 63 | 51 | 11.0 | 7.2 | 130 | 126 | 4.4 | 51 | - | | 4-19-84 | 1305 | 63 | 51 | 11.4 | 7.4 | 134 | 129 | 4.5 | 53 | - | | 5- 2-84 | 1330 | 75.5 | 52 | 11.2 | 7.4 | 130 | 126 | 2.5 | 50 | - | | 5-30-84 | 0950 | 93 | 60 | 10.3 | 7.3 | 120 | 111 | 3.2 | 53 | - | | 6-21-84 | 0745 | 70 | 56 | 10.5 | 7.4 | 120 | 122 | 2.6 | 48 | _ | Sta. AO 2780.00 Sacramento River @ RM 250 (below Paynes Creek) | | | | mp. | E.C. | | | | | | | |----------|------|------|------------------|-------|-----|--------|------|-------|--------|--------| | | m. | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | H <sub>2</sub> 0 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 6- 2-83 | 1230 | - | 53.5 | - | | 105 | 93 | 7.7 | 40 | | | 6-17-83 | 0845 | 74 | 55 | - | | 97 | 94 | 4.4 | 38 | - | | 7-15-83 | 0835 | 72 | 56.5 | - | - | 105 | 100 | 4.2 | 41 | _ | | 8-17-83 | 0800 | 83 | 56.5 | - | - | 100 | 97 | 2.6 | 40 | _ | | 9-12-83 | 0900 | - | 59 | | _ | | 103 | 3.0 | _ | | | 9-21-83 | 0805 | 67 | 57 | 10.1 | 7.4 | 111 | 100 | 2.0 | 41 | _ | | 10-21-83 | 0815 | 59 | 55 | 10.4 | 7.3 | 105 | 101 | 2.7 | 42 | - | | 11-10-83 | - | | 53 | - | - | _ | 107 | 4.7 | 41 | - | | 11-30-83 | 1440 | 60 | 54 | 10.6 | 7.3 | 120 | 115 | 4.0 | 51 | - | | 12-22-83 | 1400 | 47.5 | 50 | 11.4 | 7.2 | 110 | 102 | 7.3 | 44 | - | | 1-11-84 | 0915 | 45 | 47 | 11.3 | 7.1 | 121 | 117 | 9.4 | 47 | - | | 2- 3-84 | 0845 | 39 | 47 | 11.5 | 7.2 | _ | 114 | 7.0 | 47 | - | | 2-23-84 | 1045 | 49 | 47 | 11.4 | 7.3 | 122 | 126 | 5.2 | 53 | - | | 3-14-84 | 0800 | 57 | 53 | 10.4 | 7.3 | 135 | - | - | | _ | | 3-28-84 | 0900 | 65 | 52 | 11.2 | 7.3 | 114 | 120 | 4.6 | 50 | - | | 4-19-84 | 1330 | 67 | 52 | 10.5 | 7.3 | 136 | 132 | 16 | 50 | - | | 5- 2-84 | 1300 | 74 | 51.5 | 11.1 | 7.4 | 130 | 124 | 4.5 | 50 | - | | 5-29-84 | 0830 | 86.5 | 57 | 10.2 | 7.5 | 120 | 112 | 2.5 | 53 | _ | | 6-22-84 | 1200 | 88 | 56 | 10.6 | 7.3 | 125 | 123 | 3.3 | 47 | - | Sta. AO 2785.00 Sacramento River @ Bend Bridge | | | Te | mp. | | E.C. | | | | | | | |----------|------|------|------------------|-------|------|--------|------|-------|--------|--------|--| | <b>.</b> | | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | | Date | Time | Air | H <sub>2</sub> O | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | | 5-11-83 | 1100 | 71 | 50 | 11.6 | 7.2 | 115 | 98 | 12 | 40 | - | | | 6- 2-83 | 1045 | | 53 | - | - | 100 | 95 | 7.5 | 40 | - | | | 6-17-83 | 0930 | 76 | 55 | 10.7 | 7.2 | 97 | 97 | 3.5 | 40 | 13.5 | | | 7-15-83 | 0915 | 76 | 55 | 10.3 | 7.3 | 103 | 96 | 4.2 | 40 | 4.0 | | | 8-17-83 | 0845 | - | 55.5 | 10.1 | 7.2 | 100 | 95 | 2.8 | 40 | 1.9 | | | 9-12-83 | 0930 | - | 57 | - | - | - | 101 | 3.0 | - | - | | | 9-21-83 | 0840 | 68 | 55 | 10.8 | 7.3 | 105 | 99 | 2.0 | 42 | 43.1 | | | 10-20-83 | 1400 | | 56 | 11.1 | 7.3 | 100 | 99 | 2.9 | 43 | 3.5 | | | 11-10-83 | - | - | 54 | - | _ | | 109 | 4.0 | 45 | _ | | | 11-30-83 | 1430 | 64 | 54 | 10.4 | 7.2 | 122 | 114 | 4.0 | 49 | 8.5 | | | 12-22-83 | 1330 | 44.5 | 50 | 11.2 | 7.2 | 106 | 101 | 7.2 | 44 | _ | | | 1-11-84 | 1015 | 76 | 47 | 11.4 | 7.1 | 110 | 116 | 9.4 | 48 | 19.6 | | | 2- 3-84 | 0910 | 47 | 47 | 11.5 | 7.2 | | 113 | 7.0 | 47 | - | | | 2-23-84 | 1130 | 51 | 47 | 11.5 | 7.2 | 120 | 128 | 5.5 | 50 | 7.6 | | | 3-14-84 | 0900 | 54 | 52 | 10.3 | 7.3 | 115 | 112 | 55 | 44 | _ | | | 3-28-84 | 1030 | 64 | 51 | 11.2 | 7.3 | 110 | 118 | 3.7 | 51 | 2.6 | | | 4-20-84 | 0815 | 58 | 51 | 10.6 | 7.4 | 132 | 130 | 6.0 | 53 | - | | | 5- 2-84 | 1215 | 73.5 | 51.5 | 11.4 | 7.4 | 127 | 124 | 4.7 | 50 | 14.7 | | | 5-29-84 | 1400 | 97 | 56 | 11.1 | 7.6 | 120 | 113 | 2.7 | 55 | _ | | | 6-21-84 | 0815 | 72 | 54 | 10.6 | 7.2 | 127 | 124 | 3.0 | 48 | _ | | Sta. AO 2790.00 Sacramento River @ Jellys Ferry | | | Te | mp.<br>F) | D.O. | | E.C<br>(umhos | | Turb. | Alk. | TSS | |----------|------|------|-----------|-------|-----|---------------|------|-------|--------|--------| | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 6- 1-83 | 1350 | - | 54 | - | - | 100 | 99 | 5.9 | 40 | - | | 6-17-83 | 1015 | 79 | 54 | _ | - | 97 | 92 | 4.9 | 40 | - | | 7-15-83 | 0950 | 79 | 55.5 | - | - | 135 | 96 | 3.5 | 40 | - | | 8-17-83 | 0915 | 87 | 55 | - | | 100 | 93 | 2.6 | 39 | | | 9-12-83 | 1020 | - | 57 | | - | - | 100 | 2.9 | - | - | | 9-21-83 | 0920 | 69 | 56 | 10.0 | 7.2 | 110 | 97 | 2.0 | 41 | - | | 10-20-83 | 1340 | 72 | 56 | 10.3 | 7.3 | 102 | 99 | 2.8 | 41 | _ | | 11-10-83 | - | - | 54 | _ | - | - | 109 | - | 44 | - | | 11-30-83 | 1500 | 63 | 53 | 10.4 | 7.2 | 122 | 114 | 3.8 | 50 | - | | 12-22-83 | 1230 | 45.5 | 50 | 11.6 | 7.2 | 108 | 100 | 6.1 | 44 | - | | 1-11-84 | 1030 | 55 | 48 | 11.3 | 7.1 | 110 | 112 | 8.3 | 48 | - | | 2- 3-84 | 1000 | 52 | 47 | 11.6 | 7.2 | _ | 112 | 6.0 | 47 | - | | 2-23-84 | 1155 | 48 | 47 | 11.6 | 7.2 | 122 | 127 | 5.5 | 50 | - | | 3-14-84 | 0925 | 57 | 51 | 10.0 | 7.2 | 122 | 118 | 50 | 45 | - | | 3-28-84 | 1100 | 64 | 49 | 11.1 | 7.3 | 120 | 126 | 3.5 | 52 | - | | 4-20-84 | 0850 | 58 | 52 | 10.9 | 7.3 | 140 | 152 | 4.6 | 61 | - | | 5- 2-84 | 1200 | 73 | 52 | 11.3 | 7.4 | 125 | 125 | 3.2 | 51 | | | 5-29-84 | 1340 | 95 | 56 | 11.4 | 7.6 | 130 | 112 | 2.5 | 55 | - | | 6-22-84 | 1230 | 90 | 56 | 11.0 | 7.3 | 123 | 115 | 3.8 | 47 | **** | Sta. AO 2815.00 Sacramento River @ Balls Ferry | | | Te | mp. | | E.C. | | | | | | |----------|------|------|------|-------|------|--------|------|-------|--------|--------| | _ | | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pH | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-29-83 | 1130 | 72 | 52 | 10.0 | 7.0 | 90 | 83 | 14 | 33 | - | | 5- 6-83 | 1150 | - | 53 | - | _ | - | - | - | - | - | | 6- 2-83 | 0900 | - | 51 | _ | - | 97 | 94 | 7.5 | 39 | | | 6-20-83 | 0900 | 76 | 52 | 10.9 | 7.2 | 98 | 88 | 4.4 | 39 | - | | 7-15-83 | 1030 | 77.5 | 54 | 10.7 | 7.3 | 98 | 92 | 3.7 | 39 | 2.1 | | 8-18-83 | 1245 | 88 | 54 | 10.9 | 7.3 | 100 | 97 | 2.4 | 40 | 2.3 | | 9-12-83 | 1100 | _ | 56 | - | - | - | 95 | 2.8 | - | - | | 9-21-83 | 1000 | 81 | 56 | 10.1 | 7.2 | 99 | 100 | 2.0 | 41 | 8.8 | | 10-20-83 | 1245 | 73 | 56 | 10.7 | 7.3 | 98 | 94 | 2.6 | 40 | 3.3 | | 11-10-83 | - | - | 53.5 | _ | - | _ | 105 | 6.4 | 40 | - | | 12- 1-83 | 1330 | 58 | 54 | 10.3 | 7.2 | 118 | 112 | 3.3 | 47 | 1.6 | | 12-27-83 | 1130 | 49 | 49 | 10.9 | 6.9 | 80 | 87 | 21 | 34 | - | | 1-11-84 | 1030 | 58 | 48 | 11.4 | 7.2 | 109 | 105 | 7.5 | 44 | 5.3 | | 2- 3-84 | 1045 | 55 | 48 | 11.6 | 7.1 | _ | 102 | 8.0 | 41 | _ | | 3- 5-84 | 1325 | 76 | 51 | 11.8 | 7.3 | 130 | 130 | 5.2 | 51 | 4.9 | | 3-14-84 | 1000 | 59 | 51 | 8.8 | 7.2 | 130 | 125 | 27 | 50 | - | | 3-28-84 | 1200 | 65 | 50 | 11.4 | 7.3 | 119 | 125 | 4.2 | 51 | 3.4 | | 4-20-84 | 0930 | 60 | 51 | 10.8 | 7.2 | 122 | 126 | 5.0 | 48 | - | | 5- 2-84 | 1115 | 72 | 51 | 11.6 | 7.3 | 138 | 125 | 3.1 | 51 | 8.3 | | 5-29-84 | 1305 | 101 | 55 | 11.0 | 7.2 | 130 | 144 | 2.3 | 66 | - | | 6-21-84 | 0955 | 75 | 54 | 10.8 | 7.1 | 138 | 126 | 6.0 | 50 | _ | Sta. AO 2820.00 Sacramento River above Cow Creek (at Deschutes Road) | | | Te<br>(° | mp. | 70.0 | | E.C | m 1. | A 11- | mac | | |----------|------|----------|------------------|---------------|-----|-----------------|------------|----------------|----------------|---------------| | Date | Time | Air | H <sub>2</sub> O | D.O.<br>(ppm) | рН | (umhos<br>Field | Lab. | Turb.<br>(NTU) | Alk.<br>(mg/L) | TSS<br>(mg/L) | | 6- 1-83 | 1315 | _ | 52.5 | - | | 92 | 90 | 4.9 | 38 | _ | | 6-17-83 | 1100 | 88 | 54 | - | - | 90 | 87 | 4.0 | 37 | _ | | 7-15-83 | 1050 | 82 | 54 | - | - | 100 | 89 | 3.5 | 38 | - | | 8-17-83 | 1000 | 85 | 54 | - | | 94 | 90 | 2.5 | 39 | _ | | 9-12-83 | 1200 | - | 56 | - | - | _ | 90 | 2.0 | - | - | | 9-21-83 | 1100 | 76 | 55 | 10.6 | 7.3 | 99 | 91 | 2.0 | 40 | _ | | 10-20-83 | 1215 | 69 | 55.5 | 11.1 | 7.2 | 91 | <b>9</b> 0 | 2.2 | 39 | | | 11-10-83 | - | - | 54 | _ | - | - | 98 | 6.1 | 39 | - | | 11-30-83 | 1300 | 62 | 54 | 10.3 | 7.2 | 109 | 105 | 2.6 | 46 | - | | 12-22-83 | 1130 | 55.5 | 52 | 12.2 | 7.0 | 102 | 100 | 6.4 | 42 | - | | 1-11-84 | 1130 | 60 | 48 | 11.3 | 7.2 | 115 | 106 | 6.6 | 45 | _ | | 2- 3-84 | 1130 | 62 | 48 | 11.8 | 7.2 | | 97 | 7.0 | 42 | - | | 2-23-84 | 1240 | 50 | 47 | 12.4 | 7.2 | 105 | 109 | 5.2 | 45 | - | | 3-14-84 | 1030 | 58 | 50 | 11.3 | 7.2 | 120 | 117 | 11 | 50 | - | | 3-28-84 | 1230 | 67 | 49 | 12.4 | 7.4 | 110 | 117 | 3.3 | 51 | - | | 4-20-84 | 1010 | 61 | 49 | 11.8 | 7.3 | 112 | 115 | 3.4 | 47 | _ | | 5- 2-84 | 1045 | 70 | 49 | 11.8 | 7.4 | 119 | 114 | 3.1 | 50 | - | | 5-29-84 | 1230 | 95.5 | 53.5 | 12.2 | 7.6 | 122 | 109 | 2.7 | 54 | | | 6-22-84 | 1315 | 94 | 56 | 12.1 | 7.6 | 115 | 111 | 5.9 | 46 | _ | Sta. AO 2833.00 Sacramento River above Clear Creek | | | Temp. E.C. (°F) D.O. (umhos/cm) | | | | | | Turb. | Alk. | TSS | |----------|------|---------------------------------|------|-------|-----|-------|------|-------|--------|---------------| | Date | Time | Air | H20 | (ppm) | рН | Field | Lab. | (NTU) | (mg/L) | 133<br>(mg/L) | | 5- 6-83 | 0900 | _ | 49.5 | _ | _ | 86 | 87 | 10 | 35 | _ | | 6- 1-83 | 1230 | - | - | _ | - | 91 | 88 | 5.7 | 36 | - | | 6-17-83 | 1145 | 90 | 54 | _ | - | 87 | 84 | 4.1 | 36 | - | | 7-15-83 | 1150 | 84 | 54 | _ | - | 97 | 88 | 4.3 | 40 | - | | 8-17-83 | 1030 | - | 54 | - | - | 97 | 89 | 2.6 | 39 | - | | 9-12-83 | 1215 | - | 56 | - | - | - | 92 | 2.6 | *** | - | | 9-21-83 | 1120 | 86 | 55 | 11.4 | 7.3 | 90 | 90 | 2.0 | 38 | - | | 10-20-83 | 1130 | - | 56 | 10.6 | 7.3 | 96 | 88 | 2.2 | 38 | - | | 11-10-83 | - | - | 54 | _ | | - | 98 | 5.5 | 39 | - | | 11-30-83 | 1200 | 57 | 54 | 10.4 | 7.2 | 112 | 104 | 2.8 | 46 | - | | 12-22-83 | 1115 | - | 51 | 12.2 | 7.2 | 102 | 95 | 6.6 | 44 | _ | | 1-11-84 | 1215 | 58 | 48 | 11.4 | 7.2 | 110 | 107 | 6.2 | 45 | - | | 2- 3-84 | 1200 | 71 | 48 | 12.5 | 7.2 | _ | 95 | 7.0 | 39 | _ | | 2-23-84 | 1310 | 55 | 47 | 12.4 | 7.2 | 101 | 105 | 5.3 | 47 | - | | 3-14-84 | 1100 | 68 | 49 | 11.7 | 7.2 | 119 | 114 | 6.3 | 49 | - | | 3-28-84 | 1315 | 72 | 50 | 12.7 | 7.7 | 115 | 117 | 3.3 | 51 | - | | 4-20-84 | 1040 | 63 | 49 | 12.0 | 7.4 | 112 | 112 | 3.0 | 46 | - | | 5- 2-84 | 1000 | 69 | 50 | 11.8 | 7.4 | 120 | 112 | 3.1 | 48 | - | | 5-29-84 | 1150 | 95.5 | 52 | 12.1 | 7.6 | 115 | 105 | 2.7 | 51 | - | | 6-21-84 | 1015 | 72 | 52 | 11.8 | 7.3 | 115 | 109 | 2.6 | 46 | _ | Sta. A2 1010.00 Sacramento River @ Keswick | | | Te | mp. | E.C. | | | | | | | |----------|------|-----------|------|---------------|-------|-----------------|------|----------------|----------------|---------------| | Date | Time | (°<br>Air | H20 | D.O.<br>(ppm) | pН | (umhos<br>Field | Lab. | Turb.<br>(NTU) | Alk.<br>(mg/L) | TSS<br>(mg/L) | | 4-29-83 | 0940 | 65 | 48 | 11.6 | 7.0 | 82 | 77 | 11 | 31 | <del></del> | | 5- 5-83 | 1130 | - | 48 | _ | _ | 87 | 85 | 10 | 34 | | | 5- 9-83 | 1245 | - | - | _ | - | 94 | 96 | 11 | 34 | *** | | 6- 1-83 | 1240 | - | 49 | - | | 92 | 91 | 6.2 | 37 | - | | 6-17-83 | 1300 | 88 | 52 | 11.1 | 7.1 | 86 | 89 | 3.0 | 38 | 3.7 | | 7-15-83 | 1300 | 90 | 52 | 11.7 | 7.1 | 96 | 89 | 3.7 | 38 | 2.6 | | 8-17-83 | 1130 | 96 | 53 | 10.0 | 7.1 | 96 | 88 | 2.4 | 38 | 0.5 | | 9-12-83 | 1300 | - | 55 | - | _ | - | 89 | 3.3 | | - | | 9-21-83 | 1310 | 89 | 53.5 | 9.7 | 7.1 | 91 | 90 | 2.0 | 39 | 3.3 | | 10-20-83 | 1030 | 70 | 55 | 9.1 | 7.1 | 95 | 90 | 2.2 | 37 | 1.3 | | 11-10-83 | - | - | 54 | - | ٠ ـــ | - | 98 | 4.7 | 40 | _ | | 11-30-83 | 1100 | 53 | 54 | 9.6 | 7.1 | 110 | 105 | 2.6 | 46 | 5.0 | | 12-22-83 | 1030 | 53.5 | 51 | 12.5 | 7.2 | 105 | 98 | 4.9 | 40 | | | 1-11-84 | 1245 | 60 | 47 | 11.5 | 7.0 | 107 | 102 | 8.7 | 41 | 4.4 | | 2- 3-84 | 1250 | 74 | 47 | 11.5 | 7.0 | - | 96 | 8.0 | 39 | _ | | 2-23-84 | 1405 | 58 | 47 | 11.5 | 7.2 | 103 | 109 | 5.5 | 48 | _ | | 3-14-84 | 1200 | 67 | 48 | 11.2 | 7.2 | 118 | 114 | 4.4 | 48 | - | | 3-28-84 | 1415 | 71 | 47 | 11.4 | 7.0 | 112 | 117 | 5.3 | 45 | 2.3 | | 4-20-84 | 1150 | 68 | 49 | 11.6 | 7.1 | 118 | 114 | 2.7 | 49 | - | | 5- 2-84 | -915 | 69 | 47 | 10.6 | 7.3 | 120 | 112 | 2.5 | 47 | 3.9 | | 5-29-84 | 1100 | 99 | 49 | 10.6 | 7.3 | 115 | 108 | 2.5 | 52 | - | | 6-21-84 | 1245 | 81 | 55 | 10.6 | 7.2 | 120 | 112 | 3.0 | 46 | _ | Sta. A2 1040.00 Sacramento River @ Matheson | | | Te | mp. | | | E.C | ١. | | | | | |----------|------|------|------|-------|-----|--------|------|-------|--------|--------|--| | | | | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | | Date | Time | Air | Н20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | | 4-29-83 | 0820 | 60 | 49 | 10.7 | 7.2 | 96 | 91 | 12 | 38 | - | | | 5- 9-83 | 1130 | - | 49 | - | | - | | - | - | - | | | 6- 1-83 | 1030 | *** | 48.5 | 10.6 | - | - | 90 | 5.5 | 40 | - | | | 6-20-83 | 1100 | 74 | 50 | 10.4 | 7.2 | 100 | 91 | 4.4 | 40 | 4.6 | | | 7-15-83 | 1415 | 87 | 50 | 10.7 | 7.2 | 100 | 89 | 3.7 | 39 | 1.3 | | | 8-17-83 | 1245 | 88 | 51 | 10.1 | 7.2 | 97 | 90 | 2.3 | 39 | 0.8 | | | 9- 8-83 | 1330 | - | - | - | - | _ | 92 | 2.1 | - | - | | | 9-21-83 | 1340 | 80 | 54.5 | 10.1 | 7.3 | 97 | 90 | 2.0 | 39 | 5.4 | | | 10-20-83 | 0900 | 63 | 54.5 | 9.1 | 7.1 | 96 | 90 | 1.9 | 39 | 1.7 | | | 11-10-83 | | - | 53.5 | - | _ | _ | 101 | 3.2 | 45 | - | | | 11-30-83 | 0930 | 52 | 54 | 9.7 | 7.1 | 118 | 109 | 2.6 | 48 | 5.5 | | | 12-22-83 | 0930 | - | 52 | 12.8 | 7.0 | 98 | 103 | 3.9 | 44 | - | | | 1-11-84 | 1315 | 67 | 48 | 11.4 | 7.3 | 113 | 107 | 6.7 | 46 | 1.5 | | | 2- 3-84 | 1355 | 75.5 | 49 | 12.3 | 7.3 | - | 106 | 8.0 | 47 | _ | | | 2-23-84 | 1515 | 54 | 49 | 12.4 | 7.3 | 105 | 112 | 4.8 | 52 | 7.3 | | | 3-14-84 | 1300 | 58 | 47 | 11.4 | 7.2 | 118 | 114 | 61 | 50 | *** | | | 3-28-84 | 1500 | 67 | 46 | 11.6 | 7.4 | 112 | 118 | 3.0 | 51 | 1.7 | | | 4-20-84 | 1240 | 68 | 49 | 11.9 | 7.3 | 118 | 115 | 2.8 | 50 | - | | | 5- 2-84 | 0815 | 67 | 48 | 10.9 | 7.3 | 118 | 114 | 2.7 | 49 | 2.4 | | | 5-29-84 | 1010 | 91 | 49 | 11.1 | 7.4 | 115 | 107 | 2.6 | 49 | - | | | 6-21-84 | 1115 | 70 | 51 | 12.7 | 7.8 | 113 | 112 | 2.2 | 47 | - | | #### ATTACHMENT C SHASTA RESERVOIR TRIBUTARIES MONITORING STATIONS DATA #### SHASTA TRIBUTARIES ENLARGED SHASTA DATA Sta. A2 1300.00 Sacramento River @ Delta | Date | Time | (° | Temp. (°F) D.O. Air H2O (ppm) | | | E.C. (umhos/cm) Turb. pH Field Lab. (NTU) | | | | TSS (mg/L) | |----------|------|----------------------------------------|-------------------------------|-------|-----|-------------------------------------------|-----|-----|--------|------------| | | | ······································ | | (ppm) | | • | | | (mg/L) | (mg/L) | | 4-27-83 | 1630 | 47 | 46 | 11.5 | 7.2 | 77 | 73 | 1.6 | 36 | - | | 6-13-83 | 1445 | 86 | 55 | 10.6 | 7.4 | 69 | 64 | 2.9 | 32 | 5.2 | | 7-13-83 | 1430 | 98 | 61.5 | 9.8 | 7.4 | 87 | 72 | 1.7 | 32 | 2.8 | | 8-19-83 | 1300 | 66.5 | 64.5 | 9.2 | 7.8 | 115 | 110 | 0.7 | 48 | 4.3 | | 9-19-83 | 1545 | 84 | 62 | 9.9 | 8.3 | 128 | 123 | 0.4 | 51 | 0.0 | | 10-18-83 | 1345 | 68.5 | 56 | 10.0 | 8.3 | 123 | 119 | 1.1 | 53 | 1.4 | | 11-29-83 | 1600 | 48.5 | 43 | 12.1 | 7.3 | 110 | 100 | 0.9 | 42 | 1.6 | | 1- 9-84 | 1415 | 49 | 45 | 11.8 | 7.1 | 81 | 81 | 1.7 | 36 | 3.1 | | 2-24-84 | 1505 | 53 | 46 | 12.0 | 7.4 | 90 | 92 | 1.0 | 42 | 1.3 | | 3-28-84 | 1630 | 67 | 52 | 11.0 | 7.6 | 93 | 93 | 1.4 | 42 | 0.9 | | 5- 3-84 | 1315 | 68 | 51 | 11.2 | 7.4 | 90 | 91 | 1.3 | 39 | 1.5 | | 6-18-84 | 1330 | 102.5 | 69 | 9.7 | 8.2 | 110 | 112 | 0.7 | 48 | 0.7 | | 7-20-84 | 1400 | - | 74 | 9.3 | 8.3 | 135 | 134 | 1.2 | 55 | - | | 8-23-84 | 1330 | 90 | 64 | - | 8.2 | 140 | 147 | 0.9 | 61 | - | | 9-19-84 | 1330 | 90 | 72 | 10.6 | 8.3 | 143 | 150 | 0.5 | 57 | - | | 10-24-84 | 1400 | 84 | 50.5 | 11.4 | 7.8 | 147 | 133 | 0.7 | 61 | - | ## SHASTA TRIBUTARIES ENLARGED SHASTA DATA Sta. A2 2150.00 McCloud River above Shasta Lake | | | Te | mp. | | | E.C | | | | | |----------|------|------|------|-------|-----|--------|-------------|-------|--------|--------| | | | | F) | D.O. | | (umhos | <del></del> | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-27-83 | 1430 | 53 | 47 | 11.5 | 7.3 | 90 | 83 | 1.6 | 40 | - | | 6-13-83 | 1250 | 84 | 56.5 | 10.3 | 7.6 | 95 | 87 | 1.4 | 41 | 1.3 | | 7-13-83 | 1245 | 95 | 63 | 9.9 | 8.0 | 112 | 98 | 1.6 | 47 | 1.3 | | 8-19-83 | 1115 | 65.5 | 59.5 | 9.7 | 7.6 | 105 | 98 | 1.0 | 45 | 0.1 | | 9-19-83 | 1330 | 77 | 58 | 10.5 | 8.1 | 100 | 104 | 0.4 | 47 | 0.1 | | 10-18-83 | 1200 | 73 | 48.5 | 10.1 | 8.1 | 105 | 103 | 1.8 | 49 | 1.7 | | 11-29-83 | 1400 | 50 | 43 | 12.1 | 7.3 | 110 | 102 | 0.9 | 45 | 2.0 | | 1- 9-84 | 1330 | 41 | 44 | 12.2 | 7.3 | 99 | 99 | 1.0 | 42 | 0.7 | | 2-24-84 | 1320 | 48 | 45 | 12.2 | 7.6 | - | 103 | 0.5 | 45 | 1.5 | | 3-28-84 | 1430 | 72 | 51 | 10.8 | 7.6 | 107 | 102 | 1.4 | 45 | 0.2 | | 5- 3-84 | 1120 | 68.5 | 52 | 11.0 | 7.8 | 118 | 110 | 0.9 | 50 | 0.5 | | 6-18-84 | 1200 | 92 | 60 | 9.9 | 7.8 | 110 | 108 | 0.7 | 48 | 1.3 | | 7-20-84 | 1230 | - | 64 | 9.6 | 8.1 | 107 | 107 | 1.4 | 48 | _ | | 8-23-84 | 1150 | 80 | 60 | - | 7.9 | 108 | 110 | 0.6 | 47 | | | 9-19-84 | 1200 | 85 | 58 | 10.4 | 7.8 | 110 | 113 | 0.9 | 50 | | | 10-24-84 | 1230 | 76 | 47 | 11.7 | 7.5 | 110 | 99 | 0.8 | 50 | | # SHASTA TRIBUTARIES ENLARGED SHASTA DATA Sta. A2 4100.00 Squaw Creek above Shasta Lake | | | Te | mp. | | | E.C | | | | | |----------|------|------|------|-------|-----|--------|------|-------|--------|--------| | | | | F) | D.O. | | (umhos | | Turb. | Alk. | TSS | | Date | Time | Air | H20 | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-27-83 | 1230 | 54 | 47 | 11.4 | 7.4 | 145 | 137 | 1.2 | 66 | - | | 6-13-83 | 1030 | 72 | 58 | 10.0 | 7.7 | 195 | 182 | 0.6 | 84 | 2.4 | | 7-13-83 | 1020 | 78 | 65 | 9.2 | 7.9 | 212 | 190 | 0.9 | 92 | 1.5 | | 8-19-83 | 0915 | 64.5 | 67 | 8.4 | 7.9 | 220 | 205 | 0.4 | 96 | 0.6 | | 9-19-83 | 1100 | 70.5 | 61 | 9.4 | 7.9 | 225 | 211 | 0.4 | 98 | 0.0 | | 10-18-83 | 1000 | 51 | 49.5 | 10.2 | 7.7 | 230 | 213 | 0.7 | 100 | 0.7 | | 11-29-83 | 1200 | 43 | 44 | 12.1 | 7.5 | 185 | 176 | 0.5 | 80 | 1.3 | | 1- 9-84 | 1100 | 45.5 | 48 | 10.1 | 6.7 | 130 | 140 | 0.7 | 59 | 0.9 | | 2-24-84 | 1125 | 47 | 45 | 11.9 | 7.5 | 175 | 175 | 0.3 | 78 | 2.5 | | 3-28-84 | 1300 | 67 | 49 | 11.2 | 7.8 | 182 | 181 | 0.7 | 81 | 0.2 | | 5- 3-84 | 0945 | 58 | 50 | 11.6 | 7.4 | 195 | 182 | 0.6 | 80 | 0.4 | | 6-18-84 | 1015 | 77 | 62 | 9.9 | 7.9 | 220 | 210 | 0.5 | 94 | - | | 7-20-84 | 1100 | 85 | 70 | 8.8 | 8.0 | 225 | 215 | 1.2 | 97 | 10.0 | | 8-23-84 | 1000 | 71 | 63 | - | 7.8 | 228 | 219 | 0.5 | 99 | - | | 9-19-84 | 1030 | 69 | 62 | 8.7 | 7.6 | 219 | 225 | 0.5 | 100 | | | 10-24-84 | 1100 | 42 | 47.5 | 12.6 | 7.3 | 199 | 205 | 0.7 | 99 | - | # SHASTA TRIBUTARIES ENLARGED SHASTA DATA Sta. Al 1020.00 Pit River near Montgomery Creek | | | Te | mp. | | | | | | | | |----------|------|-----------|------------------|-------|-----|--------|------|-------|--------|--------| | | | <u>(°</u> | F) | D.O. | | (umhos | /cm) | Turb. | Alk. | TSS | | Date | Time | Air | H <sub>2</sub> O | (ppm) | pН | Field | Lab. | (NTU) | (mg/L) | (mg/L) | | 4-27-83 | 0845 | 48.5 | 49 | 11.2 | 7.4 | 123 | 111 | 3.8 | 56 | - | | 6-13-83 | 0845 | 66 | 63 | 9.1 | 7.6 | 123 | 113 | 3.1 | 55 | 49.2 | | 7-13-83 | 0830 | 72 | 63 | 9.5 | 8.0 | 130 | 121 | 1.8 | 60 | 1.1 | | 8-19-83 | 0715 | 65.5 | 63.5 | 9.1 | 7.7 | 135 | 127 | 1.3 | 60 | 0.9 | | 9-19-83 | 0845 | 61 | 59.5 | 10.0 | 7.8 | 152 | 129 | 0.8 | 61 | 0.2 | | 10-18-83 | 0815 | 46 | 54 | 10.1 | 7.4 | 140 | 134 | 1.6 | 64 | 3.1 | | 11-29-83 | 1000 | 40.5 | 45 | 11.7 | 7.3 | 138 | 130 | 4.5 | 63 | 6.4 | | 1- 9-84 | 1000 | 49 | 42 | 11.6 | 7.3 | 119 | 117 | 16 | 51 | 22.1 | | 2-24-84 | 0955 | 46 | 45 | 12.3 | 7.3 | 127 | 132 | 15 | 61 | 20.4 | | 3-28-84 | 1015 | 56 | 49 | 10.9 | 7.5 | 125 | 128 | 8.9 | 57 | 10.5 | | 5- 3-84 | 0815 | 56 | 51 | 11.0 | 7.6 | 130 | 129 | 4.1 | 59 | 5.5 | | 6-18-84 | 0900 | 80 | 62 | 9.8 | 7.8 | 130 | 134 | 3.0 | 61 | - | | 7-20-84 | 0930 | 83 | 66 | 9.5 | 8.2 | 137 | 140 | 1.8 | 61 | - | | 8-23-84 | 0830 | 63 | 63 | _ | 7.7 | 140 | 143 | 1.0 | 62 | | | 9-19-84 | 0830 | 72 | 60 | 10.1 | 7.8 | 145 | 145 | 0.8 | 66 | - | | 10-24-84 | 0900 | 40 | 50.5 | 11.8 | 7.3 | 120 | 130 | 2.0 | 65 | _ | # ATTACHMENT D PROFILE DATA FROM SHASTA RESERVOIR Sta. A2L 043.2 225.0 @ Dam June 23, 1983 @ 0830 Hrs. Secchi 5.6, | | Sta. | A2L 04 | 43.2 | 225.0 | @ Dam | June 2 | 23, 1983 @ 0 | 830 Hrs. | Secchi | 5.6, | | | | |------------------|---------------|--------------|------|-------|-------|--------|--------------|--------------|--------------|------|------|-------|------| | epth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | urf. | 21.5 | 8.4 | 7.5 | 79 | 1.7 | 33 | 66 | 8.75 | 9.45 | | | | | | 1 | 21.5 | 8.4 | | • • • | | | 67 | 8.75 | 9.45 | | | | | | 2 | 21.25 | 8.3 | | | | | 68 | 8.75 | 9.45 | | | | | | 3 | 21.25 | 8.3 | 7.5 | 78 | 1.7 | 34 | 69 | 8.5 | 9.45 | | | | | | 4 | 21.25 | 8.3 | | | | | 70 | 8.5 | 9.45 | 7.2 | 89 | 4.0 | 40 | | 5 | 21.25 | 8.25 | | | | | 71 | 8.5 | 9.45 | | | | | | 6 | 21.0 | 8.25 | 7.5 | 80 | 1.6 | - | 72 | 8.25 | 9.45 | | | | | | 7 | 21.0 | 8.20 | | | | | 73 | 8.25 | 9.45 | | | | | | 8 | 20.5 | 8.20 | | | | | 74 | 8.25 | 9.45 | | | | | | 9 | 16.75 | 8.8 | 7.3 | 91 | 2.2 | - | 75 | 8.25 | 9.45 | 7.2 | 90 | 4.4 | - | | 10 | 15.0 | 8.7 | | | | | 76 | 8.25 | 9.45 | | | | | | 11 | 14.75 | 8.7 | | | | | 77 | 8.25 | 9.45 | | | | | | 12 | 14.5 | 8.6 | 7.3 | 91 | 2.4 | 35 | 78 | 8.25 | 9.45 | | | | | | 13 | 14.25 | 8.55 | | | | | 79 | 8.25 | 9.45 | | 90 | 4.7 | 40 | | 14 | 13.75 | 8.6 | | | | | 80 | 8.25<br>8.25 | 9.45<br>9.45 | 7.2 | 90 | 4.7 | 40 | | 15 | 13.5 | 8.65 | 7.3 | 88 | 2.5 | - | 81<br>82 | 8.25 | 9.5 | | | | | | 16 | 13.25 | 8.7 | | | | | 83 | 8.25 | 9.5 | | | | | | 17 | 13.0 | 8.75 | | | | | 84 | 8.25 | 9.45 | | | | | | 18 | 12.75 | 8.85 | 7.3 | 89 | 2.7 | - | 85 | 8.25 | 9.45 | 7.2 | 92 | 5.4 | _ | | 19 | 12.5 | 8.8 | | | | | 86 | 8.0 | 9.45 | , | | J | | | 20 | 12.25 | 8.9 | 7 3 | 07 | 2.5 | 35 | 87 | 8.0 | 9.45 | | | | | | 21 | 12.0 | 8.9<br>8.95 | 7.3 | 87 | 2.5 | 33 | 88 | 8.0 | 9.4 | | | | | | 22 | 12.0 | | | | | | 89 | 8.0 | 9.4 | | | | | | 23 | 11.75 | 9.0<br>8.9 | 7.2 | 81 | 2.6 | _ | 90 | 8.0 | 9.4 | 7.2 | . 85 | 5.1 | 41 | | 24 | 11.5<br>11.25 | 9.0 | 1.2 | . 01 | 2.0 | | 91 | 8.0 | 9.4 | | | | | | 25<br>26 | 11.25 | 9.0 | | | | | 92 | 8.0 | 9.4 | | | | | | 27 | 11.0 | 9.0 | 7.2 | 86 | 2.7 | - | 93 | 8.0 | 9.4 | | | | | | 28 | 11.0 | 9.05 | , | | | | 94 | 8.0 | 9.4 | | | | | | 29 | 11.0 | 9.05 | | | | | 95 | 8.0 | 9.4 | 7.2 | 97 | 9.6 | - | | 30 | 11.0 | 9.05 | 7.2 | 90 | 2.7 | 37 | 96 | 8.0 | 9.35 | | | | | | 31 | 10.75 | 9.05 | | | | | 97 | 8.0 | 9.35 | | | | | | 32 | 10.75 | 9.10 | | | | | 98 | 8.0 | 9.35 | | | | | | 33 | 10.5 | 9.10 | | | | | 99 | 8.0 | 9.35 | | | | | | 34 | 10.5 | 9.10 | | | | | 100 | - | 10.0 | 7.2 | 98 | 7.3 | 43 | | 35 | 10.25 | 9.10 | 7.2 | 93 | 3.0 | - | 105 | - | 10.1 | 7.2 | | 7.6 | - | | 36 | 10.25 | 9.10 | | | | | 110 | _ | 10.1 | 7.2 | | 7.6 | 46 | | 37 | 10.25 | 9.15 | | | | | 115 | - | 10.1 | 7.2 | | 8.0 | - | | 38 | 10.0 | 9.15 | | | | | 120 | - | 10.1 | 7.2 | | 8.4 | 46 | | 39 | 10.0 | 9.15 | | | | | 125 | - | 9.8 | 7.2 | | 8.9 | | | 40 | 10.0 | 9.2 | 7.2 | 2 87 | 3.2 | 40 | 130 | - | 9.8 | 7.2 | | 9.2 | 46 | | 41 | 10.0 | 9.2 | | | | | 135 | - | 9.6 | 7.1 | | 9.6 | | | 42 | 10.0 | 9.2 | | | | | 140 | - | 9.5 | 7.1 | | 11.0 | 48 | | 43 | 9.75 | 9.2 | | | | | 143 | - | 9.5 | 7.1 | | 11.0 | 47 | | 44 | 9.75 | 9.2 | | | | | 145.5 | - | - | 501 | tom | | | | 45 | 9.5 | 9.25 | 7.3 | 2 91 | 3.4 | - | | | | | | • | | | 46 | 9.5 | 9.3 | | | | | | | | | | | | | 47 | 9.5 | 9.3 | | | | | | | | | | | | | 48 | 9.5 | 9.3 | | | | | | | | | | | | | 49 | 9.5 | 9.3 | 7 | 2 91 | 3.6 | 40 | | | | | | | | | 50 | 9.5 | 9.35 | | 2 91 | 3.6 | 40 | | | | | | | | | 51 | 9.25 | 9.35 | | | | | | | | | | | | | 52 | 9.25 | 9.40<br>9.40 | | | | | | | | | | | | | 53<br>54 | 9.25<br>9.25 | 9.40 | | | | | | | | | | | | | | 9.25 | 9.40 | | 2 91 | 3.7 | _ | | | | | | | | | 55<br>5 <b>6</b> | 9.0 | 9.45 | | 2 71 | 3.7 | | | | | | | | | | 57 | 9.0 | 9.45 | | | | | | | | | | | | | 57<br>58 | 9.0 | 9.40 | | | | | | | | | | | | | 5 <b>9</b> | 9.0 | 9.40 | | | | | | | | | | | | | 60 | 9.0 | 9.45 | | 2 89 | 3.9 | 40 | | | | | | | | | 61 | 9.0 | 9.45 | | _ 0, | 3., | 70 | | | | | | | | | 62 | 9.0 | 9.45 | | | | | | | | | | | | | 63 | 8.75 | 9.45 | | | | | | | | | | | | | 64 | 8.75 | 9.45 | | | | | | | | | | | | | 65 | 8.75 | 9.45 | | 2 89 | 4.0 | _ | | | | | | | | | | 33 | | • • | | | | | | | | | | | | | Sta | . A2L | 043.2 | 225.0 | @ Dam | July | 29, 1983 @ | 0830 Hrs. | Secchi | 3.9m | | | | |----------|--------------|------------|------------|-------|-------|------|------------|--------------|------------|------------|----------|------------|---------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.((°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 23.5 | 8.3 | 7.6 | 85 | 1.3 | 40 | 66 | 9.3 | 9.3 | | | | | | 1 | 23.5 | 8.3 | | | | , - | 67 | 9.2 | 9.3 | | | | | | 2 | 23.5 | 8.2 | | | | _ | 68 | 9.2 | 9.3 | | | | | | 3<br>4 | 23.5 | 8.3 | 7.6 | 86 | 1.4 | 39 | 69<br>70 | 9.1<br>9.1 | 9.3<br>9.3 | 7.3 | 87 | 3.5 | 41 | | 5 | 23.4<br>23.4 | 8.2<br>8.3 | | | | | 71 | 9.1 | 9.3 | , | 0, | 3.3 | 7.2 | | 6 | 23.4 | 8.2 | 7.8 | 85 | 1.2 | - | 72 | 9.1 | 9.3 | | | | | | 7 | 23.4 | 8.2 | | | | | 73 | 9.1 | 9.3 | | | | | | 8 | 23.3 | 8.2 | <b>-</b> 0 | 0.7 | | | 74<br>75 | 9.0<br>9.0 | 9.3<br>9.3 | 7.3 | 87 | 3.4 | _ | | 9<br>10 | 23.3<br>21.5 | 8.2<br>8.0 | 7.8 | 87 | 1.3 | - | 76 | 8.9 | 9.3 | 1.5 | 0, | 3.4 | | | 11 | . 18.2 | 7.6 | | | | | 77 | 8.8 | 9.3 | | | | | | 12 | 17.6 | 7.5 | 7.3 | 104 | 1.9 | 50 | 78 | 8.8 | 9.3 | | | | | | 13 | 17.0 | 7.4 | | | | | 79<br>80 | 8.8<br>8.7 | 9.3<br>9.3 | 7.3 | 88 | 4.0 | 41 | | 14<br>15 | 16.2<br>16.1 | 7.4<br>7.4 | 7.3 | 107 | 1.8 | _ | 81 | 8.6 | 9.3 | ,., | 00 | 4.0 | 71 | | 16 | 15.9 | 7.6 | , | 10, | 4.0 | | 82 | 8.6 | 9.3 | | | | | | 17 | 15 8 | 7.6 | | | | | 83 | 8.6 | 9.2 | | | | | | 18 | 15.3 | 7.7 | 7.3 | 104 | 1.9 | - | 84 | 8.6 | 9.2 | 7 3 | | , , | | | 19 | 15.2 | 7.7 | | | | | 85<br>86 | 8.6<br>8.5 | 9.2<br>9.2 | 7.3 | 89 | 4.8 | - | | 20<br>21 | 15.0<br>14 9 | 7.8<br>7.9 | 7.3 | 99 | 1.9 | 46 | 87 | 8.4 | 9.2 | | | | | | 22 | 14.8 | 8.0 | , | | | 70 | 88 | 8.4 | 9.2 | | | | | | 23 | 14.5 | 8.2 | | | | | 89 | 8.3 | 9.2 | | | | | | 24 | 14.0 | 8.2 | 7.3 | 89 | 2.0 | - | 90 | 8.3 | 9.2 | 7.3 | 89 | 5.0 | 42 | | 25 | 13.8 | 8.3 | | | | | 91<br>92 | 8.3<br>8.3 | 9.2<br>9.2 | | | | | | 26<br>27 | 13.5<br>13.2 | 8.4<br>8.4 | 7.3 | 86 | 2.2 | _ | 93 | 8.3 | 9.1 | | | | | | 28 | 13.0 | 8.5 | 7.5 | | 4.4 | | 94 | 8.2 | 9.1 | | | | | | 29 | 12.8 | 8.6 | | | | | 95 | 8.1 | 9.0 | 7.3 | 92 | 6.2 | - | | 30 | 12.5 | 8.7 | 7.3 | 86 | 2.5 | 40 | 96 | 8.1 | 9.0 | | | | | | 31 | 12.2 | 8.8 | | | | | 97<br>98 | 8.1<br>8.1 | 9.0<br>9.0 | | | | | | 32<br>33 | 12.1<br>11.9 | 9.0<br>9.0 | | | | | 99 | - | - | | | | | | 34 | 11.7 | 9.1 | | | | | 100 | - | - | 7.3 | 94 | 6.7 | 43 | | 35 | 11.5 | 9.1 | 7.3 | 84 | 2.7 | - | 105 | _ <b>-</b> _ | | 7.3 | 91 | 6.9 | - | | 36 | 11.2 | 9.1 | | | | | 110 | 11.7 | 9.5 | 7.3<br>7.3 | 97<br>96 | 7.1<br>8.0 | 45<br>- | | 37<br>38 | 11.2<br>11.2 | 9.1<br>9.1 | | | | | 115<br>120 | 11.7 | 9.6 | 7.3 | 99 | 8.4 | 45 | | 39 | 11.0 | 9.1 | | | | | 125 | _ | - | 7.3 | 98 | 8.4 | _ | | 40 | 11.0 | 9.1 | 7.3 | 84 | 2.8 | 37 | 130 | 11.1 | 9.4 | 7.3 | 100 | 8.8 | 45 | | 41 | 10.9 | 9.2 | | | | | 135 | 11.1 | - | 7.3 | 101 | 10.0 | - | | 42 | 10.9 | 9.2 | | | | | 140<br>145 | 11.9 | 9.0 | 7.3 | 99 | 14.0 | 46 | | 43<br>44 | 10.7<br>10.7 | 9.2<br>9.2 | | | | | 148 | 10.3 | 8.8 | 7.3 | 100 | 12.0 | 47 | | 45 | 10.6 | 9.2 | 7.3 | 87 | 2.9 | - | 148.2 | - | - | Bott | | | | | 46 | 10.5 | 9.2 | | | | | | | | | | | | | 47 | 10.5 | 9.2 | | | | | | | | | | | | | 48 | 10.4 | 9.2 | | | | | | | | , | | | | | 49<br>50 | 10.3<br>10.2 | 9.3 | 7.3 | 84 | 2.7. | 40 | | | | | | | | | 51 | 10.2 | 9.3 | , | | , | | | | | | | | | | 52 | 10.1 | 9.3 | | | | | | | | | | | | | 53 | 10.1 | 9.3 | | | | | | | | | | | | | 54 | 10.1 | 9.3 | 7 3 | 04 | 2 4 | _ | | | | | | | | | 55<br>56 | 10.0<br>10.0 | 9.3<br>9.3 | 7.3 | 86 | 2.4 | _ | | | | | | | | | 57 | 9.9 | 9.3 | | | | | | | | | | | | | 58 | 9.8 | 9.3 | | | | | | | | | | | | | 59 | 9.8 | 9.3 | <b>-</b> - | | | | | | | | | | | | 60<br>61 | 9.7<br>9.6 | 9.3<br>9.3 | 7.3 | 89 | 2.5 | 41 | | | | | | | | | 62 | 9.5 | 9.3 | | | | | | | | | | | | | 63 | 9.4 | 9.3 | | | | | | | | | | | | | 64 | 9.3 | 9.3 | | | | | | | | | | | | | 65 | 9.2 | 9.3 | 7.3 | 87 | 3.1 | - | | | | | | | | Sta. A2L 043.2 225.0 @ Dam May 18, 1983 @ 0700 Hrs. Secchi 2.4m | Donth(m) | Temp.(°C) | D.O. | | E.C. | Turb. | | | Ta=+ (°C) | DO | | - | Turk | Alle | |------------------|--------------|--------------|------|------|--------|------|------------|------------|--------------|------------|----------|------------|----------| | Depth(m) | Temp.( C) | D.O. | pn i | | IUI D. | Alk. | nebtu(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | | Surf. | 15.0 | 10.0 | 7.4 | 76 | 2.4 | 31 | 66 | 7.2 | 10.2 | | | | | | 1 | 15.0 | 10.0 | | | | | 67 | 7.2 | 10.2 | | | | | | 2<br>3 | 15.0 | 10.0 | 7 , | 7.6 | n / | | 68 | 7.1 | 10.2 | | | | | | د<br>4 | 15.0<br>15.0 | 10.0<br>10.0 | 7.4 | 76 | 2.4 | - | 69<br>70 | 7.1<br>7.1 | 10.2 | 7.2 | 84 | 5.8 | 39 | | 5 | 14.8 | 10.0 | | | | | 71 | 7.1 | 10.2 | ,.2 | 04 | ٥.٥ | 33 | | 6 | 14.3 | 10.0 | 7.4 | 74 | 2.6 | 32 | 72 | 7.1 | 10.2 | | | | | | 7 | 13.9 | 10.0 | | | | | 73 | 7.1 | 10.2 | | | | | | 8 | 13.7 | 10.0 | | | | | 74 | 7.1 | 10.2 | | | | | | 9 | 13.7 | 10.0 | 7.4 | 71 | 2.5 | - | 75 | 7.1 | 10.2 | 7.2 | 84 | 6.4 | - | | 10 | 13.5 | 10.0 | | | | | 76 | 7.1 | 10.2 | | | | | | 11 | 11.2 | 10.0 | | | | •• | 77 | 7.1 | 10.2 | | | | | | 12 | . 10.9 | 10.0 | 7.3 | 72 | 2.3 | 30 | 78 | 7.1 | 10.2 | | | | | | 13<br>14 | 10.9<br>10.8 | 10.0<br>10.0 | | | | | 79<br>80 | 7.1<br>7.0 | 10.2<br>10.2 | 7.2 | 88 | 6.7 | 42 | | 15 | 10.8 | 10.0 | 7.2 | 72 | 2.2 | _ | 81 | 7.0 | 10.2 | 1.2 | 00 | 0.7 | 42 | | 16 | 10.5 | 10.0 | , | - | 4.4 | _ | 82 | 7.0 | 10.2 | | | | | | 17 | 9.9 | 10.0 | | | | | 83 | 7.0 | 10.2 | | | | | | 18 | 9.5 | 10.0 | 7.2 | 79 | 2.9 | 29 | 84 | 7.0 | 10.2 | | | | | | 19 | 9.2 | 10.0 | | | | | 85 | 7.0 | 10.2 | 7.2 | 89 | 7.6 | - | | 20 | 8.9 | 10.0 | | | | | 86 | 7.0 | 10.2 | | | | | | 21 | 8.7 | 10.0 | 7.2 | 74 | 2.5 | - | 87 | 7.0 | 10.2 | | | | | | 22 | 8.6 | 10.0 | | | | | 88 | 7.0 | 10.2 | | | | | | 23 | 8.5 | 10.0 | 7.0 | | | 3.0 | 89 | 7.0 | 10.2 | 7 ^ | | 7.0 | , - | | 24<br>25 | 8.4 | 10.0 | 7.2 | 77 | 3.1 | 32 | 90<br>91 | 7.0<br>7.0 | 10.2 | 7.2 | 90 | 7.9 | 45 | | 26 | 8.3<br>8.2 | 10.0<br>10.0 | | | | | 92 | 7.0 | 10.2<br>10.2 | | | | | | 27 | 8.2 | 10.0 | 7.2 | 81 | 3.5 | _ | 93 | 7.0 | 10.2 | | | | | | 28 | 8.1 | 10.0 | , | | 7.7 | | 94 | 6.9 | 10.2 | | | | | | 29 | 8.0 | 10.1 | | | | | 95 | 6.9 | 10.2 | 7.2 | 93 | 8.6 | _ | | 30 | 8.0 | 10.1 | 7.2 | 77 | 3.5 | 35 | 96 | 6.9 | 10.2 | | | | | | 31 | 8.0 | 10.1 | | | | | 97 | 6.9 | 10.2 | | | | | | 32 | 8.0 | 10.1 | | | | | 98 | 6.9 | 10.2 | | | | | | 33 | 8.0 | 10.1 | | | | | 99 | 6.9 | 10.2 | | | | | | 34 | 8.0 | 10.1 | 7.0 | 70 | | | 100 | - | 10 2 | 7.2 | 95 | 8.6 | 44 | | 35<br>3 <b>6</b> | 8.0<br>8.0 | 10.1<br>10.1 | 7.2 | 79 | 2.2 | _ | 110<br>120 | <u>-</u> | 10.3 | 7.2<br>7.2 | 95<br>97 | 9.2<br>9.6 | -<br>47 | | 37 | 7.9 | 10.1 | | | | | 130 | - | 10.3 | 7.2 | 100 | 14.0 | 47<br>47 | | 38 | 7.9 | 10.1 | | | | | 135 | _ | - | Bot | | 14.0 | 7, | | 39 | 7.8 | 10.1 | | | | | | | | | | | | | 40 | 7.8 | 10.1 | 7.2 | 79 | 4.1 | 35 | | | | | | | | | 41 | 7.8 | 10.1 | | | | | | | | | | | | | 42 | 7.8 | 10.1 | | | | | | | | | | | | | 43 | 7.8 | 10.1 | | | | | | | | | | | | | 44<br>45 | 7.8 | 10.1 | 7.0 | 0.2 | 2.0 | | | | | | | | | | 45<br>46 | 7.8<br>7.8 | 10.1<br>10.1 | 7.2 | 82 | 3.9 | - | | | | | | | | | 47 | 7.8 | | | | | | | | | | | | | | 48 | 7.8 | 10.1 | | | | | | | | | | | | | 49 | 7.7 | 10.1 | | | | | | | | | | | | | 50 | 7.7 | 10.1 | 7.2 | 81 | 4.3 | 38 | | - | | | | | - | | 51 | 7.7 | 10.1 | - | | | | | * | | | | | | | 52 | 7.7 | 10.1 | | | | | | | | | | | | | 53 | 7.7 | 10.1 | | | | | | | | | | | | | 54<br>55 | <b>7.</b> 7 | 10.1 | 7 2 | 02 | 3 4 | | | | | | | | | | 55<br>5 <b>6</b> | 7.7<br>7.6 | 10.1<br>10.1 | 7.2 | 82 | 3.4 | - | | | | | | | | | 57 | 7.5 | 10.1 | | | | | | | | | | | | | 58 | 7.5 | 10.2 | | | | | | | | | | | | | 59 | 7.5 | 10.2 | | | | | | | | | | | | | 60 | 7.5 | 10.2 | 7.2 | 81 | 5.2 | 40 | | | | | | | | | 61 | 7.5 | 10.2 | | | | | | | | | | | | | 62 | 7.5 | 10.2 | | | | | | | | | | | | | 63 | 7.3 | 10.2 | | | | | | | | | | | | | 64<br>65 | 7.2 | 10.2 | 7 0 | 9.7 | , , | | | | | | | | | | 65 | 7.2 | 10.2 | 7.2 | 84 | 4.2 | - | | | | | | | | Sta. A2L 043 2 225.0 @ Dam August 26, 1983 @ 0800 Hrs. Secchi 5.0m | | Sta. A | 12L 043 | 2 2 | <u> 25.0 @</u> | Dam | August | 26, 1983 @ 0 | 800 Hrs. | Secchi | 5.0m | | | | |----------|--------------|------------|-----|----------------|-------|--------|--------------|------------|------------|------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | | Surf. | 23.3 | 8.0 | 7.8 | 93 | 0.8 | 41 | 66 | 9.9 | 8.8 | | | | | | 1 | 23.3 | 8.0 | , | ,,, | 0.0 | 7. | 67 | 9.8 | 8.8 | | | | | | 2 | 23.3 | 8.0 | | | | | 68 | 9.5 | 8.8 | | | | | | 3 | 23.3 | 8.0 | 7.8 | 95 | 0.9 | - | 69 | 9.5 | 8.8 | | | | | | 4 | 23.3 | 8.0 | | | | | 70 | 9.4 | 8.8 | 7.2 | 93 | 2.4 | 40 | | 5 | 23.3 | 8.0 | | | | | 71 | 9.3 | 8.8 | | | | | | 6 | 23.3 | 8.0 | 7.8 | 95 | 0.8 | 40 | 72 | 9.2 | 8.8 | | | | | | 7<br>8 | 23.3 | 8.0 | | | | | 73 | 9.2 | 8.8 | | | | | | 9 | 23.3<br>23.3 | 8.0<br>7.9 | 7.8 | 95 | 0.7 | - | 74<br>75 | 9.1<br>9.0 | 8.8 | 7 0 | 0.2 | 2 5 | | | 10 | 23.3 | 7.9 | 7.0 | 93 | 0.7 | - | 76 | 9.0 | 8.7<br>8.7 | 7.2 | 93 | 2.5 | _ | | 11 | 20.2 | 6.6 | | | | | 77 | 8.9 | 8.7 | | | | | | 12 | 18.8 | 6.3 | 7.2 | 112 | 0.9 | 48 | 78 | 8.9 | 8.7 | | | | | | 13 | 17.8 | 6.4 | | | ••• | *** | 79 | 8.8 | 8.7 | | | | | | 14 | 17.5 | 6.4 | | | | | 80 | 8.8 | 8.7 | 7.2 | 94 | 2.8 | 39 | | 15 | 17.2 | 6.3 | 7.3 | 116 | 1.0 | - | 81 | 8.8 | .8.7 | | | | | | 16 | 17.0 | 6.4 | | | | | 82 | 8.7 | 8.7 | - | | | | | 17 | 16.8 | 6.5 | _ | | | | 83 | 8.7 | 8.7 | | | | | | 18 | 16.5 | 6.6 | 7.2 | 117 | 1.4 | 53 | 84 | 8.7 | 8.7 | | | | | | 19<br>20 | 16.3 | 6.7 | | | | | 85 | 8.6 | 8.6 | 7.2 | 94 | 3.4 | - | | 21 | 16.2<br>16.0 | 6.7<br>6.7 | 7.2 | 115 | 1.5 | _ | 86<br>87 | 8.5<br>8.5 | 8.6<br>8.6 | | | | | | 22 | 15.8 | 6.8 | , | 113 | 1.5 | _ | 88 | 8.3 | 8.5 | | | | | | 23 | 15.8 | 6.9 | | | | | 89 | 8.2 | 8.5 | | | | | | 24 | 15 5 | 7.0 | 7.3 | 110 | 1.7 | 50 | 90 | 8.1 | 8.5 | 7.1 | 96 | 4.5 | 41 | | 25 | 15.5 | 7.0 | | | | | 91 | 8.1 | 8.4 | | - | | | | 26 | 15.2 | 7.2 | | | | | 92 | 8.1 | 8.4 | | | | | | 27 | 15.0 | 7.3 | 7.3 | 106 | 1.5 | - | 93 | 8.1 | 8.4 | | | | | | 28 | 14.8 | 7.5 | | | | | 94 | 8.1 | 8.4 | | | | | | 29 | 14.6 | 7.6 | | | | | 95 | 8.1 | 8.4 | 7.0 | 97 | 5.4 | - | | 30<br>31 | 14.4<br>14.1 | 7.7 | 1.3 | 101 | 1.6 | 43 | 96<br>97 | 8.1 | 8.4 | | | | | | 32 | 13.9 | 7.9<br>8.0 | | | | | 98 | 8.1<br>8.1 | 8.4<br>8.4 | | | | | | 33 | 13.7 | 8.1 | | | | | 99 | 8.1 | 8.4 | | | | | | 34 | 13.2 | 8.2 | | | | | 100 | 11.1 | 9.3 | 7.0 | 100 | 6.0 | 43 | | 35 | 13.0 | 8.3 | 7.3 | 92 | 1.9 | - | 105 | 10.6 | - | 7.0 | 101 | 6.8 | - | | 36 | 12.8 | 8.4 | | | | | 110 | 9.7 | 9.2 | 7.1 | 102 | 6.7 | 44 | | 37 | 12.7 | 8.4 | | | | | 115 | 9.4 | 9.2 | 7.1 | 102 | 7.1 | - | | 38 | 12.5 | 8.5 | | | | | 120 | 9.4 | 9.2 | 7.1 | 103 | 7.2 | 45 | | 39 | 12.2 | 8 6 | | | | | 125 | 9.4 | 9.0 | 7.1 | 104 | 10.0 | - | | 40 | 12.1 | 8.6 | 7.2 | 86 | 2.0 | 36 | 130 | 9.2 | 8.6 | 7.1 | 105 | 11.0 | 45 | | 41<br>42 | 12.0 | 8.7 | | | | | 135 | 9.2 | 8.5 | 7.1 | 106 | 11.0 | - | | 43 | 11.8<br>11.6 | 8.8<br>8.8 | | | | | 140 | 9.2 | 8.5 | 7.1 | 106 | 11.0 | 45 | | 44 | 11.6 | 8.8 | | | | | 144<br>145.7 | 9.2 | 8.2 | 7.1 | 106 | 11.0 | 45 | | 45 | 11.5 | 8.9 | 7.2 | 85 | 2.0 | _ | 143.7 | | | Bott | Om | | | | 46 | 11.3 | 8.9 | | •• | | | | | • | | | | | | 47 | 11.1 | 8.9 | | | | | | | | | • | | | | 48 | 11.1 | 8.9 | | | | | , | • | | | | | | | 49 | 11 0 | 8.9 | | | | | | | · | | | | | | 50 | 11.0 | 8.9 | 7.3 | 85 | 2.0 | 36 | | | | | | | | | 51 | 11.0 | 8.9 | | | | | | | | | | | | | 52<br>53 | 10.8 | 9.0 | | | | | | | | | | | | | 53<br>54 | 10.8<br>10.7 | 9.0<br>8.9 | | | | | | | | | | | | | 55 | 10.7 | 8.9 | 7.3 | 89 | 2.4 | _ | | | | | | | | | 56 | 10.6 | 8.9 | , | 07 | 4.4 | - | | | | | | | | | 57 | 10.6 | 8.9 | | | | | | | | | | | | | 58 | 10.4 | 8.9 | | | | | | | | | | | | | 59 | 10.3 | 8.9 | | | | | | | | | | | | | 60 | 10.2 | 8.9 | 7.3 | 91 | 2.0 | 39 | | | | | | | | | 61 | 10.2 | 8.9 | | | | | | | | | | | | | 62 | 10.1 | 8.9 | | | | | | | | | | | | | 63<br>64 | 10.1 | 8.8 | | | | | | | | | | | | | 65 | 10.1<br>10.0 | 8.8 | 7.3 | 0.2 | 2 4 | | | | | | | | | | 0,7 | 10.0 | 8.8 | 1.3 | 93 | 2.4 | - | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA Sta. A2L 043.2 225.0 @ Dam September 27, 1983 @ 0900 Hrs. Secchi 6.5m | | Sta. A | 2L 043 | .2 22 | 5.0 @ | Dam : | September | 27, 1983 | @ 0900 Hrs. | Secc | hi 6 | . 5m | | | |----------|--------------|------------|------------|-------|-------|------------|------------|--------------------------|------------|------|------|------------|---------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 20.5 | 8.2 | 7.6 | 100 | 0.2 | 46 | 66 | 10.4 | 8.3 | | | | | | 1 | 20.5 | 8.2 | | | | | 67 | 10.3 | 8.3 | | | | | | 1<br>2 | 20.5 | 8.2 | | | | | 68 | 10.2 | 8.3 | | | | | | 3 | 20.5 | 8.2 | 7.6 | 102 | 0.6 | - | 69 | 10.2 | 8.3 | 7 1 | 0.5 | 3 5 | 39 | | 4 | 20.5 | 8.2 | | | | | 70 | 10.1 | 8.3<br>8.3 | 7.2 | 95 | 1.5 | 39 | | 5 | 20.5 | 8.2 | 7. | 100 | 0.0 | | 71<br>72 | 10.0<br>9.8 | 8.3 | | | | | | 6 | 20.5 | 8.2 | 7.6 | 102 | 0.8 | _ | 73 | 9.8 | 8.3 | | | | | | 7<br>8 | 20.5<br>20.5 | 8.1<br>8.1 | | | | | 74 | 9.7 | 8.3 | | | | | | 9 | 20.5 | 8.1 | 7.6 | 102 | 0.6 | 44 | 75 | 9.6 | 8.3 | 7.2 | 97 | 1.5 | - | | 10 | 20.5 | 8.1 | , | | | | 76 | 9.5 | 8.3 | | | | | | 11 | 20.3 | 8.0 | | | | | 77 | 9.4 | 8.3 | | | | | | 12 | 19.5 | 6.8 | 7.4 | 105 | 0.5 | - | 78 | 9.2 | 8.3 | | | | | | 13 | 18.2 | 5.9 | | | | | 79 | 9.1 | 8.3 | | 0.7 | 1.0 | | | 14 | 17.5 | 5.8 | | | | | 80 | 9.0 | 8.2 | 7.1 | 97 | 1.9 | _ | | 15 | 17.1 | 5.8 | 7.2 | 121 | 0.6 | - | 81<br>82 | 9.0<br>8.9 | 8.2<br>8.2 | | | | | | 16 | 17.0 | 5.9 | | | | | 83 | 8.8 | 8. 2 | | | | | | 17<br>18 | 17.0<br>16.8 | 5.9<br>5.9 | 7.2 | 120 | 0.6 | 55 | 84 | 8.7 | 8.2 | | | | | | . 19 | 16.6 | 5.9 | 7.2 | 120 | 0.0 | ,,, | 85 | 8.6 | 8.1 | 7.1 | 97 | 2.4 | 43 | | 20 | 16.5 | 5.9 | | | | | 86 | 8.6 | 8:1 | | | | | | 21 | 16.3 | 5.9 | 7.2 | 118 | 0.6 | - | 87 | 8.6 | 8.1 | | | | | | 22 | 16.2 | 6.0 | | | | | 88 | 8.5 | 8.1 | | | | | | 23 | 16.2 | 6.0 | | | | | 89 | 8.5 | 8.1 | ٠. | 00 | 2.2 | | | 24 | 16.0 | 6.1 | 7.2 | 118 | 0.8 | - | 90 | 8.4 | 8.1 | 7.1 | . 98 | 3.3 | - | | 25 | 16.0 | 6.2 | | | | | 91<br>92 | 8.2<br>8.2 | 8.1<br>8.1 | | | | | | 26 | 15 8 | 6.3 | 7.2 | 116 | 0.8 | 54 | 93 | 8.2 | 8.1 | | | | | | 27<br>28 | 15.8<br>15.6 | 6.2<br>6.4 | 1.2 | 110 | 0.0 | J <b>4</b> | 94 | 8.1 | 8.1 | | | | | | 29 | 15.4 | 6.5 | | | | | 95 | 8.1 | 8.1 | 7.1 | 98 | 3.8 | - | | 30 | 15.3 | 6.6 | 7.2 | 113 | 1.1 | - | 96 | 8.0 | 8.1 | | | | | | 31 | 15.2 | 6.7 | | | | | 97 | 8.0 | 8.1 | | | | | | 32 | 15.0 | 6.8 | | | | | 98 | 8.0 | 8.1 | | | | | | 33 | 15.0 | 6.9 | | | | | 99 | 8.0 | 8.1 | 7 1 | 100 | | 4.2 | | 34 | 14.8 | 7.0 | | 100 | | | 100 | 8.0 <sup>-</sup><br>10.6 | 8.1<br>9.0 | 7.1 | | 4.6<br>5.0 | 43<br>- | | 35 | 14.5 | 7.2 | 7.2 | 100 | 1.3 | - | 105<br>110 | 10.0 | 8.7 | 7.3 | | 5.4 | _ | | 36<br>37 | 14.5<br>14.2 | 7.3<br>7.4 | | | | | 115 | 10.0 | 8.7 | 7.1 | | 5.9 | 42 | | 38 | 14.2 | 7.4 | | | | | 120 | 10.0 | 8.7 | 7.1 | | 6.0 | - | | 39 | 14.0 | 7.5 | | | | | 125 | 10.0 | 8.7 | 7.0 | | | - | | 40 | 13.8 | 7.6 | 7.2 | 93 | 1.1 | 43 | 130 | 10.0 | 8.4 | 7.0 | | 7.8 | 47 | | 41 | 13.7 | 7.7 | | | | | 135 | 10.0 | 8.1 | 7.0 | | | _ | | 42 | 13.5 | 7.8 | | | | | 140 | 10.0 | 8.0 | 7.0 | | 8.4 | 46 | | 43 | 13.2 | 7.9 | | | | | 142.9 | _ | _ | BO | ttom | | | | 44 | 13 1 | 7.9 | <b>→</b> • | | | | | | | | | | | | 45<br>46 | 13.0<br>12.9 | 8.1<br>8.1 | 7.2 | 89 | 1.2 | - | | | | | | | | | 47 | 12.7 | 8.2 | | | | | | | | | | | | | 48 | 12.5 | 8.3 | | | | | | | • | | | | | | 49 | 12.3 | 8.4 | | | | | | | | | • | | | | 50 | 12.2 | 8.4 | 7.2 | 87 | 1.5 | · - | * | | . : | | ; | | | | 51 | 12.0 | 8.4 | • | | • | | | | | | | | | | 52 | 11.9 | 8.5 | | | | | | | | | | | | | 53 | 11.6 | 8.5 | | | | | | | | | | | | | 54 | 11.6 | 8.5 | 7 - | | 1.5 | 39 | | | | | | | | | 55<br>54 | 11.5<br>11.3 | 8.5<br>8.4 | 7.2 | 2 85 | 1.5 | 37 | | | | | | | | | 56<br>57 | 11.1 | 8.4 | | | | | | | | | | | | | 58 | 11.1 | 8.4 | | | | | | | | | | | | | 59 | 11.1 | 8.4 | | | | | | | | | | | | | 60 | 11.1 | 8.4 | 7.2 | 2 89 | 1.2 | - | | | | | | | | | 61 | 11.0 | 8.4 | | | | | | | | | | | | | 62 | 10.9 | 8.4 | | | | | | | | | | | | | 63 | 10.8 | 8.3 | | | | | | | | | | | | | 64 | 10.8 | 8.3<br>8.3 | 7.3 | 2 93 | 1.5 | | | | | | | | | | 65 | 10.7 | 0.3 | , | _ 73 | | • | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2 | L 043. | 2 225 | .0 @ | Dam De | cember | 21, 1983 @ | 0945 Hrs. | Secch | 1 3.4 | n | | | |----------|--------------|--------------|-------|------|--------|--------|------------|------------|----------|-------|-----|-------|------| | Depth(m) | Temp.(°C) | D.O. | рН | | Turb. | Alk. | Depth(m) | Temp.(°C) | | рH | - | Turb. | Alk. | | Surf. | 11.9 | 9.7 | 7.3 | 106 | 1.1 | 45 | 66 | 9.4 | - | | | | | | 1 | 11.9 | 9.7 | | | | | 67 | 9.4 | - | | | | | | 2<br>3 | 11.9<br>11.9 | 9.7<br>9.7 | 7.4 | 106 | 1.4 | - | 68<br>69 | 9.3<br>9.3 | - | | | | | | 4 | 11.9 | 9.7 | , | 100 | 2.7 | | 70 | 9.3 | 10.1 | 7.2 | 114 | 4.6 | 51 | | 5 | 11.9 | 9.7 | | 100 | | | 71 | 9.3 | - | | | | | | 6<br>7 | 11.9<br>11.9 | 9.7<br>9.7 | 7.3 | 106 | 1.8 | - | 72<br>73 | 9.2<br>9.2 | _ | | | | | | 8 | 11.9 | 9.7 | | | | | 74 | 9.1 | - | | | | | | 9 | 11.9 | 9.7 | 7.4 | 106 | 1.6 | 46 | 75 | 9.1 | 10.3 | 7.2 | 114 | 5.7 | - | | 10<br>11 | 11.9<br>11.9 | 9.7<br>9.7 | | | | | 76<br>77 | 9.1<br>9.1 | - | | | | | | 12 | 11.9 | 9.7 | 7.4 | 107 | 1.9 | _ | 78 | 9.1 | - | | | | | | 13 | 11.9 | 9.7 | | | | | 79 | 9.1 | | | | | | | 14<br>15 | 12.0<br>12.0 | 9.7<br>9.7 | 7.4 | 107 | 1.3 | _ | 80<br>81 | 9.1<br>9.1 | 10.0 | 7.2 | 115 | 5.8 | - | | 16 | 12.0 | 9.7 | 7.4 | 107 | 1.3 | | 82 | 9.1 | .*- | | | | | | 17 | 12.0 | 9.7 | | | | | 83 | 9.1 | ·- | | | | | | 18 | 12.0 | 9.7<br>9.7 | 7.4 | 107 | 1.4 | 47 | 84<br>85 | 9.0<br>9.0 | 9:.9 | 7.2 | 115 | 6.2 | 52 | | 19<br>20 | 12.0<br>12.0 | 9.7 | | | | | 86 | 9.0 | ¥.9<br>- | 1.2 | 113 | 0.4 | 12 | | 21 | 12.0 | 9.7 | 7.4 | 107 | 1.5 | - | 87 | 9.0 | - | | | | | | 22 | 12.0 | 9.7 | | | | | 88 | 9.0 | - | | | | | | 23<br>24 | 12.0<br>12.0 | 9.7<br>9.7 | 7.3 | 106 | 1.5 | _ | 89<br>90 | 9.0<br>8.9 | 9.9 | 7.1 | 114 | 6.1 | _ | | 25 | 12.0 | 9.7 | , | 100 | 1.5 | | 91 | 8.9 | - | , | | 0.1 | | | 26 | 12.0 | 9.7 | | | | | 92 | 8.9 | - | | | | | | 27 | 12.0<br>12.0 | 9.7<br>9.7 | 7.3 | 107 | 1.5 | 46 | 93<br>94 | 8.9<br>8.9 | _ | | | | | | 28<br>29 | 12.0 | 9.7 | | | | | 95 | 8.9 | 9.6 | 7.1 | 114 | 6.8 | _ | | 30 | 12.0 | 9.7 | 7.3 | 106 | 1.5 | - | 96 | 8.9 | - | – | | | | | 31 | 12.0 | 9.7 | | | | | 97 | 8.8 | - | | | | | | 32<br>33 | 12.0<br>12.0 | 9.7<br>9.7 | | | | | 98<br>99 | 8.8<br>8.8 | .= | | | | | | 34 | 12.0 | 9.7 | | | | | 100 | 8.8 | 9.5 | 7.1 | 112 | 6.3 | 52 | | 35 | 11.9 | 9.7 | 7.3 | 106 | 1.6 | - | 105 | | | - | 108 | 6.5 | - | | 36<br>37 | 11.8<br>11.5 | 9.7<br>9.6 | | | | | 110<br>115 | 9.2 | 9.2 | 7.0 | 105 | 6.8 | - | | 38 | 11.4 | 9.6 | | | | | 120 | 8.9 | 8.3 | 7.0 | 105 | 6.9 | 47 | | 39 | 11.3 | 9.5 | | | | | 125 | 8.9 | 7.6 | 6.9 | 105 | 7.2 | - | | 40 | 11.3 | 9.6 | 7.3 | 99 | 2.0 | 42 | 130 | 8.6 | 7.3 | 6.9 | 107 | 13.0 | - | | 41<br>42 | 11.2<br>11.1 | 9.6<br>9.6 | | | | | 135<br>138 | 8.6 | _ | 6.9 | 107 | 8.5 | 48 | | 43 | 11.0 | 9.6 | | | | | 140.3 | - | - | Bott | | | ,- | | 44 | 10.9 | 9.7 | 7 - | 101 | ^ - | | | | | | | | | | 45<br>46 | 10.7<br>10.7 | 9.8<br>9.9 | 7.2 | 104 | 2.7 | - | | | | | | | | | 47 | 10.5 | 9.9 | | | | | | | • | | | | | | 48 | 10.5 | 10.0 | | | | | | | | | • | | | | 49<br>50 | 10.4<br>10.3 | 10.1<br>10.1 | 7 2 | 103 | 3.2 | _ | | | | | : | | • | | 51 | 10.3 | - | | 703 | 3.4 | _ | 7. | | ~. | | | | | | 52 | 10.3 | - | | | | | | | | | | | | | 53<br>54 | 10.2 | <del>-</del> | | | | | | | | | | | | | 54<br>55 | 10.1<br>10.0 | 10.1 | 7.2 | 97 | 4.1 | 42 | | | | | | | | | 56 | 9.9 | - | | | | | | | | | | | | | 57 | 9.8 | - | | | | | | | | | | | | | 58<br>59 | 9.7<br>9.7 | _ | | | | | | | | | | | | | 60 | 9.6 | 10.3 | 7.2 | 98 | 4.9 | - | | | | | | | | | 61 | 9.6 | - | | | | | | | | | | | | | 62<br>63 | 9.5<br>9.5 | - | | | | | | | | | | | | | 64 | 9.5 | - | | | | | | | | | | | | | 65 | 9.5 | 10.3 | 7.2 | 107 | 4.8 | - | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. | A2L | 043.2 | 225.0 | @ Dam | January | 26, 1984 | @ 0915 Hrs | . Sec | chi : | 3.7m | | | |----------|-----------|------|-------|-------|-------|---------|----------|------------|-------|-------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 9.5 | 10.6 | 7.2 | 96 | 1.1 | 42 | 66 | 7.4 | _ | | | | | | 1 | 9.5 | 10.6 | , | | | | 67 | 7.4 | - | | | | | | 2 | 9.3 | 10.6 | • | | | | 68 | 7.4 | _ | | | | | | 3 | 9.3 | 10.5 | 7.3 | 97 | 1.1 | - | 69 | 7.4 | _ | | | | | | 4 | 9.3 | 10.5 | 5 | | | | 70 | 7.3 | 11.6 | 7.2 | 114 | 6.9 | _ | | 5 | 9.3 | 10.5 | 5 | | | | 71 | 7.3 | _ | | : | 0.,, | | | 6 | 0 2 | 10.0 | 7 9 | 0.0 | , , | | 70 | | | | | | | | Surf. | 9.5 | 10.6 | 7.2 | 96 | 1.1 | 42 | 66 | 7.4 | _ | | | | |----------------------------------|----------------------------------------|-----------|-----|-----|-----|----|-----|-----|---------|---------|------------|----| | 1 | 9.5 | 10.6 | | | | | 67 | 7.4 | _ | | | | | 2 | 9.3 | 10.6 | | | | | 68 | 7.4 | | | | | | 3 | 9.3 | 10.5 | 7.3 | 97 | 1.1 | _ | 69 | 7.4 | _ | | | | | 4 | 9.3 | 10.5 | | | | | 70 | 7.3 | 11 4 | 7.2 114 | <i>(</i> 0 | | | 4<br>5<br>6 | 9.3 | 10.5 | | | | | 71 | 7.3 | 11.6 | 7.2 114 | 6.9 | - | | 6 | 9.3 | 10.5 | 7.2 | 98 | 1.1 | _ | | | - | | | | | 7 | 9.3 | 10.5 | 1.2 | 70 | 1.1 | _ | 72 | 7.3 | - | | | | | 8 | | | | | | | 73 | 7.3 | - | | | | | 0 | 9.3 | 10.5 | | | | | 74 | 7.3 | - | | | | | 9 | 9.3 | 10.5 | 7.2 | 98 | 1.1 | 43 | 75 | 7.3 | - | | | | | 10 | 9.3 | 10.5 | | | | | 76 | 7.3 | _ | | | | | 11 | 9.3 | 10.5 | | | | | 77 | 7.3 | - | | | | | 12 | 9.3 | 10.5 | 7.2 | 98 | 1.0 | - | 78 | 7.3 | _ | | | | | 13 | 9.3 | 10.5 | | | | | 79 | 7.3 | _ | | | | | 14 | 9.3 | 10.5 | | | | | 80 | 7.3 | 11.6 | 7.2 114 | 8.3 | 52 | | 15 | 9.3 | 10.5 | 7.2 | 98 | 1.1 | _ | 81 | 7.3 | | 7.2 114 | 0.3 | 32 | | 16 | 9.3 | 10.5 | , | 50 | | | 82 | | - | | | | | 17 | 9.3 | 10.5 | | | | | | 7.3 | <b></b> | | | | | 18 | | | 7.0 | 00 | | | 83 | 7.3 | ·<br>- | | | | | | 9.3 | 10.5 | 7.2 | 98 | 1.1 | 44 | 84 | 7.3 | - | | | | | 19 | 9.3 | 10.5 | | | | | 85 | 7.3 | | | | | | 20 | 9.3 | 10.5 | | | | | 86 | 7.3 | | | | | | 21 | 9.3 | 10.5 | 7.2 | 98 | 1.0 | - | 87 | 7.3 | - | | | | | 22 | 9.3 | 10.5 | | | | | 88 | 7.3 | _ | | | | | 23 | 9.3 | 10.5 | | | | | 89 | 7.3 | _ | | | | | 24 | 9.3 | 10.5 | 7.2 | 98 | 1.1 | _ | 90 | 7.3 | 11.6 | 7.2 114 | 0 6 | | | 25 | 9.3 | 10.5 | | | | | 91 | 7.3 | | 7.2 114 | 8.6 | _ | | 26 | 9.3 | 10.5 | | | | | 92 | | - | | | | | 27 | 9.3 | 10.5 | 7.2 | 98 | 1.0 | _ | 93 | 7.3 | - | | | | | 28 | 9.3 | | 1.2 | 98 | 1.0 | - | | 7.3 | - | | | | | 29 | | 10.5 | | | | | 94 | 7.3 | - | | | | | | 9.3 | 10.5 | | | | | 95 | 7.3 | - | | | | | 30 | 9.3 | 10.5 | 7.2 | 99 | 1.0 | - | 96 | 7.3 | - | | | | | 31 | 9.3 | 10.5 | | | | | 97 | 7.3 | - | | | | | 32 | 9.3 | 10.5 | | | | | 98 | 7.3 | _ | | | | | 33 | 9.3 | 10.5 | | | | | 99 | 7.3 | _ | | | | | 34 | 9.3 | 10.5 | | | | | 100 | 7.3 | 11.6 | 7.2 114 | 8.7 | | | 35 | 9.2 | 10.4 | 7.2 | 97 | 1.1 | _ | 105 | | 11.0 | 7.2 114 | 0.7 | _ | | 36 | 9 0 | 10.4 | | ,, | + | | 110 | 7 - | 11 - | 7 0 111 | | | | 37 | 9.0 | 10.4 | | | | | | 7.5 | 11.6 | 7.2 114 | 8.8 | 51 | | 38 | 9.0 | 10.4 | | | | | 115 | | | | | | | 39 | | | | | | | 120 | 7.5 | 11.5 | 7.2 115 | 8.8 | - | | | 9.0 | 10.4 | | | | | 125 | - | - | | | | | 40 | 9.0 | 10.4 | 7.2 | 96 | 1.5 | 44 | 130 | 7.5 | 11.5 | 7.2 114 | 8.9 | - | | 41 | 8.9 | 10.3 | | | | | 132 | _ | - | Bottom | | | | 42 | 8.8 | 10.3 | | | | | | | | | | | | 43 | 8.5 | 10.3 | | | | | | | | | | | | 44 | 8.3 | 10.3 | | | | | | | | | | | | 45 | 8.3 | 10.3 | 7.2 | 94 | 2.5 | _ | | | | | | | | 46 | 8.3 | 10.3 | | | | | | | | | | | | 47 | 8.2 | 10.3 | | | | | | | | | | | | 48 | 8.2 | 10.3 | | | | | | | · '. | | | | | 49. | 8.2 | | | | | | | | | • | | | | | | 10.3 | | | | | | | 1.1 | | | | | 50 | 8.2 | 10.3 | 7.2 | 94 | 3.1 | - | • | | | • | | | | 51 | 8.5 | _ | | | • | | | | ٠. | | | | | 52 | 8.5 | - | | | | | | | | | | | | 53 | 8.4 | - | | | | | | | | | | | | 54 | 8.2 | _ | | | | | | | | | | | | 55 | 8.0 | 11.1 | 7.2 | 108 | 5.9 | 50 | | | | | | | | 56 | 8.0 | | | | | | | | | | | | | | 7.9 | _ | | | | | | | | | | | | | 1.7 | | | | | | | | | | | | | 57<br>58 | | | | | | | | | | | | | | 58 | 7.9 | - | | | | | | | | | | | | 58<br>59 | 7.9<br>7.8 | _ | _ | | | | | | | | | | | 58<br>59<br>60 | 7.9<br>7.8<br>7.8 | -<br>11.1 | 7.2 | 109 | 6.3 | ~ | | | | | | | | 58<br>59<br>60<br>61 | 7.9<br>7.8<br>7.8<br>7.7 | 11.1 | 7.2 | 109 | 6.3 | - | | | | | | | | 58<br>59<br>60<br>61<br>62 | 7.9<br>7.8<br>7.8<br>7.7<br>7.6 | 11.1 | 7.2 | 109 | 6.3 | ~ | | | | | | | | 58<br>59<br>60<br>61 | 7.9<br>7.8<br>7.8<br>7.7 | 11.1 | 7.2 | 109 | 6.3 | - | | | | | | | | 58<br>59<br>60<br>61<br>62 | 7.9<br>7.8<br>7.8<br>7.7<br>7.6<br>7.5 | 11.1 | 7.2 | 109 | 6.3 | ~ | | | | | | | | 58<br>59<br>60<br>61<br>62<br>63 | 7.9<br>7.8<br>7.8<br>7.7<br>7.6 | 11.1 | 7.2 | 109 | 6.3 | - | | | | | | | | | Sta. | A2L ( | 043.2 | 225.0 | @ Dam | March | 1, 1984 @ ( | 0930 Hrs. | Secchi | 3.2m | | | | |----------|------------|---------------------|-------|-------|-------|-------|-------------|------------|---------------------|-------|------------|------------|---------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | ph E | .c. | Turb. | Alk. | | Surf. | 9.2 | 11.3 | 7.4 | 96 | 1.6 | 43 | 66 | 6.9 | 11.1 | | | | | | 1<br>2 | 9.2<br>9.2 | 11.3 | | | | | 67 | 6.9 | 11.1 | | | | | | 3 | 9.1 | 11.3 | 7.4 | 95 | 1.5 | _ | 68<br>69 | 6.8<br>6.8 | 11.1<br>11.1 | | | | | | 4 | 9.0 | 11.2 | | | | | 70 | 6.8 | 11.1 | 7.2 | 113 | 6.0 | 53 | | 5<br>6 | 9.0 | 11.2 | ٠, | ٥٣ | | | 71 | 6.8 | 11.1 | | | | | | 7 | 9.0<br>9.0 | $\frac{11.1}{11.1}$ | 7.4 | 95 | 1.5 | - | 72<br>73 | 6.8<br>6.8 | 11.1<br>11.0 | | | | | | 8 | 9.0 | 11.1 | | | | | 74 | 6.8 | 11.0 | | | | | | 9<br>10 | 9.0 | 11.1 | 7.4 | 95 | 1.5 | 43 | 75 | 6.8 | 11.0 | 7.2 | 114 | 6.2 | 53 | | 11 | 9.0<br>9.0 | 11.1<br>11.0 | | | | | 76<br>77 | 6.5<br>6.5 | 11.2<br>11.1 | | | | | | 12 | 8.9 | 11.0 | 7.4 | 95 | 1.4 | _ | 78 | 6.5 | 11.2 | | | | | | 13 | 8.9 | 10.9 | | | | | 79 | 6.7 | 11.2 | | | | | | 14<br>15 | 8.9<br>8.9 | 10.9<br>10.9 | 7.4 | 96 | 1.4 | | 80<br>81 | 6.6 | 11.2 | 7.2 | 114 | 6.0 | 54 | | 16 | 8.9 | 10.9 | | 20 | 1.4 | | 82 | 6.5<br>6.4 | 11.2<br>11.2 | | | | | | 17 | 8.9 | 10.9 | | _ | | | 83 | 6.4 | 11.2 | | | | | | 18<br>19 | 8.8<br>8.8 | 10.9<br>10.9 | 7.4 | 95 | 1.4 | 43 | 84 | 6.4 | 11.2 | | | | | | 20 | 8.8 | 10.9 | | | | | 85<br>86 | 6.4<br>6.5 | 11.2<br>11.2 | 7.2 | 100 | 2.4 | 44 | | 21 | 8.8 | 10.9 | 7.4 | 96 | 1.5 | - | 87 | 6.5 | 11.2 | | | | | | 22 | 8.8 | 10.8 | | | | | 88 | 6.5 | 11.2 | | | | | | 23<br>24 | 8.8<br>8.8 | 10.8<br>10.8 | 7.3 | 96 | 1.5 | _ | 89<br>90 | 6.5 | 11.2<br>11.3 | 7 2 | 116 | | | | 25 | 8.7 | 10.7 | ,., | 30 | 1.3 | | 91 | 6.5<br>6.5 | 11.3 | 7.2 | 116 | 6.0 | 55 | | 26 | 8.7 | 10.7 | _ | | | | 92 | 6.5 | 11.3 | | | | | | 27<br>28 | 8.7<br>8.7 | 10.7<br>10.7 | 7.4 | 96 | 1.3 | 42 | 93 | 6.5 | 11.2 | | | | | | 29 | 8.7 | 10.7 | | | | | 94<br>95 | 6.5<br>6.5 | $\frac{11.2}{11.2}$ | 7.2 | 116 | 5.8 | _ | | 30 | 8.7 | 10.7 | 7.4 | 95 | 1.5 | _ | 96 | 6.5 | 11.2 | 1.2 | 110 | 3.0 | _ | | 31 | 8.6 | 10.6 | | | | | 97 | 6.5 | 11.2 | | | | | | 32<br>33 | 8.5<br>8.4 | 10.6<br>10.6 | | | | | 98<br>99 | 6.5 | 11.2 | | | | | | 34 | 8.3 | 10.6 | | | | | 100 | 6.5<br>6.5 | 11.2<br>11.2 | 7.2 | 116 | 5.6 | _ | | 35 | 8.2 | 10.5 | 7.3 | 94 | 2.1 | - | 105 | 6.3 | 11.2 | | 118 | 5.3 | 55 | | 36<br>37 | 8.0<br>7.9 | 10.5<br>10.4 | | | | | 110 | 7.5 | 11.6 | | 118 | 5.9 | - | | 38 | 7.8 | 10.5 | | | | | 115<br>120 | 8.0<br>8.0 | $\frac{11.2}{11.1}$ | | 118<br>118 | 5.7<br>5.7 | -<br>55 | | 39 | 7.7 | 10.5 | | | | | 125 | - | | 7.4 | 110 | 3.7 | " | | 40<br>41 | 7.6 | 10.6 | 7.2 | 96 | 2.9 | 44 | 130 | 8.0 | 11.5 | | 119 | 5.4 | - | | 42 | 7.5<br>7.5 | 10.6<br>10.6 | | | | | 135<br>140 | 7.5<br>7.5 | $\frac{11.2}{11.2}$ | | 120 | 5.3 | 56 | | 43 | 7.4 | 10.6 | | | | | 142 | 8.0 | 11.1 | | 118<br>118 | 5.3<br>6.7 | -<br>56 | | 44 | 7.4 | 10.7 | | | | | 144.5 | - | _ | Botto | | | 30 | | 45<br>46 | 7.4<br>7.4 | 10.7<br>10.7 | 7.2 | 100 | 3.2 | - | | | | | | | | | 47 | 7.4 | 10.7 | | | | | | | | | | | | | 48 | 7.4 | 10.7 | | | | | | | • ` | | | | | | 49<br>50 | 7.3<br>7.3 | 10.7<br>10.7 | 7.2 | 101 | 3 6 | | , | | • | | • | | | | 51 . | 7.3 | 10.8 | 1.2 | 101 | 3.5 | - | | | + 1 | | | | | | 52 | 7.3 | 10.8 | | | • | | | | *- | | | | | | 53<br>54 | 7.3 | 10.9 | | | | | | | | | | | | | 54<br>55 | 7.2<br>7.1 | 10.9<br>10.9 | 7.2 | 106 | 3.7 | 48 | | | | | | | | | 56 | 7.1 | 10.9 | *- | 230 | 3., | 70 | | | | | | | | | 57 | 7.1 | 10.9 | | | | | | | | | | | | | 58<br>59 | 7.1<br>7.0 | 11.0<br>11.0 | | | | | | | | | | | | | 60 | 7.0 | 11.0 | 7.2 | 109 | 4.5 | 53 | | | | | | | | | 61 | 7.0 | 11.0 | | | - | • | | | | | | | | | 62<br>63 | 7.0<br>6.9 | 11.0<br>11.0 | | | | | | | | | | | | | 64 | 6.9 | 11.0 | | | | | | | | | | | | | 65 | 6.9 | | 7.2 | 113 | 5.9 | 60 | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA Sta. A2L 043.2 225.0 @ Dam April 5, 1984 @ 0900 Hrs. Secchi 3.5m | | St | a. AZL | 043.2 | 223. | o e par | April | . 3, 1964 8 | 0900 HIS. | Secui. | 1 3.30 | | | | |----------|--------------|--------------|-------|------|---------|-------|-------------|------------|--------------|--------|------------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pH E | .c. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pH E | .c. | Turb. | Alk. | | | | | | 00 | 1 6 | 41 | 66 | 7.0 | 10.8 | | | | | | Surf. | 11.7<br>11.7 | 10.7<br>10.7 | 7.7 | 99 | 1.5 | 41 | 67 | 7.0 | 10.9 | | | | | | 1<br>2 | 11.7 | 10.7 | | | | | 68 | 7.0 | 10.9 | | | | | | 3 | 11.7 | 10.7 | 7.7 | 99 | 1.6 | - | 69 | 7.0 | 10.9 | | | | | | 4 | 11.7 | 10.7 | | | | | 70 | 7.0 | 10.9 | 7.3 | 123 | 3.6 | 55 | | 5 | 11.6 | 10.7 | | | | | 71 | 7.0 | 10.9 | | | | | | 6 | 11.6 | 10.7 | 7.7 | 99 | 1.9 | - | 72 | 7.0 | 11.0 | | | | | | 7 | 11.6 | 10.7 | | | | | 73 | 7.0 | 11.0<br>11.0 | | | | | | 8 | 11.5 | 10.7 | | | | | 74<br>75 | 6.9<br>6.9 | 11.0 | 7.3 | 126 | 4.0 | _ | | 9 | 11.5 | 10.7 | 7.6 | 100 | 1.8 | 42 | 76 | 6.9 | 11.0 | 7.5 | | ,,,, | | | 10 | 11.3<br>11.0 | 10.7<br>10.8 | | | | | 77 | 6.9 | 11.0 | | | | | | 11<br>12 | 10.9 | 10.8 | 7.6 | 99 | 1.5 | - | 78 | 6.8 | 11.0 | | | | | | 13 | 10.8 | 10.8 | 7.0 | | | | 79 | 6.8 | 11.0 | | | | | | 14 | 10.6 | 10.8 | | | | | 80 | 6.8 | 11.0 | 7.3 | 128 | 5.0 | - | | 15 | 10.3 | 10.8 | 7.5 | 99 | 1.5 | - | 81 | 6.8 | 11.0 | | | | | | 16 | 10.0 | 10.8 | | | | | 82 | 6.8 | 11.0 | | | | | | 17 | 9.8 | 10.8 | | | | | 83 | 6.7 | 11.0 | | | | | | 18 | 9.3 | 10.8 | 7.4 | 99 | 1.1 | 42 | 84 | 6.7 | 11.0<br>11.0 | 7.3 . | 129 | 4.7 | 57 | | 19 | 9.2 | 10.7 | | | | | 85<br>86 | 6.7<br>6.7 | 11.0 | ,.J . | 123 | 4.7 | ٠,٠ | | 20 | 9.0 | 10.7 | 7. | 100 | 0.9 | _ | 87 | 6.7 | 11:0 | | | | | | 21 | 9.0 | 10.7<br>10.7 | 7.4 | 100 | 0.9 | _ | 88 | 6.7 | 11.0 | | | | | | 22<br>23 | 9.0<br>8.9 | 10.7 | | | | | 89 | 6.7 | 11.0 | | | | | | 24 | 8.9 | 10.7 | 7.3 | 100 | 1.0 | _ | 90 | 6.7 | 11.0 | 7.3 | 129 | 5.4 | - | | 25 | 8.8 | 10.7 | | | | | 91 | 6.7 | 11.0 | | | | | | 26 | 8.8 | 10.7 | | | | | 92 | 6.6 | 10.9 | | | | | | 27 | 8.8 | 10.7 | 7.3 | 100 | 1.0 | 43 | 93 | 6.6 | 10.9 | | | | | | 28 | 8.8 | 10.7 | | | | | 94 | 6.6 | 10.9 | 7 2 | 100 | , 0 | _ | | 29 | 8.7 | 10.6 | | | | | 95<br>06 | 6.5 | 11.0 | 7.3 | 129 | 4.9 | - | | 30 | 8.6 | 10.6 | 7.3 | 102 | 1.3 | - | 96<br>97 | 6.5<br>6.5 | 11.0<br>11.0 | | | | | | 31 | 8.5 | 10.6 | | | | | 98 | 6.5 | 11.0 | | | | | | 32 | 8.4<br>8.4 | 10.6<br>10.6 | | | | | 99 | 6.5 | 11.0 | | | | | | 33<br>34 | 8.4 | 10.6 | | | | | 100 | 6.5 | 10.9 | 7.3 | 129 | 5.2 | 57 | | 35 | 8.3 | 10.6 | 7.3 | 103 | 1.2 | _ | 105 | 8.0 | 10.9 | 7.3 | 130 | 4.5 | _ | | 36 | 8.3 | 10.6 | | | | | 110 | 8.5 | 10.9 | | 129 | 5.1 | | | 37 | 8.3 | 10.6 | | | | | 115 | 8.0 | 10.9 | | 128 | | 57 | | 38 | 8.3 | 10.6 | | | | | 120 | 8.0 | 10.8 | | 104 | | - | | 39 | 8.3 | 10.6 | | | | | 125 | 8.0 | 10.8 | | 128<br>128 | | 57 | | 40 | 8.2 | 10.6 | 7.3 | 103 | 1.3 | 44 | 130 | 8.0<br>9.0 | 10.8<br>10.9 | | 102 | | - | | 41 | 8.2 | 10.6 | | | | | 135<br>140 | 8.0 | 10.9 | | 127 | | _ | | 42 | 8.2 | 10.6 | | | | | 146 | 9.0 | 10.9 | | 128 | | 56 | | 43<br>44 | 8.2<br>8.2 | 10.6<br>10.6 | | | | | 148.4 | | _ | Bott | | | | | 45 | 8.2 | 10.6 | 7.3 | 103 | 1.4 | _ | | | | | | | | | 46 | 8.2 | 10.6 | | | | | | | | | | | | | 47 | 8.1 | 10.6 | | | | | | | | | | | | | 48 | 8.1 | 10.6 | | | | | | | •' | | | | | | 49 | 8.0 | 10.6 | | | | | | | • | | | | | | 50 | 8.0 | 10.6 | 7.3 | 104 | 1.4 | - | | * | | | • | | | | 51 | 8.0 | 10.6 | | | | | | | · : | | | | | | 52 · | 7.9 | 10.6 | | | | | | | · • · | | | | | | 53<br>54 | 7.9<br>7.8 | 10.6<br>10.6 | | | | | | | | | | | | | 54<br>55 | 7.8 | 10.6 | 7.3 | 108 | 1.4 | 47 | | | | | | | | | 56 | 7.7 | 10.7 | ,., | | | •• | | | | | | | | | 57 | 7.6 | 10.7 | | | | | | | | | | | | | 58 | 7.5 | 10.7 | | | | | | | | | | | | | 59 | 7.4 | 10.7 | | | | | | | | | | | | | 60 | 7.4 | 10.7 | | 111 | 2.0 | 49 | | | | | | | | | 61 | 7.3 | 10.8 | | | | | | | | | | | | | 62 | 7.2 | 10.8 | | | | | | | | | | | | | 63 | 7.2 | 10.8 | | | | | | | | | | | | | 64<br>65 | 7.1<br>7.1 | 10.8<br>10.8 | | 119 | 3.2 | _ | | | | | | | | | C D | /.1 | +0.0 | | ++- | | | | | | | | | | Sta. A2L 043.2 225.0 @ Dam May 11, 1984 @ 0800 Hrs. Secchi 6.0m | D 1. ( ) | | | 043. | | | | | 0000 nts. | Seccii. | | _ | <b>-</b> . | | |----------|--------------|------------|------|------|-------|------|----------------|--------------|--------------|------|------------|------------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth | m) Temp.(°C) | D.O. | рн | E.C. | Turb. | Alk. | | Surf. | 15.3 | 9.9 | 7.7 | 94 | 0.8 | 42 | 66 | 8.2 | 9.7 | | | | | | 1 | 15.3 | 9.9 | | | | | 67 | 8.1 | 9.6 | | | | | | 2 | 15.2 | 9.8 | | | | | 68 | 8.0 | 9.6 | | | | | | 3 | 15.1 | 9.8 | 7.7 | 94 | 0.9 | - | 69 | 8.0 | 9.6 | | | | | | 4 | 15.1 | 9.8 | | | | | 70 | 8.0 | 9.6 | 7.4 | 103 | 2.5 | 49 | | 5 | 14.9 | 9.9 | | | | | 71 | 8.0 | 9.6 | | | | | | 6 | 14.5 | 9.9 | 7.7 | 94 | 0.9 | - | 72 | 7.9 | 9.6 | | | | | | 7<br>8 | 14.1<br>14.0 | 9.8 | | | | | 73<br>74 | 7.7 | 9.6 | | | | | | 9 | 14.0 | 9.8<br>9.8 | 7.6 | 95 | 0.9 | 42 | 74<br>75 | 7.7 | 9.6 | 7.2 | 111 | 2 0 | | | 10 | 13.9 | 9.8 | 7.0 | 93 | 0.9 | 42 | 76 | 7.6<br>7.5 | 9.6<br>9.6 | 1.2 | 111 | 3.0 | - | | 11 | 13.8 | 9.7 | | | | | 77 | 7.5 | 9.6 | | | | | | 12 | 13.1 | 9.7 | 7.5 | 93 | 1.1 | _ | 78 | 7.4 | 9.6 | | | | | | 13 | 12.8 | 9.6 | | | | | 79 | 7.4 | 9.6 | | | | | | 14 | 12.1 | 9.6 | | | | | 80 | 7.3 | 9.5 | 7.2 | 110 | 3.2 | _ | | 15 | 11.9 | 9.6 | 7.4 | 99 | 1.2 | - | 81 | 7.2 | 9.5 | | | | | | 16 | 11.5 | 9.6 | | | | | 82 | 7.2 | 9.5 | | | | | | 17 | 11.3 | 9.6 | | | | | 83 | 7.1 | 9.5 | | | | | | 18 | 11.1 | 9.6 | 7.4 | 100 | 1.4 | 44 | 84 | 7.1 | 9.5 | | | | | | 19 | 10.9 | 9.6 | | | | | 85 | 7.1 | 9.5 | 7.2 | 115 | 3.9 | 55 | | 20 | 10.6 | 9.7 | | | | | 86 | 7.1 | 9.5 | | | | | | 21 | 10.2 | 9.7 | 7.3 | 100 | 1.6 | - | 87 | 7.1 | 9.5 | | | | | | 22 | 10.1 | 9.7 | | | | | 88 | 7.1 | 9.5 | | | | | | 23<br>24 | 10.0<br>9.9 | 9.7<br>9.7 | 7.3 | 100 | 1.9 | _ | 89<br>90 | 7.1<br>7.0 | 9.5<br>9.5 | 7.2 | 116 | 3.9 | _ | | 25 | 9.8 | 9.7 | 7.3 | 100 | 1.3 | _ | 91 | 7.0 | 9.5 | 1.2 | 116 | 3.9 | - | | 26 | 9.7 | 9.7 | | | | | 92 | 7.0 | 9.5 | | | | | | 27 | 9.7 | 9.7 | 7.6 | 95 | 0.9 | 43 | 93 | 7.0 | 9.5 | | | | | | 28 | 9.4 | 9.7 | | | | | 94 | 7.0 | 9.5 | | | | | | 29 | 9.2 | 9.7 | | | | | 95 | 7.0 | 9.5 | 7.2 | 117 | 4.5 | - | | 30 | 9.2 | 9.7 | 7.4 | 99 | 1.6 | - | 96 | 7.0 | 9.4 | | | | | | 31 | 9.1 | 9.7 | | | | | 97 | 7.0 | 9.4 | | | | | | 32 | 9.1 | 9.7 | | | | | <del>9</del> 8 | 7.0 | 9.4 | | | | | | 33 | 9.1 | 9.7 | | | | | 99 | 7.0 | 9.4 | | | | | | 34 | 9.1 | 9.7 | • • | | | | 100 | 6.9 | 9.4 | 7.2 | 119 | 4.5 | 56 | | 35<br>36 | 9.1 | 9.7 | 7.3 | 100 | 1.5 | - | 105<br>110 | 8.7 | 10.4 | 7.2 | 120 | 4.7 | - | | 37 | 9.1<br>9.0 | 9.8<br>9.8 | | | | | 115 | 8.7<br>8.7 | 10.4<br>10.4 | 7.2 | 122<br>120 | 4.5<br>4.4 | 58 | | 38 | 9.0 | 9.7 | | | | | 120 | 8.7 | 10.4 | 7.3 | 121 | 4.0 | - | | 39 | 9.0 | 9.7 | | | | | 125 | 8.5 | 10.5 | 7.3 | 119 | 4.2 | _ | | 40 | 9.0 | 9.7 | 7.3 | 97 | 1.1 | 44 | 130 | 8.7 | 10.3 | 7.3 | 119 | 4.2 | 58 | | 41 | 9.0 | 9.7 | | • | | | 135 | 9.3 | 10.3 | 7.4 | 106 | 2.0 | _ | | 42 | 9.0 | 9.7 | | | | | 140 | 8.2 | 10.3 | 7.3 | 121 | 4.3 | 57 | | 43 | 9.0 | 9.7 | | | | | 145 | 8.2 | 10.4 | 7.3 | 119 | 4.4 | - | | 44 | 9.0 | 9.7 | | | | | 149 | 8.5 | 10.4 | 7.3 | 119 | 4.5 | 57 | | 45 | 8.9 | 9.7 | 7.3 | 100 | 1.4 | - | 150.5 | - | | Bott | Oth | | | | 46 | 8.9 | 9.7 | | | | | | | | | | | | | 47 | 8.9 | 9.7 | | | | | | | | | | | | | 48<br>49 | 8.9 | 9.7 | | | | | | | • *- | | | | | | 49<br>50 | 8.9<br>8.9 | 9.7<br>9.7 | 7.3 | 101 | 1.5 | _ | | - | | | , | | | | 51 | 8.8 | 9.7 | 1.5 | 101 | 1 | | | | ٠. | | | | | | 52 | 8.8 | 9.7 | | | | | : | | | | | | | | 53 | 8.8 | 9.7 | | | | | | | <i>"</i> - | | | | | | 54 | 8.8 | 9.7 | | | | | | | | | | | | | 55 | 8.8 | 9.7 | 7.3 | 101 | 1.5 | 46 | | | | | | | | | 56 | 8.7 | 9.7 | | | | | | | | | | | | | 57 | 8.7 | 9.7 | | | | | | | | | | | | | 58 | 8.6 | 9.7 | | | | | | | | | | | | | 59 | 8.6 | 9.7 | | | | | | | | | | | | | 60 | 8.5 | 9.7 | 7.3 | 104 | 2.0 | - | | | | | | | | | 61 | 8.5 | 9.7 | | | | | | | | | | | | | 62 | 8.4 | 9.7 | | | | | | | | | | | | | 63<br>64 | 8.4<br>8.2 | 9.7<br>9.7 | | | | | | | | | | | | | 65 | 8.2 | | 7 3 | 103 | 2.1 | _ | | | | | | | | | 0.5 | 0.2 | 2.1 | ۱., | 103 | ۲.۱ | - | | | | | | | | Sta. A2L 043.2 225.0 @ Dam June 12, 1984 @ 0830 Hrs. Secchi 6.7m | | | | 043.2 | | e Daiii | | , | - (°C) | D 0 | -11 | F C | Turk | Alk. | |----------|--------------|------------|-------|-------|---------|------|------------|------------|---------------------------|------------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | _ рн | E.C. | Turb. | AIK. | | Surf. | 19.0 | 9.0 | 7.7 | 100 | 1.0 | 43 | 66 | 8.5 | 8.6 | | | | | | 1 | 19.0 | 9.1 | | | | | 67 | 8.4 | 8.6 | | | | | | 2 | 19.0 | 9.1 | | | | | 68 | 8.3 | 8.7 | | | | | | 3 | 19.0 | 9.1 | 7.7 | 101 | 1.0 | - | 69 | 8.3 | 8.7 | 7 3 | 111 | 2.6 | _ | | 4 | 19.0 | 9.1 | | | | | 70<br>71 | 8.3<br>8.2 | 8.6<br>8.6 | 7.3 | 111 | 2.0 | | | 5 | 19.0 | 9.2 | | 100 | 1 1 | | 71 | 8.2 | 8.6 | | | | | | 6 | 18.9 | 9.2<br>9.1 | 7.7 | 102 | 1.1 | _ | 73 | 8.2 | 8.6 | | | | | | 7<br>9 | 18.9<br>18.9 | 9.1 | 7.7 | 102 | 1.0 | 42 | 74 | 8.2 | 8.6 | | | | | | 10 | 18.9 | 9.1 | | | | | 75 | 8.2 | 8.6 | 7.3 | 113 | 2.8 | - | | ii | 18.8 | 9.1 | | | | | 76 | 8.1 | 8.6 | | | | | | 12 | 18.2 | 9.0 | 7.7 | 102 | 1.0 | - | 77 | 8.0 | 8.5 | | | | | | 13 | 17.7 | 9.0 | | | | | 78<br>79 | 8.0<br>8.0 | 8.4<br>8.4 | | | | | | 14 | 16.6 | 9.0 | | 105 | 1.0 | _ | 80 | 7.9 | 8.4 | 7.3 | 117 | 3.4 | _ | | 15 | 15.0 | 9.2 | 7.5 | 105 | 1.0 | _ | 81 | 7.8 | 8.3 | , | | | | | 16<br>17 | 14.1<br>13.3 | 9.2<br>9.3 | | | | | 82 | 7.8 | 8.3 | | | | | | 18 | 13.1 | 9.3 | 7.5 | 105 | 1.0 | 45 | 83 | 7.8 | 8.3<br>8.3 | | | | | | 19 | 12.9 | 9.3 | | | | | 84 | 7.7 | 8.3 | | | | | | 20 | 12.6 | 9.3 | | | | | 85 | 7.7 | 8.3 | 7.2 | 120 | 3.8 | 52 | | 21 | 12.4 | 9.3 | 7.5 | 108 | 1.4 | - | 86 | 7.5 | 8.3 | | | | | | 22 | 12.0 | 9.3 | | | | | 87 | 7.4<br>7.4 | 8.3 <sup>(1)</sup><br>8.2 | | | | | | 23 | 12.0 | 9.3 | | 100 | , , | | 87<br>88 | 7.4 | - | | | | | | 24 | 11.8<br>11.3 | 9.2 | 7.4 | 108 | 1.5 | - | 89 | 7.3 | - | | | | | | 25<br>26 | 11.3 | 9.2 | | | | | 90 | 7.3 | _ | 7.2 | 123 | 4.0 | _ | | 27 | 11.0 | 9.2 | 7.4 | 114 | 1.9 | 48 | 91 | 7.3 | - | | | | | | 28 | 10.9 | 9.1 | | | | | 92 | 7.3 | - | | | | | | 29 | 10.8 | 9.1 | | | | | 93 | 7.2 | - | | | | | | 30 | 10.8 | 9.1 | 7.4 | 116 | 2.2 | - | 94 | 7.2 | 10.0 | 7.2 | 125 | 4.5 | _ | | 31 | 10.5 | 9.1 | | | | | 95<br>96 | 7.1<br>7.1 | 10.0 | , | 143 | 7.5 | | | 32 | 10.3 | 9.0<br>9.0 | | | | | 97 | 7.1 | _ | | | | | | 33<br>34 | 10.3<br>10.2 | 9.0 | | | | | 98 | 7.1 | - | | | | | | 35 | 10.2 | 9.0 | 7.3 | 115 | 2.2 | _ | 99 | 7.0 | - | | | | | | 36 | 10.0 | 9.0 | | | | | 100 | 7.0 | 10.0 | 7.2 | | 4.9 | 56 | | 37 | 9.9 | 9.0 | | | | | 105 | 8.9 | 10.0 | 7.2 | | 5.0 | - | | 38 | 9.9 | 9.0 | | | | | 110 | 8.9 | 10.0 | 7.2<br>7.2 | | | 58 | | 39 | 9.9 | 9.0 | | | | 4.0 | 115<br>120 | 8.9<br>8.9 | 10.0 | 7.2 | | | - | | 40 | 9.8 | 9.0 | | 112 | 2.2 | 48 | 125 | 8.9 | 10.0 | 7.2 | | | _ | | 41<br>42 | 9.7<br>9.6 | 9.0<br>9.0 | | | | | 130 | 8.9 | 10.0 | 7.2 | | 4.9 | 56 | | 43 | 9.5 | 9.0 | | | | | 135 | 8.9 | 10.0 | 7.2 | | | - | | 44 | 9.3 | 8.9 | | | | | 140 | 8.9 | 9.9 | 7.2 | | | | | 45 | 9.3 | 8.9 | 7.3 | 110 | 1.8 | - | 146 | 8.9 | 10.0 | 7.2 | | 5.1 | 56 | | 46 | 9.2 | 8.8 | | | | | 149 | _ | _ | ROL | tom | | | | 47 | 9.1 | 8.8 | | | | | | | | | | | | | 48 | 9.1 | 8.8 | | | | | | | | | | | | | 49<br>50 | 9.1<br>9.0 | 8.8 | | 107 | 1.5 | _ | | | • | | | | | | 51 | 9.0 | 8.8 | | 10. | | | | | | | | | | | 52 | 9.0 | 8.8 | | | | | • | | | | | | | | 53 | 9.0 | 8.8 | | | | ٠. | 1. 1 | | v, | | | | | | 54 | 8.9 | 8.7 | | | | | | | | | | | | | 55 | 8.9 | 8.7 | | 106 | 1.5 | 45 | | | | | | | | | 56 | 8.9 | 8.6 | | | | | | | | | | | | | 57<br>58 | 8.9<br>8.9 | 8.6<br>8.6 | | | | | | | | | | | | | 58<br>59 | 8.8 | 8.5 | | | | | | | | | | | | | 60 | 8.8 | 8.5 | | 110 | 2.0 | _ | | | | | | | | | 61 | 8.7 | 8.5 | | | | | | | | | | | | | 62 | 8.7 | 8.5 | | | | | | | | | | | | | 63 | 8.6 | 8.5 | | | | | | | | | | | | | 64 | 8.6 | 8.5 | | , ,,, | 2 / | _ | | | | | | | | | 65 | 8.6 | 8.6 | 7.3 | 3 111 | . 2.4 | - | | | | | | | | | | Sta | a. A2 | L 043 | .2 225 | .0 @ Da | m July | 19, 1984 @ | 0900 Hrs. | Sec | chi 3. | Om. | | | |----------|--------------|------------|------------|--------|---------|--------|------------|------------|-------------|------------|------------|------------|---------| | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 27.2 | 8.1 | 7.7 | 105 | 1.0 | 45 | 66 | 9.0 | 9.3 | | | | | | 1 | 27.1 | 8.1 | | | | | 67 | 9.0 | 9.3 | | | | | | 2 | 27.1 | 8.1 | | | | | 68 | 8.9 | 9.3 | | | | | | 3 | 27.0 | 8.1 | 7.7 | 106 | 1.0 | - | 69 | 8.9 | 9.3 | | | | | | 4<br>5 | 26.9<br>26.8 | 8.1 | | | | | 70 | 8.8 | 9.3 | 7.3 | 109 | 1.8 | 49 | | 6 | 26.8 | 8.1<br>8.1 | 7.5 | 106 | 0.9 | | 71 | 8.8 | 9.3 | | | | | | 7 | 26.8 | 8.1 | , | 100 | 0.9 | _ | 72<br>73 | 8.7<br>8.7 | 9.3<br>9.3 | | | | | | 8 | 25.4 | 8.2 | | | | | 74 | 8.6 | 9.3 | | | | | | 9 | 23.5 | 8.2 | 7.5 | 105 | 0.6 | 46 | 75 | 8.6 | 9.3 | 7.2 | 110 | 2.1 | _ | | 10 | 21.8 | 8.5 | | | | | 76 | 8.6 | 9.3 | | 110 | 2.1 | | | 11 | 19.9 | 8.5 | | | | | 77 | 8.5 | 9.3 | | | | | | 12 | 19.2 | 8.3 | 7.4 | 109 | 0.7 | - | 78 | 8.5 | 9.3 | | | | | | 13<br>14 | 18.9 | 8.2 | | | | | 79 | 8.4 | 9.2 | | | | | | 15 | 18.6<br>17.8 | 8.2<br>8.1 | 7.3 | 110 | ۰. | _ | 80 | 8.3 | 9.3 | 7.2 | 113 | 2.7 | - | | 16 | 17.6 | 8.0 | /.3 | 112 | 0.7 | _ | 81<br>82 | 8.2 | 9.2 | | | | | | 17 | 17.1 | 8.0 | | | | | 83 | 8.1<br>8.0 | 9.12<br>9.2 | | | | | | 18 | 16.6 | 8.1 | 7.3 | 114 | 0.7 | 53 | 84 | 8.0 | 9.1 | | * | | | | 19 | 16.3 | 8.1 | | | | | 85 | 7.9 | 9.0 | 7.2 | 118 | 3.5 | 52 | | 20 | 16.0 | 8.2 | | | | | 86 | 7.8 | 9.0 | | | 3.3 | ,,, | | 21 | 15.8 | 8.2 | 7.3 | 118 | 0.7 | - | 87 | 7.7 | 9.0 | | | | | | 22 | 15.3 | 8.3 | | | | | 88 | 7.5 | 9.0 | | | | | | 23<br>24 | 15.1<br>14.9 | 8.3 | <b>-</b> - | | | | 89 | 7.4 | 8.9 | | | | | | 25 | 14.4 | 8.5<br>8.6 | 7.3 | 117 | 0.8 | - | 90 | 7.4 | 8.9 | 7.2 | 124 | 4.5 | - | | 26 | 14.2 | 8.7 | | | | | 91<br>92 | 7.3 | 8.9 | | | | | | 27 | 13.6 | 8.8 | 7.3 | 113 | 0.8 | 51 | 93 | 7.3<br>7.3 | 9.0<br>9.0 | | | | | | 28 | 13.3 | 8.9 | | | 0.0 | | 94 | 7.3 | 9.0 | | | | | | 29 | 13.1 | 89 | | | | | 95 | 7.3 | 9.0 | 7.2 | 125 | 4.6 | _ | | 30 | 12.8 | 9.0 | 7.3 | 109 | 0.8 | - | 96 | 7.2 | 9.0 | | | | | | 31 | 12.6 | 9.1 | | | | | 97 | 7.2 | 9.0 | | | | | | 32 | 12.3 | 9.1 | | | | | 98 | 7.2 | 9.1 | | | | | | 33<br>34 | 12.0<br>11.8 | 9.1 | | | | | 99 | 7.1 | 9.1 | | | | | | 35 | 11.7 | 9.1<br>9.1 | 7.3 | 110 | 1.3 | _ | 100<br>105 | 7.1 | 9.1 | 7.2 | 126 | 4.8 | 57 | | 36 | 11.5 | 9 1 | , , , | 110 | 1.5 | - | 110 | - | 9.2<br>9.3 | 7.2<br>7.2 | 126 | 4.9 | - | | 37 | 11.3 | 9.2 | | | | | 115 | 9.2 | 9.4 | 7.2 | 127<br>127 | 5.0<br>4.8 | -<br>57 | | 38 | 11.2 | 9.2 | | | | | 120 | 8.9 | 9.5 | 7.2 | 127 | 5.0 | - | | 39 | 11.1 | 9.2 | | | | | 125 | 8.3 | 9.3 | 7.2 | 127 | 5.1 | _ | | 40 | 10.9 | 9.2 | 7.3 | 114 | 1.5 | 50 | 130 | 8.9 | 9.1 | 7.2 | 128 | 5.1 | 57 | | 41 | 10.9 | 9.2 | | | | | 135 | 8.9 | 9.1 | 7.2 | 128 | 5.0 | - | | 42<br>43 | 10.8 | 9.2 | | | | | 140 | 9.4 | 9.1 | 7.2 | 128 | 5.6 | 58 | | 44 | 10.8<br>10.7 | 9.3 | | | | | 143 | - | - | Botte | ΣШ | | | | 45 | 10.6 | 9.3 | 7.3 | 116 | 1.6 | - | | | | | | | | | 46 | 10.5 | 9.3 | | | 0 | | | | | | | | | | 47 | 10.4 | 9.3 | | | | | | | | | | | | | 48 | 10.4 | 9.3 | | | | | | | | | | | | | 49 | 10.3 | 9.3 | | | | | | | | | | | | | 50 | 10.3 | | 7.3 | 116 | 1.7 | - | | | - : | | • | | | | 51<br>52 | 10.2 | 9.3 | | | | | | | ۳. | | | | | | 53 | 10.1<br>10.0 | 9.3<br>9.3 | | | | | | | | | | | | | 54 | 10.0 | 9.3 | | | | | | | | | | | | | 55 | 9.9 | 9.4 | 7.3 | 115 | 2.1 | 53 | | | | | | | | | 56 | 9.8 | 9.4 | | -+3 | | | | | | | | | | | 57 | 9.7 | 9.4 | | | | | | | | | | | | | 58 | 9.6 | 9.3 | | | | | | | | | | | | | 59 | 9.5 | 9.3 | | | | | | | | | | | | | 60 | 9.4 | 9.4 | 7.3 | 113 | 1.8 | - | | | | | | | | | 61<br>62 | 9.3<br>9.3 | 9.4 | | | | | | | | | | | | | 63 | 9.3 | 9.4<br>9.3 | | | | | | | | | | | | | 64 | 9.2 | 9.3 | | | | | | | | | | | | | 65 | 9.1 | 9.3 | 7.3 | 110 | 1.7 | _ | | | | | | | | Sta. A2L 043.2 225.0 @ Dam August 16, 1984 @ 0830 Hrs. Secchi - | | | 1. A45 | 043. | 2 225. | o e Dan | i Augusi | 16, 1984 | @ 0830 Hrs. | Seco | hi - | | | | |------------|--------------|------------|--------------|--------|---------|----------|----------|-------------|------|------------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 25.0 | 8.8 | 7.8 | 109 | 0.5 | 47 | 66 | 9.4 | 8.3 | | | | | | 1 | 25.0 | 8.8 | , • 0 | 107 | 0.5 | 47 | 67 | 9.3 | 8.3 | | | | | | 2 | 25.0 | 8.8 | | | | | 68 | 9.2 | 8.3 | | | | | | 3 | 24.9 | 8.8 | 7.8 | 108 | 0.7 | _ | 69 | 9.1 | 8.4 | | | | | | 4 | 24.9 | 8.8 | , <b>.</b> 0 | 100 | 0.7 | _ | 70 | 9.0 | 8.3 | 7 0 | 110 | 1.0 | | | 5 | 24.9 | 8.8 | | | | | 71 | 8.9 | 8.3 | 7.2 | 110 | 1.6 | - | | 6 | 24.9 | 8.7 | 7.7 | 108 | 0.6 | _ | 72 | 8.9 | 8.3 | | | | | | 7 | 24.9 | 8.7 | | | ••• | | 73 | 8.8 | 8.3 | | | | | | 8 | 24.9 | 8.7 | | | | | 74 | 8.7 | 8.3 | | | | | | 9 | 24.9 | 8.7 | 7.7 | 108 | 0.5 | 45 | 75 | 8.6 | 8.3 | 7.2 | 110 | 2.1 | | | 10 | 24.8 | 8.7 | | | 0.5 | 7.5 | 76 | 8.6 | 8.3 | 7.2 | 110 | 4.1 | - | | 11 | 21.0 | 8.0 | | | | | 77 | 8.5 | 8.3 | | | | | | 12 | 20.4 | 8.2 | 7.3 | 115 | 0.7 | 50 | 78 | 8.4 | 8.3 | | | | | | 13 | 19.9 | 8.0 | | | ٠., | 30 | 79 | 8.3 | 8.3 | | | | | | 14 | 19.4 | 7.8 | | | | | 80 | 8.2 | 8.2 | 7 2 | 114 | 3.7 | 50 | | 15 | 19.1 | 7.5 | 7.3 | 121 | 1.0 | 55 | 81 | 8.0 | 8.1 | 7.2 | 114 | 3.7 | 30 | | 16 | 18.6 | 7.4 | | | | 33 | 82 | 7.9 | 8:1 | | | | | | 17 | 18.4 | 7.3 | | | | | 83 | 7.8 | 8.0 | | | | | | 18 | 18.3 | 7.2 | 7.3 | 122 | 0.6 | | 84 | 7.7 | 8.0 | | | | | | 19 | 18.1 | 7.2 | | | 0.0 | | 85 | 7.6 | 8.0 | 7 2 | 119 | 2 5 | | | 20 | 17.9 | 7.1 | | | | | 86 | 7.5 | 8.0 | 1.2 | 119 | 3.5 | - | | 21 | 17.6 | 7.2 | 73 | 117 | 0.6 | _ | 87 | 7.5 | 8.0 | | | | | | 22 | 17.3 | 7.3 | ,,, | ++, | 0.0 | | 88 | 7.4 | | | | | | | 23 | 17.0 | 7.3 | | | | | 89 | 7.4 | 8.0 | | | | | | 24 | 16.7 | 7.4 | 7.3 | 118 | 1.0 | 53 | 90 | | 8.0 | 7 0 | 100 | , , | | | 25 | 16.4 | 7.4 | 7.5 | 110 | 1.0 | 23 | 91 | 7.1 | 8.1 | 1.2 | 125 | 4.6 | - | | 26 | 16.1 | 7.5 | | | | | 92 | 7.0 | 8.1 | | | | | | 27 | 15.8 | 7.7 | 7.3 | 120 | 0.7 | | 93 | 7.0 | 8.1 | | | | | | 28 | 15.3 | 7.8 | ,., | 120 | 0.7 | _ | 94 | 7.0 | 8.1 | | | | | | 29 | 15.0 | 7.8 | | | | | 94<br>95 | 7.0 | 8.2 | 7 0 | | | | | 30 | 14.9 | 7.9 | 7 3 | 119 | 0.9 | | 96 | 7.0 | 8.3 | 7.2 | 126 | 4.5 | 55 | | 31 | 14.5 | 8.0 | 7.3 | 119 | 0.9 | - | | 7.0 | 8.3 | | | | | | 32 | 14.3 | 8.1 | | | | | 97<br>98 | 6.9 | 8.3 | | | | | | 33 | 14.0 | 8.2 | | | | | | 6.9 | 8.4 | | | | | | 34 | 13.8 | 8.3 | | | | | 99 | 6.9 | 8.4 | | | | | | 35 | 13.6 | 8.3 | 7 2 | 114 | 0.0 | F 1 | 100 | 6.9 | 8.4 | 7.2 | | 5.3 | - | | 36 | 13.3 | 8.5 | 1.3 | 114 | 0.9 | 51 | 105 | _ | | <b>-</b> . | 127 | 5.3 | - | | 37 | 13.1 | 8.5 | | | | | 110 | 8.3 | 8.9 | 7.2 | 127 | 4.6 | 56 | | 38 | 13.0 | 8.6 | | | | | 115 | 8.3 | 9.1 | 7.2 | 127 | 4.6 | - | | 39 | 12.8 | 8.6 | | | | | 120 | 7.8 | 9.2 | 7.2 | 127 | 4.9 | - | | 40 | 12.6 | 8.7 | 7 2 | 100 | 1.0 | | 125 | 7.8 | 9.0 | 7.2 | 127 | 4.9 | 57 | | 41 | 12.3 | 8.7 | 7.3 | 108 | 1.0 | - | 130 | 7.8 | 8.7 | 7.1 | 127 | 5.5 | - | | 42 | 12.1 | 8.7 | | | | | 135 | 8.9 | 8.5 | 7.1 | 127 | 15.0 | 58 | | 43 | 12.0 | 8.7 | | | | | 137 | - | - | Bott | om | | | | 44 | 11.9 | 8.7 | | | | | | | | | | | | | 45 | 11.7 | 8.6 | 7.3 | 110 | 1 2 | | | | | | | | | | 46 | 11.7 | 8.6 | د.، | 110 | 1.3 | - | | | | | | | | | 47 | 11.3 | 8.6 | | | | | | | | | | | | | 48 | 11.2 | 8.6 | | | | | | | * 1 | | | | | | 49 | 11.1 | 8.6 | | | | | | | | | • | | | | . 50 | 11.0 | 8.6 | 7 2 | 116 | 1 7 | | | | | | | | | | 51 | 10.9 | 8.6 | /•3 | 110 | 1.7 | 21 | 100 | | | | | | | | 52 | 10.9 | 8.5 | | | | | | | | | | | | | 53 | 10.8 | 8.5 | | | | | | | | | | | | | 54 | 10.7 | 8.5 | | | | | | | | | | | | | 55 | 10.7 | | 7 2 | 110 | 2.0 | | | | | | | | | | 56 | 10.5 | 8.5<br>8.5 | 1.3 | 118 | 2.0 | | | | | | | | | | 57 | 10.5 | 8.5 | | | | | | | | | | | | | 58 | 10.4 | 8.5 | | | | | | | | | | | | | 59 | | | | | | | | | | | | | | | 60 | 10.3<br>10.2 | 8.5 | 7 2 | 115 | 2.2 | | | | | | | | | | 61 | 10.2 | 8.5<br>8.4 | 1.2 | 115 | 2.0 | - | | | | | | | | | 62 | 10.1 | | | | | | | | | | | | | | 63 | 9.8 | 8.4<br>8.4 | | | | | | | | | | | | | 64 | 9.8 | | | | | | | | | | | | | | 65 | 9.7 | 8.4 | 7 2 | 110 | 1 0 | | | | | | | | | | <b>U</b> 5 | 7.3 | 8.3 | 7.2 | 112 | 1.9 | 50 | | | | | | | | | | Sta. A | A2L 043 | 3.2 2 | 25.0 @ | Dam : | Septembe | r 14, 1984 | @ 0800 Hrs. | Seco | chi 7 | .6m | | | |---------------|--------------|--------------|---------|--------|-------|----------|--------------------|-------------|--------------|-------------|------------|------------|------| | Depth(m) | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | | Surf. | 22.5 | 8.1 | 7.6 | 114 | 0.5 | 50 | 66 | 9.7 | 7.0 | | | | | | 1<br>2 | 22.5<br>22.5 | 8.05<br>8.05 | | | | | 67 | 9.6 | 7.0 | | | | | | 3 | 22.5 | 8.05 | 7.6 | 114 | 0.6 | _ | 68<br>69 | 9.4<br>9.1 | 7.0<br>7.0 | | | | | | 4 | 22.5 | 8.0 | | | | | 70 | 9.0 | 7.0 | 7.1 | 115 | 1.9 | 50 | | 5<br><b>6</b> | 22.5 | 8.0 | | | | | 71 | 9.0 | 7.0 | | | | | | 7 | 22.5<br>22.5 | 8.0<br>7.95 | 7.6 | 114 | 0.5 | - | 72<br>73 | 8.9 | 7.0 | | | | | | 8 | 22.5 | 7.95 | | | | | 73<br>74 | 8.9<br>8.7 | 7.0<br>7.0 | | | | | | 9 | 22.5 | 7.95 | 7.6 | 114 | 0.6 | 48 | 75 | 8.6 | 7.0 | 7.0 | 115 | 2.0 | _ | | 10 | 22.5 | 7.95 | | | | | 76 | 8.4 | 7.0 | | | | | | 11<br>12 | 22.5<br>22.5 | 7.95<br>7.9 | 7.6 | 114 | 0.6 | | 77<br>78 | 8.3 | 7.0 | | | | | | 13 | 22.5 | 7.9 | 7.0 | 114 | 0.0 | - | 79 | 8.2<br>8.0 | 6.95<br>6.95 | | | | | | 14 | 19.3 | 6.25 | | | | | 80 | 7.9 | 6.9 | 7.0 | 117 | 2.6 | _ | | 15 | 19.1 | 6.1 | 7.3 | 125 | 0.6 | - | 81 | 7.8 | 6.75 | | | | | | 16<br>17 | 18.8<br>18.5 | 5.9<br>5.8 | | | | | 82 | 7.7 | 6.75 | | | | | | 18 | 18.3 | 5.75 | 7.2 | 129 | 0.6 | 60 | 83<br>84 | 7.5<br>7.3 | 6.85 | | | | | | 19 | 18.2 | 5.75 | | | 0.0 | 00 | 85 | 7.2 | 6.85 | 7.0 | 122 | 3.6 | 55 | | 20 | 18.1 | 5.8 | | | | | 86 | 7.2 | 6-8 | | | 3.0 | ,,, | | 21<br>22 | 18.0 | 5.8 | 7.2 | 130 | 0.5 | - | 87 | 7.1 | 6.9 | | | | | | 23 | 17.9<br>17.7 | 5.9<br>6.0 | | | | | 88 | 7.1 | 6.9 | | | | | | 24 | 17.5 | 6.1 | 7.2 | 126 | 0.5 | _ | 89<br>90 | 7.0<br>7.0 | 6.9<br>6.9 | 7.0 | 126 | 4.4 | | | 25 | 17.2 | 6.15 | | | | | 91 | 7.0 | 6.9 | ,.0 | 120 | 4.4 | _ | | 26 | 17.0 | 6.2 | | | | | 92 | 7.0 | 6.95 | | | | | | 27<br>28 | 16.9<br>16.7 | 6.3<br>6.3 | 7.2 | 123 | 0.5 | 55 | 93 | 6.9 | 7.1 | | | | | | 29 | 16.2 | 6.45 | | | | | 94<br>95 | 6.9<br>6.9 | 7.15 | 7.0 | 120 | - 0 | | | 30 | 16.0 | 6.5 | 7.2 | 123 | 1.0 | _ | 96 | 6.9 | 7.15 | 7.0 | 129 | 5.0 | - | | 31 | 15.8 | 6.65 | | | | | 97 | 6.9 | 7.2 | | | | | | 32 | 15.6 | 6.7 | | | | | 98 | 6.9 | 7.2 | | | | | | 33<br>34 | 15.4<br>15.2 | 6.7<br>6.75 | | | | | 99 | 6.9 | 7.2 | | | | | | 35 | 15.0 | 6.8 | 7.2 | 123 | 0.8 | _ | 100<br>105 | 6.9 | 7.2<br>8.8 | 7.0<br>7.0 | 129<br>130 | 4.9<br>5.6 | 56 | | 36 | 14.8 | 6.9 | | | • | | 110 | - | 8.9 | 7.0 | 130 | 5.2 | - | | 37 | 14.5 | 7.0 | | | | | 115 | - | 8.9 | 7.0 | 130 | 5.3 | 57 | | 38<br>39 | 14.3<br>14.0 | 7.1 | | | | | 120 | - | 8.9 | 7.0 | 130 | 5.5 | - | | 40 | 13.8 | 7.15<br>7.25 | 7.2 | 118 | 0.8 | 53 | 125<br>1 <b>30</b> | - | 8.7 | 7.0 | 131 | 5.6 | - | | 41 | 13.7 | 7.3 | , · · · | 110 | 0.0 | 23 | 131 | - | 8.3 | 7.0<br>Bott | 131 | 6.3 | 60 | | 42 | 13.5 | 7.35 | | | | | | | | DOLL | Oill | | | | 43<br>44 | 13.3 | 7.45 | | | | | | | | | | | | | 45 | 13.1<br>12.9 | 7.5<br>7.6 | 7.2 | 115 | 0.7 | | | | | | | | | | 46 | 12.7 | 7.65 | , | 113 | 0.7 | - | | | | | | | | | 47 | 12.6 | 7.75 | | | | | | | | | | | | | 48 | 12.3 | 7.65 | | | | | | | | | | | | | 49<br>50 | 12.1<br>11.9 | 7.6<br>7.6 | 7 7 | 112 | 0.0 | | | | | | | | | | 51 | 11.8 | 7.6 | 7.2 | 113 | 0.9 | - | | | | | | | | | 52 | 11.7 | 7.5 | | | | | 100 | • | • : | | - | | | | 53 | 11.5 | 7.5 | | | | | | | • | | | | | | 54<br>55 | 11.3 | 7.5 | ٠. | | | | | | | | | | | | 56 | 11.3<br>11.2 | 7.5<br>7.45 | 1.2 | 117 | 1.5 | 51 | | | | | | | | | 57 | 11.0 | 7.45 | | | | | | | | | | | | | 58 | 10.9 | 7.4 | | | | | | | | | | | | | 59 | 10.8 | 7.4 | | | | | | | | | | | | | 60<br>61 | 10.7<br>10.4 | 7.4 | 7.2 | 119 | 1.9 | - | | | | | | | | | 62 | 10.4 | 7.3<br>7.25 | | | | | | | | | | | | | 63 | 10.2 | 7.2 | | | | | | | | | | | | | 64 | 10.0 | 7.15 | | | | | | | | | | | | | 65 | 9.9 | 7.1 | 7.2 | 117 | 1.9 | - | | | | | | | | | | | | | | | | | | | | | | | | | Sta. | A2L ( | 043.2 | 225.0 | @ Dam | Octobe | er | 24, 1984 @ | 0930 Hrs. | Secci | hi 8. | 3m | | | |------------------|--------------|------------|-------|-------|-------|----------------|----|--------------------------|------------|------------|-------------|------------|------------|--------------------| | Depth(m) | Temp.(°C) | D.O. | р Н | E.C. | Turb. | Alk. | | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | | Surf. | 16.4 | 8.2 | 7.4 | 126 | 0.9 | 54 | | 66 | 10.3 | 5.2 | | | | | | 1 | 16.4 | 7.9 | | | | - | | 67 | 10.0 | 5.2 | | | | | | 2<br>3 | 16.4<br>16.4 | 7.8<br>7.7 | 7 1 | 105 | | | | 68 | 9.8 | 5.2 | | | | | | 4 | 16.5 | 7.6 | 7.3 | 125 | 0.9 | - | | 69<br>70 | 9.7 | 5.2 | | | | | | 5 | 16.6 | 7.5 | | | | | | 70<br>71 | 9.5<br>9.3 | 5.2<br>5.2 | 7.1 | 118 | 2.2 | 52 | | 6 | 16.6 | 7.4 | 7.3 | 125 | 0.9 | - | | 72 | 9.0 | 5.2 | | | | | | 7<br>8 | 16.6<br>16.6 | 7.4 | | | | | | 73 | 8.9 | 5.3 | | | | | | 9 | 16.6 | 7.3<br>7.3 | 7.3 | 125 | 0.9 | 56 | | 74<br>75 | 8.7 | 5.3 | | | | | | 10 | 16.6 | 7.2 | ,,, | 123 | 0.9 | 50 | | 7 <i>5</i><br>7 <b>6</b> | 8.5<br>8.4 | 5.3<br>5.3 | 7.1 | 117 | 2.5 | - | | 11 | 16.6 | 7.2 | | | | | | 77 | 8.2 | 5.4 | | | | | | 12<br>13 | 16.6<br>15.8 | 7.1 | 7.3 | 125 | 1.0 | - | | 78 | 8.0 | 5.4 | | | | | | 14 | 15.8 | 6.9<br>6.8 | | | | | | 79 | 7.9 | 5.4 | | | | | | 15 | 15.9 | 6.8 | 7.3 | 125 | 1.0 | - | | 80<br>81 | 7.8<br>7.7 | 5.4<br>5.5 | 7.1 | 120 | 3.7 | - | | 16 | 16.0 | 6.7 | | | | | | 82 | 7.5 | . 5.5 | | | | | | 17<br>1 <b>8</b> | 16.0 | 6.6 | | | | | | 83 | 7.3 | 5.6 | | | | | | 19 | 16.0<br>16.0 | 6.5<br>6.5 | 7.3 | 125 | 1.0 | 5 <del>6</del> | | 84 | 7.2 | 5.7 | | | | | | 20 | 16.0 | 6.4 | | | | | | 85<br>86 | 7.1<br>6.9 | 5.8 | 7.1 | 125 | 5.0 | 5 <b>6</b> | | 21 | 16.0 | 6.4 | 7.3 | 125 | 1.1 | _ | | .87 | 6.9 | 5.8<br>5.9 | | | | | | 22<br>23 | 16.1 | 6.3 | | | | | | 88 | 6.9 | 5.9 | | | | | | 24 | 16.1<br>16.0 | 6.3<br>6.3 | 7 3 | 125 | 1.0 | | | 89 | 6.9 | 6.0 | | | | | | 25 | 16.0 | 6.3 | /.5 | 123 | 1.0 | - | | 90<br>91 | 6.8<br>6.8 | 6.0 | 7.1 | 127 | 5.3 | - | | 26 | 16.0 | 6.3 | | | | | | 92 | 6.7 | 6.0<br>6.1 | | | | | | 27<br>28 | 16.0 | 6.2 | 7.3 | 124 | 0.8 | 55 | | 93 | 6.7 | 6.2 | | | | | | 29 | 16.0<br>16.0 | 6.2<br>6.2 | | | | | | 94 | 6.7 | 6.5 | | | | | | 30 | 16.0 | 6.2 | 7.3 | 125 | 1.0 | _ | | 95<br>96 | 6.7<br>6.7 | 6.5 | 7.1 | 129 | 5.7 | - | | 31 | 16.0 | 6.2 | | | | | | 97 | 6.6 | 6.5<br>6.5 | | | | | | 32<br>33 | 16.0 | 6.2 | | | | | | 98 | 6.6 | 6.5 | | | | | | 34 | 16.0<br>15.3 | 6.1<br>5.4 | | | | | | 99 | 6.5 | 6.5 | | | | | | 35 | 15.0 | 5.3 | 7.3 | 125 | 1.1 | _ | | 100<br>105 | 6.5 | 6.6 | 7.1 | 130 | 5.6 | 57 | | 36 | 14.8 | 5.3 | | | | | | 110 | _ | 8.2<br>8.5 | 7.1<br>7.0 | 130<br>131 | 6.0<br>5.6 | - | | 37<br>38 | 14.8 | 5.3 | | | | | | 115 | - | 8.4 | 7.0 | 131 | 6.3 | <del>-</del><br>57 | | 39 | 14.7<br>14.5 | 5.3<br>5.3 | | | | | | 120 | - | 8.2 | 7.0 | 132 | 6.5 | - | | 40 | 14.3 | 5.3 | 7.3 | 125 | 1.0 | 55 | | 125<br>130 | - | 8.0 | 7.0 | 132 | 7.9 | - | | 41 | 14.2 | 5.3 | | | 1.0 | 33 | | 131.5 | - | 7.0 | 7.0<br>Bott | 132 | 7.2 | 60 | | 42<br>43 | 14.1 | 5.3 | | | | | | | | | DOC C. | ОЩ | | | | 44 | 14.0<br>14.0 | 5.2<br>5.2 | | | | | | | | | | | | | | 45 | 14.0 | 5.3 | 7.2 | 130 | 1.1 | _ | | | | | | | | | | 46 | 13.9 | 5.3 | | | | | | | | | | | | | | 47<br>48 | 13.7 | 5.3 | | | | | | | | •` | | | | | | 49. | 13.6<br>13.5 | 5.3<br>5.3 | | | | | | | , . | | | • | | | | 50 | 13.4 | 5.3 | 7.2 | 126 | 1.3 | _ | | | • . | : | | • | | | | 51 | 13.3 | 5.3 | , | | | | | | | | | | | | | 52<br>53 | 13.2 | 5.3 | | | | | | | | | | | | | | 54 | 13.1<br>13.0 | 5.3<br>5.4 | | | | | | | | | | | | | | 55 | 12.8 | 5.4 | 7.2 | 119 | 1.5 | 51 | | | | | | | | | | 56 | 12.6 | 5.4 | | | *** | 51 | | | | | | | | | | 57<br>58 | 12.5 | 5.4 | | | | | | | | | | | | | | 59 | 12.3<br>12.1 | 5.4<br>5.4 | | | | | | | | | | | | | | 60 | 11.8 | 5.4 | 7.1 | 116 | 1.6 | _ | | | | | | | | | | 61 | 11.4 | 5.4 | | | | | | | | | | | | | | 62<br>63 | 11.2 | 5.4 | | | | | | | | | | | | | | 64 | 11.0<br>10.8 | 5.3<br>5.3 | | | | | | | | | | | | | | 65 | 10.6 | 5.3 | 7.1 | 117 | 2.2 | _ | | | | | | | | | | | - | | | / | ٠٠٠ | _ | | | | | | | | | | Sta. A2L 044.3 227.3 Little Squaw Creek Inlet May 12 1983 @ 1415 Hrs. Secchi 2.4m June 21, 1983 @ 1300 Hrs. Secchi 3.2m | | | | | | | | | | | | | | |-------------------------------------------------------------------------------------------------------------------------|-----------|------|-----|--------|-------|------|----------|------------|------|-----|------|-------|------| | | 983 @ 141 | | | chi 2. | | | June 21, | 1983 @ 130 | | | | | | | Depth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 14,0 | 10.8 | 7.4 | 71 | 2.4 | 29 | Surf. | 22.2 | 8.4 | 7.4 | 76 | 2.1 | 33 | | 1. | 13.9 | 10.9 | | | | | 1 | 22.1 | 8.4 | | | | | | 2 | 13.5 | 11.0 | | | | | 2 | 21.9 | 8.4 | | | | | | 3 | 12.9 | 10.9 | 7.4 | 70 | 2.6 | - | 3 | 21.6 | 8.4 | 7.6 | 77 | 1.2 | - | | 4 | 12.3 | 11.0 | | | | | 4 | 21.4 | 8.4 | | | | | | 5 | 11.8 | 11.0 | | | | | 5 | 21.3 | 8.4 | | | | | | 6 | 11.5 | 11.0 | 7.3 | 72 | 2.7 | 29 | 6 | 21.3 | 8.4 | 7.4 | 76 | 2.0 | 34 | | 7 | 11.3 | 11.0 | | | | | 7 | 21.2 | 8.3 | | | | | | 8 | 11.1 | 11.0 | | | | | 8 | 21.2 | 8.3 | | | | | | 9 | 11.0 | 10.9 | 7.3 | 72 | 2.7 | - | 9 | 21.0 | 8.3 | 7.4 | 78 | 1.5 | - | | 10 | 11.0 | 10.8 | | | | | 10 | 20.7 | 8.4 | | | | | | 11 | 10.9 | 10.9 | | | | | 11 | 19.1 | 8.5 | | | | | | 12 | 10.9 | 10.8 | 7.2 | 73 | 2.7 | 29 | 1.2 | 14.6 | 8.9 | 7.3 | 80 | 2.6 | 33 | | 13 | 10.9 | 10.8 | | | | | 13 | 14.2 | 9.1 | | | | | | 14 | 10.8 | 10.8 | | | | | 14 | 13.6 | 9.0 | | | | | | 15 | 10.6 | 10.8 | 7.1 | 68 | 3.9 | 19 | 15 | 13.2 | 9.1 | 7.3 | 77 | 2.2 | - | | 16 | 10.2 | 10.8 | | | | | 16 | 12.9 | 9.1 | | | | | | 1.7 | 10.0 | 10.9 | | | | | 17 | 12.7 | 9.1 | < | | | | | 18 | 9.9 | 10.9 | 7,1 | 66 | 4.1 | 15 | 18 | 12.7 | 9.0 | 7.3 | 72 | 2.2 | 30 | | 19 | 9,3 | 10.9 | | | | | 19 | 11.9 | 9.1 | | | | | | 20 | 8.9 | 10.9 | | | | | 20 | 11.6 | 9.1 | | | | | | 21 | 8.5 | 10.9 | 7.1 | 68 | 3.4 | - | 21 | 11.4 | 9.1 | 7.1 | 72 | 2.2 | - | | 22 | 8.5 | 10.9 | | | | | 22 | 11.3 | 9.1 | | | | | | 23 | 8.3 | 10.9 | | | | | 23 | 11.1 | 9.0 | | | | | | 24 | 8.2 | 10.8 | 7.1 | 71 | 4.1 | 23 | 24 | 11.0 | 9.0 | 7.1 | 72 | 2.6 | 28 | | 25 | 8.1 | 10.8 | | | | | 25 | 10.9 | 9.1 | | | | | | 26 | 8.0 | 10.8 | | | | | 26 | 10.7 | 9.2 | | | | | | 27 | 8.0 | 10.8 | 7.1 | 69 | 3.2 | - | 27 | 10.5 | 9.2 | 7.1 | 74 | 2.8 | - | | 28 | 8.0 | 10.8 | | | | | 28 | 10.3 | 9.2 | | | | | | 29 | 7.9 | 10.8 | | | | | 29 | 10.2 | 9.2 | | | | | | 30 | 7.9 | 10.8 | 7.1 | 71 | 5.0 | 26 | 30 | 10.1 | 9.3 | 7.1 | 76 | 3.1 | 30 | | 31 | 7.9 | 10.8 | | | | | 31 | 10.0 | 9.3 | | | | | | 32 | 7.9 | 10.8 | | | | | 32 | 10.0 | 9.3 | | | | | | 33 | 7.9 | 10.8 | 7.1 | 72 | 4.2 | - | 33 | 10.0 | 9.3 | 7.1 | 77 | 3.4 | - | | 34 | 7.8 | 10.8 | | | | | 34 | 9.9 | 9.3 | | | | | | 35 | 7.8 | 10.8 | | | | | 35 | 9.9 | 9.3 | | | | | | 36 | 7.8 | 10.8 | 7.1 | 73 | 4.1 | 29 | 36 | 9.8 | 9.3 | 7.1 | 75 | 3.3 | 30 | | 37 | 7.7 | 10.8 | | | | | 37 | 9.6 | 9.3 | | | | | | 38 | 7.7 | 10.8 | | | | | 38 | 9.4 | 9.3 | | | | | | 39 | 7.7 | 10.8 | 7.1 | 71 | 4.4 | - | 39 | 9.3 | 9.4 | 7.1 | 76 | 4.2 | - | | 40 | 7.7 | 10.8 | | • | | | 40 | 9.2 | 9.4 | | | | | | 41 | 7.7 | 10.8 | | | | | 41 | 9.1 | 9.4 | | | | | | 42 | 7.6 | 10.8 | 7.1 | 80 | 5.4 | 32 | 42 | 9.1 | 9.4 | 7.1 | 77 | 4.3 | 32 | | 43 | - | - | Bot | | | | 43 | 9.1 | 9.3 | | | | | | . = | | | | | | | 44 | 9.1 | 9.3 | | | | | | | | | | | | | 44.3 | - | - | Bot | tom | | | | July 28, | | | | cchi : | | | August 2 | 25, 1983 @ | 1130 1 | Hrs. | Secchi | | nlet | |----------|-----------|------|-------|--------|-------|------|----------|------------|--------|--------------|-----------------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.0 | . pH | E.C. | Turb. | A. | | Surf. | 25.0 | 8.0 | 7.7 | 89 | 1.6 | 39 | Surf. | 24.4 | 7.9 | 7.7 | 96 | 0.8 | | | 1 | 25.0 | 8.0 | | • • • | | | 1 | 24.3 | 7.9 | /./ | 90 | 0.0 | • | | 2 | 24.5 | 8.0 | | | | | 2 | 24.3 | 7.9 | | | | | | 3 | 24.2 | 8.0 | 7.7 | 90 | 1.6 | 38 | 3 | 24.1 | 7.9 | 7.6 | 96 | 0.8 | | | 4 | 23.8 | 8.0 | | | | | 4 | 24.0 | 7.9 | ,.0 | 90 | 0.8 | | | 5 | 23.5 | 8.0 | | | | | 5 | 24.0 | 7.8 | | | | | | 6 | 23.4 | 8.0 | 7.6 | 90 | 1.3 | _ | 6 | 23.9 | 7.8 | 7.5 | 96 | 0.8 | | | 7 | 23.0 | 7.9 | | | | | 7 | 23.8 | 7.8 | 7.5 | 20 | 0.0 | | | 8 | 22.7 | 7.9 | | | | | 8 | 23.7 | 7.7 | | | | | | 9 | 21.0 | 7.6 | 7.4 | 90 | 1.6 | - | 9 | 23.5 | 7.6 | 7.3 | 98 | 0.9 | | | 10 | 18.9 | 7.4 | | | | | 10 | 22.5 | 7.4 | ,., | 30 | 0.9 | • | | 11 | 17.9 | 7.2 | | | | | 11 | 19.5 | 6.7 | | | | | | 12 | 16.8 | 7.4 | 7.3 | 104 | 1.8 | 46 | 12 | 18.8 | 6.6 | 7.3 | 108 | 0.9 | | | 13 | 16.5 | 7.4 | | | | | 13 | 18.1 | 6.2 | ,., | 100 | 0.5 | | | 14 | 16.2 | 7.4 | | | | | 14 | 17.7 | 6.4 | | | | | | 15 | 16.0 | 7.4 | 7.3 | 102 | 1.9 | _ | 15 | 17.4 | 6.5 | 7.2 | 112 | 1.1 | | | 16 | 15.8 | 7.3 | | | - • • | | 16 | 17.0 | 6.4 | 7.2 | 112 | 1.1 | | | 17 | 15.5 | 7.4 | | | | | 17 | 16.8 | 6.3 | | | | | | 18 | 15.3 | 7.4 | 7.3 | 102 | 1.9 | _ | 18 | 16.5 | 6.0 | 7.1 | 110 | 1.5 | | | 19 | 15.0 | 7.4 | | | | | 19 | 16.4 | 6.2 | | 110 | 1.5 | • | | 20 | 14.8 | 7.4 | | | | | 20 | 16.1 | 6.2 | | | | | | 21 | 14.5 | 7.4 | 7.3 | 98 | 2.1 | 41 | 21 | 16.1 | 6.2 | 7.1 | 110 | 1.3 | | | 22 | 14.3 | 7.5 | | | | | 22 | 15.9 | 6.3 | / . L | 110 | 1.3 | • | | 23 | 14.0 | 7.6 | | | | | 23 | 15.5 | 6.3 | | | | | | 24 | 13.7 | 7.6 | 7.3 | 90 | 2.4 | _ | 24 | 15.4 | 6.7 | 7.1 | 107 | 1.5 | | | 25 | 13.2 | 7.7 | | | | | 25 | 15.2 | 6.9 | /.1 | 107 | 1.3 | - | | 26 | 13.1 | 7.8 | | | | | 26 | 15.0 | 6.9 | | | | | | 27 | 13.0 | 7.7 | 7.3 | 86 | 2.4 | _ | 27 | 14.9 | 7.1 | 7.1 | 104 | 1.5 | | | 28 | 12.8 | 7.7 | | | | | 28 | 14.6 | 7.2 | , . 1 | 104 | 1.5 | 2 | | 29 | 12.4 | 7.9 | | | | | 29 | 14.5 | 7.0 | | | | | | 30 | 12.2 | 7.9 | 7.3 | 81 | 2.7 | 32 | 30 | 14.2 | 7.0 | 7.1 | 100 | 1.5 | | | 31 | 12.0 | 8.0 | | | | J. | 31 | 14.0 | 6.8 | 7.1 | 100 | 1.3 | | | 32 | 11.9 | 8.1 | | | | | 32 | 13.7 | 7.1 | | | | | | 33 | 11.8 | | 7.3 | 79 | 2.8 | - | 33 | 13.4 | 7.3 | 7.1 | 93 | 1.7 | | | 34 | 11.6 | 8.2 | | | | | 34 | 13.2 | 7.1 | , , 1 | 93 | 1.7 | _ | | 35 | 11.4 | 8.2 | | | | | 35 | 12.9 | 7.2 | | | | | | 36 | 11.3 | 8.1 | 7.3 | 80 | 3.0 | 32 | 36 | 12.6 | 7.6 | 7.1 | 88 | 1.5 | 3 | | 37 | 11.2 | 8.1 | | | | | 37 | 12.4 | 7.6 | , . <u>.</u> | 00 | 1.3 | - | | 38 | 11.1 | 8.1 | | | | | 38 | 12.3 | 7.4 | | | | | | 39 | 11.0 | 8.2 | 7.3 | 81 | 3.1 | - | 39 | 12.1 | | 7.1 | 84 | 1.3 | _ | | 40 | 10.9 | 8.2 | | | • | | 40 | 11.9 | 7.7 | , | Q <del>-4</del> | 1.3 | _ | | 41 | 10.8 | 8.2 | | | | | 41 | 11.8 | 7.8 | | | | | | 42 | 10.8 | 8.3 | 7.3 | 82 | 3.6 | 31 | 42 | 11.8 | 7.8 | 7.1 | 84 | 1.9 | _ | | 43 | 10.8 | 8.4 | | | | | 43 | 11.8 | 7.9 | , , , | 04 | 1.7 | _ | | 44 | 10.7 | 8.4 | | | | | 44 | 11.7 | 7.8 | | | | | | 45 | 10.6 | 8.4 | 7.3 | 82 | 9.4 | _ | 45 | 11.7 | 7.8 | 7.1 | 84 | 2.6 | ∴3 | | 46 | 10.6 | 8.4 | | | | | 45.8 | - | - | Botte | | 4.0 | , 2 | | 47 | 10.6 | 8.4 | | | | | | | | BOLL | J.18 | | | | 48 | 10.2 | | 7.3 | 82 | 7.1 | 31 | | | • | | | | | | 49 | - | _ ' | Botto | | | | | | 100 | | , | | | | | | | | | | | • | | | | | | | | Sta. A2L 044.3 227.3 Little Squaw Creek Inlet Sta. A2L 044.3 227.3 Little Squaw Creek Inlet | | | | | | | | | | | let | | | |---------------------------------------------------------------------------------------------|------------|-------|-------|--------|-------|------|----------|------------|------|------|-------|--------|------| | | , 1983 @ 1 | 200 H | rs. | Secchi | 5.3m | | | 27, 1983 @ | | | Secch | i 3.7m | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | _ | | | | | | | | | | | | | | | Surf. | 20.2 | 8.2 | 7.6 | 105 | 0.4 | 43 | Surf. | 17.7 | 8.2 | 7.3 | 108 | 1.0 | 46 | | 1 | 20.2 | 8.2 | | | | | 1 | 17.7 | 8.1 | | | | | | 2 | 20.2 | 8.2 | | | | | 2 | 17.7 | 8.1 | | | | | | 3 | 20.0 | 8.2 | 7.5 | 105 | 0.5 | - | 3 | 17.7 | 8.1 | 7.3 | 107 | 1,1 | _ | | 4 | 20.0 | 8.2 | | | | | 4 | 17.7 | 8.1 | | | | | | 5<br>6 | 20.0 | 8.1 | | | | | 5 | 17.7 | 8.1 | | | | | | 6 | 20.0 | | 7.5 | 105 | 0.5 | _ | 6 | 17.7 | 8.1 | 7.3 | 108 | 1.2 | - | | 7 | 20.0 | 8.1 | | | | | 7 | 17.7 | 8.1 | | | | | | 8 | 19.9 | 8.1 | | | | | 8 | 17.7 | 8.0 | | | | | | 9 | 19.9 | 8.1 | 7.5 | 105 | 0.5 | 44 | 9 | 17.7 | 8.0 | 7.3 | 108 | 0.9 | 47 | | 10 | 19.9 | 8.0 | | | | | 10 | 17.7 | 8.0 | | | | | | 11 | 19.9 | 7.9 | | | | | 11 | 17.7 | 8.0 | | | | | | 12 | 19.8 | 7.8 | 7.4 | 106 | 0.6 | - | 12 | 17.7 | 8.0 | 7.3 | 108 | 1.3 | - | | 13 | 19.8 | 7.8 | | | | | 13 | 17.7 | 8.0 | | | | | | 14 | 19.8 | 7.7 | | | | | 14 | 17.7 | 8.0 | | | | | | 15 | 19.4 | 7.5 | 7.2 | 107 | 1.1 | - | 15 | 17.7 | 8.0 | 7.3 | 108 | 1.4 | - | | 16 | 17.9 | 5.2 | | | | | 16 | 17.7 | 8.0 | | | | | | 17 | 17.3 | 5.1 | | | | | 17 | 17.7 | 8.0 | | | | | | 18 | 17.1 | 5.1 | 7.1 | 116 | 1.1 | 52 | 18 | 17.6 | 8.0 | 7.2 | 115 | 1.4 | 46 | | 19 | 16.9 | 5.1 | | | | | 19 | 17.5 | 8.0 | | | | | | 20 | 16.7 | 5.2 | | | | | 20 | 17.2 | 7.5 | | | | | | 21 | 16.5 | 5.3 | 7.1 | 116 | 0.9 | | 21 | 16.1 | 5.2 | 7.0 | 114 | 1.9 | - | | 22 | 16.4 | 5.3 | | | | | 22 | 16.0 | 5.1 | | | | | | 23 | 16,2 | 5.3 | | | | | 23 | 15.9 | 5.3 | | | | | | 24 | 16.2 | 5.3 | 7.1 | 115 | 1.2 | - | 24 | 15.9 | 5.2 | 7.0 | 113 | 2.0 | - | | 25 | 16.1 | 5.6 | | | | | 25 | 15.9 | 5.3 | | | | | | 26 | 16.0 | 5.8 | | | | | 26 | 15.8 | 5.3 | | | | | | 27 | 16.0 | 5.8 | 7.1 | 114 | 2.5 | 51 | 27 | 15.7 | 5.0 | 6.9 | 113 | 2.1 | 50 | | 28 | 15.8 | 5.5 | | | | | 28 | 15.6 | 4.8 | | | | | | 29 | 15.8 | 5.3 | | | | | 29 | 15.4 | 5.1 | | | | | | 30 | 15.7 | 5.3 | 7.0 | 113 | 1.6 | - | 30 | 15.2 | 5.5 | 6.9 | 111 | 1.8 | - | | 31 | 15.6 | 5.3 | • • • | | - • - | | 31 | 15.1 | 5.4 | | | | | | 32 | 15.4 | 5.6 | | | | | 32 | 15.0 | 5.6 | 6.9 | 109 | 2.0 | 49 | | 33 | 15.3 | 5.7 | 7.1 | 111 | 1.9 | 57 | 33 | 15.0 | 5.6 | | | | | | 34 | 14.8 | 5.5 | | | | • | 33.1 | - | - | Bott | Om. | | | | 34.3 | - | - | Bott | om | | | 23.1 | | | 2000 | | | | | | | | | | | | | | | | | | | | ta. A2L 044.3 227.3 Little Squaw Creek Inlet | | | | | | Sta. A2L 044.3 227.3 Little Squaw Creek Inlet | | | | | | | | |----------------------------------------------|-----------|------|------|-------|---------|-----------------------------------------------|----------|------------|------|------|------|--------|------| | ecember | 5, 1983 @ | 1400 | Hrs. | Secci | ni 4.4m | | January | 25, 1984 @ | 1230 | Hrs. | | i 4.0m | | | epth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | urf. | 12.2 | 9.2 | 7.3 | 105 | 1.5 | 45 | Surf. | 10.1 | 10,4 | 7.3 | 94 | 1.5 | 39 | | 1 | 12.7 | 9.1 | | | | | 1 | 9.8 | 10.4 | | | | | | 2 | 12.7 | 9.0 | | | | | 2 | 9.6 | 10.4 | | | | | | 3 | 12.7 | 9.0 | 7.3 | 105 | 1.6 | - | 3 | 9.4 | 10.4 | 7.3 | 96 | 1.6 | - | | 4 | 12.7 | 9.0 | | | | | 4 | 9.4 | 10.4 | | | | | | 5 | 12.7 | 9.0 | | | | | 5 | 9.4 | 10.4 | | | | | | 6 | 12.7 | 9.0 | 7.3 | 104 | 1.6 | - | 6 | 9.5 | 10.4 | 7.3 | 97 | 1.5 | - | | 7 | 12.7 | 9.0 | | | | | 7 | 9.5 | 10.4 | | | | | | 8 | 12.7 | 9.0 | | | | | 8 | 9.5 | 10.4 | | | | | | 9 | 12.7 | 9.0 | 7.3 | 104 | 1.7 | 45 | 9 | 9.5 | 10,4 | 7.2 | 97 | 1.3 | 41 | | 10 | 12.7 | 9.0 | | | | | 10 | 9.5 | 10.4 | | | | | | 11 | 12.7 | 9.0 | | | | | 11 | 9.5 | 10.4 | | | | | | 12 | 12.7 | 9.0 | 7.3 | 104 | 1.6 | - | 12 | 9.5 | 10.4 | 7.2 | 97 | 1.7 | - | | 13 | 12.7 | 9.0 | | | | | 13 | 9.5 | 10.4 | | | | | | 14 | 12.7 | 9.0 | | | | | 14 | 9.5 | 10.4 | | | | | | 15 | 12.7 | 9.0 | 7.3 | 104 | 1.7 | - | 15 | 9.5 | 10.4 | 7.2 | 97 | 1.6 | - | | 16 | 12.7 | 9.0 | | | | | 16 | 9.5 | 10.4 | | | | | | 17 | 12.7 | 9.0 | | | | | 17 | 9.5 | 10.4 | ď. | | | | | 18 | 12.7 | 9.0 | 7.3 | 104 | 1.7 | 46 | 18 | 9.5 | 10.4 | 7.2 | 97 | 1.6 | 42 | | 19 | 12.7 | 9.0 | | | | | 19 | 9.5 | 10.4 | | | | | | 20 | 12.7 | 9.0 | | | | | 20 | 9.5 | 10.4 | .* | | | | | 21 | 12.7 | 9.0 | 7.3 | 104 | 1.5 | - | 21 | 9.5 | 10.4 | 7.2 | 96 | 1.9 | _ | | 22 | 12.7 | 9.0 | | | | | 22 | 9.4 | 10.4 | | | | | | 23 | 12.7 | 9.0 | | | | | 23 | 9.4 | 10.4 | | | | | | 24 | 12.7 | 9.0 | 7.3 | 104 | 1.9 | - | 24 | 9.4 | 10.4 | 7.2 | 96 | 1.8 | - | | 25 | 12.6 | 9.0 | | | | | 25 | 9.3 | 10.4 | | | | | | 26 | 12.4 | 9.1 | | | | | 26 | 9.3 | 10.4 | | | | | | 27 | 12.3 | 9.1 | 7.3 | 104 | 1.9 | 44 | 27 | 9.2 | 10.4 | 7.2 | 95 | 1.7 | 39 | | 28 | 12.3 | 9.1 | • - | | | | 28 | 9.2 | 10.4 | | | | | | 29 | 12.2 | 9.2 | | | | | 29 | 9.2 | 10.5 | | | | | | 30 | 12.2 | 9.2 | 7.3 | 103 | 2.2 | _ | 30 | 9.2 | 10.5 | 7.2 | 94 | 2.0 | - | | 31 | 12.1 | 9.2 | | | | | 31 | 9.2 | 10.5 | 7.2 | 94 | 2.0 | 38 | | 32 | 12.0 | 9.3 | 7.3 | 102 | 2.6 | 42 | 32 | 9.1 | 10.5 | | | | | | 32.5 | _ | _ | Bott | | | | 32.5 | - | - | Bott | com | | | | February | | | Hrs. | Secc | hi - | | April 4, | 1984 @ 12 | 00 Hrs | . Se | cchi 3 | .9m | | |----------|----------|--------|-------|------|-------|------|----------|-----------|--------|-------|--------|-------|-----| | Depth(m) | Temp.(°C | ) D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Al | | Surf. | 9.2 | 11.3 | 7.4 | 95 | 1.5 | 41 | Surf. | 13.2 | 10.9 | 7.8 | 98 | 1.5 | 4 | | 1 | 9.2 | 11.3 | , | ,, | 1.5 | 71 | 1 | 13.2 | 10.9 | 7.0 | 70 | 1.5 | 4 | | 2 | 9.0 | 11.3 | | | | | 2 | 12.8 | 10.9 | | | | | | 3 | 9.0 | 11.2 | 7.3 | 95 | 1.5 | 44 | 3 | 12.5 | 10.9 | 7.8 | 99 | 1.5 | | | 4 | 9.0 | 11,2 | | 75 | 1.5 | 77 | 4 | 12.3 | 11.0 | 7.0 | 77 | 1.5 | - | | 5 | 9.0 | 11.2 | | | | | 5 | 12.0 | 11.0 | | | | | | 6 | 9.0 | 11.2 | 7.3 | 94 | 1.5 | _ | 6 | 12.0 | 11.0 | 7.8 | 99 | 1.5 | | | 7 | 9.0 | 11.0 | | | 22 | | 7 | 11.8 | 11.0 | | 23 | 1.5 | _ | | 8 | 9.0 | 11.0 | | | | | 8 | 11.7 | 11.0 | | | | | | 9 | 9.0 | 10.9 | 7.3 | 95 | 1.6 | _ | 9 | 11.6 | 11.0 | 7.7 | 98 | 1.5 | 4 | | 10 | 8.9 | 10.8 | | | | | 10 | 11.5 | 11.0 | , . , | 70 | 1.5 | 4 | | 11 | 8.9 | 10.8 | | | | | 11 | 11.4 | 10.9 | | | | | | 12 | 8.9 | 10.8 | 7.3 | 94 | 1.5 | 40 | 12 | 11.3 | 10.9 | 7.7 | 98 | 1.5 | _ | | 13 | 8.9 | 10.8 | | | | ,,, | 13 | 11.3 | 10.9 | , . , | 70 | 1.5 | | | 14 | 8.9 | 10.8 | | | | | 14 | 11.2 | 10.8 | | | | | | 15 | 8.8 | 10.7 | 7.3 | 95 | 1.5 | _ | 15 | 11.2 | 10.8 | 7.4 | 94 | 2.9 | 3 | | 16 | 8.8 | 10.7 | | | | | 16 | 11.1 | 10.8 | | | , | , | | 17 | 8.8 | 10.7 | | | | | 17 | 10.9 | 10.7* | | | | | | 18 | 8.8 | 10.7 | 7.3 | 95 | 1.7 | _ | 18 | 10.5 | 10.7 | | 88 | 5.2 | 1.5 | | 19 | 8.8 | 10.7 | | | | | 19 | 9.6 | 10.6 | , | 0.0 | J | • | | 20 | 8.8 | 10.7 | | | | | 20 | 9.2 | 10.6 | | | | | | 21 | 8.8 | 10.7 | 7.3 | 95 | 1.7 | 40 | 21 | 9.0 | 10.6 | | 96 | 1.6 | 3 | | 22 | 8.8 | 10.7 | | | | | 22 | 8.9 | 10.6 | | ,, | | • | | 23 | 8.8 | 10.7 | | | | | 23 | 8.9 | 10.6 | | | | | | 24 | 8.8 | 10.7 | 7.3 | 95 | 1.6 | _ | 24 | 8.8 | 10.6 | 7.3 | 97 | 1.5 | 3 | | 25 | 8.8 | 10.7 | | | | | 25 | 8.8 | 10.6 | | • | | - | | 26 | 8.8 | 10.8 | | | | | 26 | 8.8 | 10.6 | | | | | | 27 | 8.8 | 10.8 | 7.3 | 95 | 1.8 | 39 | 27 | 8.8 | 10.6 | 7.3 | 97 | 1.4 | _ | | 28 | 8.7 | 10.8 | | | | | 28 | 8,7 | 10.6 | | | | | | 29 | 8.7 | 10.8 | | | | | 29 | 8.7 | 10.6 | | | | | | 30 | 8.7 | 10.8 | 7.2 | 91 | 3.6 | - | 30 | 8.7 | 10.6 | 7.3 | 98 | 1.5 | _ | | 31 | 8.6 | 10.8 | | | | | 31 | 8.7 | 10.6 | | | | | | 32 | 8.6 | 10.9 | | | | | 32 | 8.6 | 10.5 | | | | | | 33 | 8.5 | 10.8 | | | | | 33 | 8.6 | 10.5 | | | | | | 34 | 8.3 | 10.8 | | | | | 34 | 8.6 | 10.5 | | | | | | 35 | 8.0 | 10.5 | 7.2 | 96 | 3.2 | 39 | 35 | 8.5 | 10.5 | 7.3 | 99 | 2.1 | 44 | | 36 | 7.8 | 10.5 | | | | | 36 | 8.4 | 10.4 | ••• | | | • | | 37 | 7.8 | 10.4 | | | | | 37 | 8.4 | 10.4 | Bott | om | | | | 37.5 | _ | - | Botte | om. | | | | | - • | | | | | | | 044.3 227 | | | | | ılet_ | Sta. A2I | 044.3 227. | 3 Lit | ittle Squaw Creek Inlet | | | | | | | | |----------|------------|------|------|--------|-------|-------|----------|-------------|-------|-------------------------|--------|-------|------|--|--|--|--| | | 984 @ 1100 | | | hi 5.7 | | | June 8, | 1984 @ 0815 | | Sec | chi 5. | .Om | | | | | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рĦ | E.C. | Turb. | Alk. | | | | | | Surf. | 15.0 | 10.0 | 7.5 | 97 | 1.4 | 40 | Surf. | 18.5 | 9.0 | 7.3 | 100 | 1.0 | 40 | | | | | | 1 | 15.0 | 9.9 | | | | | 1 | 18.3 | 9.0 | | | | | | | | | | 2 | 15.0 | 9.9 | | | | | 2 | 18.3 | 9.1 | | | | | | | | | | 3 | 15.0 | 9.9 | 7.5 | 98 | 1.5 | - | 3 | 18.3 | 9.1 | 7.3 | 98 | 1.0 | _ | | | | | | 4 | 14.5 | 10.0 | | | | | 4 | 18,2 | 9.1 | | | | | | | | | | 5 | 14.2 | 9.9 | | | | | 5 | 18.2 | 9.1 | | | | | | | | | | 6 | 14.0 | 9.9 | 7.4 | 98 | 1.4 | - | 6 | 18.2 | 9.1 | 7.3 | 98 | 1.0 | _ | | | | | | 7 | 13.9 | 9.9 | | | | | 7 | 18.2 | 9.1 | | ,,, | 1.0 | | | | | | | 8 | 13.8 | 9.8 | | | | | 8 | 18.2 | 9.1 | | | | | | | | | | 9 | 13.7 | 9.8 | 7.3 | 98 | 1.5 | 41 | 9 | 18.0 | 9.1 | 7.3 | 98 | 1.0 | 41 | | | | | | 10 | 13.7 | 9.8 | | | | | 10 | 18.0 | 9.1 | | ,,, | | '- | | | | | | 11 | 13.6 | 9.7 | | | | | 11 | 18.0 | 9.1 | | | | | | | | | | 12 | 13.4 | 9.7 | 7.3 | 98 | 1.7 | _ | 12 | 18.0 | 9.1 | 7.3 | 98 | 1.0 | _ | | | | | | 13 | 12.8 | 9.7 | | | -•- | | 13 | 17.5 | 9.1 | | ,, | 2.0 | | | | | | | 14 | 12.4 | 9.6 | | | | | 14 | 17.0 | 9.2 | | | | | | | | | | 15 | 12.2 | 9.6 | 7.2 | 98 | 1.7 | _ | 15 | 16.2 | 9.2 | 7.3 | 97 | 1.5 | _ | | | | | | 16 | 11.9 | 9.6 | | | | | 16 | 15.2 | 9.4 | | | 1.3 | | | | | | | 17 | 11.8 | 9.6 | | | | | 17 | 14.3 | 9.3 | | | | | | | | | | 18 | 11.6 | 9.6 | 7.2 | 100 | 2.0 | 36 | 18 | 13.7 | 9.4 | 7.2 | 98 | 1.1 | 42 | | | | | | 19 | 11.5 | 9.6 | | | | •• | 19 | 13.3 | 9.4. | | ,, | | 7- | | | | | | 20 | 11.2 | 9.6 | | | | | 20 | 13.1 | 9.4 | | | | | | | | | | 21 | 11.1 | 9.6 | 7.2 | 100 | 2.0 | 37 | 21 | 12.6 | 9,3 | 7.2 | 99 | 1.0 | _ | | | | | | 22 | 10.7 | 9.6 | | | | | 22 | 12.4 | 9.3 | | | | | | | | | | 23 | 10.2 | 9.6 | | | | | 23 | 12,2 | 9.3 | | | | | | | | | | 24 | 9.8 | 9.6 | 7.2 | 101 | 2.4 | - | 24 | 12.1 | 9.2 | 7.2 | 100 | 1.0 | _ | | | | | | 25 | 9.6 | 9.6 | | | | | 25 | 11.9 | 9.1 | | | | | | | | | | 26 | 9.4 | 9.6 | | | | | 26 | 11.6 | 9.1 | | | | | | | | | | 27 | 9.3 | 9.6 | 7.2 | 101 | 2.0 | | 27 | 11.4 | 9.1 | 7.2 | 101 | 1.0 | 42 | | | | | | 28 | 9.2 | 9.6 | | | | | 28 | 11.1 | 9.1 | | | | | | | | | | 29 | 9.2 | 9.6 | | | | | 29 | 10.9 | 9.1 | | | | | | | | | | 30 | 9.1 | 9.7 | 7.2 | 100 | 1.7 | 40 | 30 | 10.8 | 9.2 | 7,2 | 102 | 1.2 | _ | | | | | | 31 | 9.0 | 9.7 | | | | | 31 | 10.7 | 9.2 | | | | | | | | | | 32 | 9.0 | 9.7 | | | | | 32 | 10.5 | 9.2 | | | | | | | | | | 33 | 9.0 | 9.7 | | | | | 33 | 10.3 | 9.2 | | | | | | | | | | 34 | 9.0 | 9.7 | | | | | 34 | 10,2 | 9.2 | | | | | | | | | | 35 | 8.9 | 9.7 | 7.2 | 100 | 1.5 | _ | 35 | 10.0 | 9.2 | 7.2 | 102 | 1.2 | _ | | | | | | 36 | 8.9 | 9.7 | | | | | 36 | 9.9 | 9.2 | | | | | | | | | | 37 | 8.9 | 9.6 | | | | | 37 | 9.8 | 9.3 | | | | | | | | | | 38 | 8.9 | 9.6 | | | | | 38 | 9.7 | 9.3 | | | | | | | | | | 39 | 8.9 | 9.6 | | | | | 39 | 9.5 | 9.3 | | | | | | | | | | 40 | 8.9 | 9.6 | 7.2 | 101 | 1.5 | 40 | 40 | 9.3 | 9.3 | 7.2 | 100 | 1.2 | 42 | | | | | | 41 | 8.8 | 9.6 | | | | | 41 | 9.2 | 9.3 | | | | | | | | | | 42 | 8.8 | 9.6 | | | | | 42 | 9.2 | 9.2 | Bott | om | | | | | | | | 42.5 | - | _ | Bott | om | | | _ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 044.3 227. | | | | | | 044.3 227. | | | | | let | | |----------|--------------|------|-------|--------|-------|------|------------|-------------|------|-----|--------|-------|------| | July 12, | | | | cchi 4 | | | | 5, 1984 @ 0 | | | Secchi | | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 26.0 | 7.6 | 7.6 | 103 | 1.0 | 45 | Surf. | 25.3 | 7.7 | 7.5 | 110 | 1.5 | 44 | | 1 | 25.9 | 7.6 | | | | | 1 | 25.2 | 7.7 | | | | | | 2 | 25.9 | 7.6 | | | | | 2 | 25.2 | 7.6 | | | | | | 3 | 25.9 | 7.6 | 7.5 | 103 | 0.9 | - | 3 | 25.2 | 7.5 | 7.4 | 107 | 1.3 | - | | 4 | 25.7 | 7.7 | | | | | 4 | 25.2 | 7.0 | | | | | | 5<br>6 | 25.7 | 7.7 | | | | | 5 | 25.2 | 6.6 | | | | | | | 25.6 | 7.7 | 7.5 | 102 | 0.6 | - | 6 | 25.2 | 6.1 | 7.3 | 107 | 1.1 | - | | 7 | 25.4 | 7.7 | | | | | 7 | 25.2 | 5.7 | | | | | | 8 | 25,2 | 7.6 | | | | | 8 | 25.2 | 5.6 | | | | | | 9 | 24.7 | 7.5 | 7.1 | 105 | 1.1 | 36 | 9 | 25.0 | 4.8 | 7.3 | 107 | 1.1 | 44 | | 10 | 23.1 | 7.8 | | | | | 10 | 24.2 | 4.4 | | | | | | 11 | 21.6 | 8.0 | | | | | 11 | 21.7 | 4.2 | | | | | | 12 | 20.7 | 8.1 | 7.3 | 101 | 1.0 | - | 12 | 20.6 | 4.0 | 7.2 | 107 | 1.2 | - | | 13 | 19.5 | 8.2 | | | | | 13 | 20.0 | 3.8 | | | | | | 14 | 18.3 | 8.0 | | | | | 14 | 19.6 | 3.6 | | | | | | 15 | 18.0 | 8.0 | 7.3 | 102 | 1.1 | - | 15 | 19.2 | 3.5 | 7.2 | 108 | 1.5 | - | | 16 | 17.2 | 8.0 | | | | | 16 | 18.8 | 3.3 | | | | | | 17 | 16.6 | 7.8 | | | | | 17 | 18.6 | 3.3 | | | | | | 18 | 16.1 | 7.8 | 7.2 | 106 | 1.3 | 47 | 18 | 18.2 | 3.2 | 7.1 | 108 | 1.5 | 46 | | 19 | 15.7 | 7.9 | | | | | 19 | 17.9 | 3.1 | | | | | | 20 | 15.4 | 8,1 | | | | | 20 | 17.7 | 3.0 | | | | | | 21 | 15.2 | 8.1 | 7.2 | 107 | 1.0 | _ | 21 | 17.1 | 3.1 | 7.1 | 108 | 1.5 | - | | 22 | 15.0 | 8.1 | | | | | 22 | 16.8 | 3.1 | | | | | | 23 | 14.8 | 8.1 | | | | | 23 | 16.7 | 3.1 | | | | | | 24 | 14.4 | 8.3 | 7.2 | 105 | 0.8 | _ | 24 | 16.3 | 3.0 | 7.0 | 109 | 1.6 | 46 | | 25 | 14.1 | 8.4 | . • - | | | | 25 | 16.1 | 3.0 | | | | | | 26 | 13.8 | 8.2 | | | | | 26 | 15.8 | 2.8 | | | | | | 27 | 13,5 | 8.2 | 7.2 | 103 | 0.8 | 46 | 27 | 15.5 | 2.8 | 7.0 | 111 | 1.9 | - | | 28 | 13.1 | 8.3 | | | | - | 28 | 15.2 | 2.9 | | | | | | 29 | 12.9 | 8.2 | | | | | 29 | 15.0 | 3.0 | | | | | | 30 | 12.4 | 8.3 | 7.2 | 101 | 0.9 | _ | 30 | 14.6 | 3.1 | 7.0 | 111 | 1.5 | 47 | | 31 | 12.2 | 8.3 | , | 101 | 0., | | 31 | 14.3 | 3.1 | | | | | | 32 | 11.6 | 8.4 | | | | | 31.5 | 14.0 | 3.1 | Bot | tom | | | | 33 | 11.3 | 8,5 | | | | | 31.3 | 14.0 | 0.1 | 00- | | | | | 33<br>34 | 11.1 | 8.6 | | | | | | | | | | | | | 35 | 11.0 | 8.7 | 7.2 | 104 | 1.4 | 47 | | | | | | | | | | | 8.7 | 1.2 | :04 | 1.4 | 47 | | | | | | | | | 36<br>37 | 10.9<br>10.8 | | Bot | | | | | | | | | | | | 3/ | 10.8 | 0./ | BOE | LOUI | | | | | | | | | | | | 044.3 227. | | | | | | | 044.3 227. | | | | 1 | | | | | | | |-----------|------------|-------|-------|-------|---------|------|------------------------------------------|------------|---------|------|-------|------|--|--|--|--|--|--| | September | r 10, 1984 | @ 090 | ) Hrs | . Sec | chi 5.1 | m | October 18, 1984 @ 1100 Hrs. Secchi 5.7m | | | | | | | | | | | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. pH | E.C. | Turb. | Alk. | | | | | | | | | | | | | | | | | | | | | | | | | | | | Surf. | 23.5 | 7.8 | 7.6 | 115 | 0.6 | 48 | Surf. | 17.8 | 8.3 7.3 | 126 | 1,4 | 51 | | | | | | | | 1 | 23.5 | 7.8 | | | | | 1 | 17.8 | 8.3 | | | | | | | | | | | 2 | 23.4 | 7.7 | | | | | 2 | 17.8 | 8.3 | | | | | | | | | | | 3 | 23.4 | 7.6 | 7.5 | 115 | 0.9 | - | 3 | 17.8 | 8.3 7.3 | 124 | 1.1 | - | | | | | | | | 4 | 23.4 | 7.5 | | | | | 4 | 17.8 | 8.3 | | | | | | | | | | | 5 | 23.3 | 7.4 | | | | | 5 | 17.8 | 8.2 | | | | | | | | | | | 6 | 23.2 | 7.4 | 7.5 | 115 | 0.9 | - | 6 | 17.8 | 8.2 7.3 | 124 | 0.9 | - | | | | | | | | 7 | 23.1 | 7.3 | | | | | 7 | 17.8 | 8.2 | | | | | | | | | | | 8 | 23.1 | 7.3 | | | | | 8 | 17.8 | 8.2 | | | | | | | | | | | 9 | 23.0 | 7.2 | 7.4 | 115 | 0.9 | 47 | 9 | 17.8 | 8.2 7.3 | 125 | 0.8 | 52 | | | | | | | | 10 | 23.0 | 7.2 | | | | | 10 | 17.8 | 8.2 | | | | | | | | | | | 11 | 23.0 | 7.1 | | | | | 11 | 17.8 | 8.2 | | | | | | | | | | | 12 | 22.0 | 6.4 | 7.2 | 117 | 1.5 | - | 12 | 17.8 | 8.2 7.3 | 125 | 0.6 | - | | | | | | | | 13 | 21.4 | 6.2 | | | | | 13 | 17.8 | 8.2 | | | | | | | | | | | 14 | 19.9 | 5.7 | | | | | 14 | 17.8 | 8.1 | | | | | | | | | | | 15 | 19.3 | 5.7 | 7.2 | 118 | 0.8 | - | 15 | 17.8 | 8.1 7.3 | 125 | 0.8 | - | | | | | | | | 16 | 19.1 | 5.6 | | | | | 16 | 17.8 | 8.1 | | | | | | | | | | | 17 | 19.0 | 5.4 | | | | | 17 | 17.8 | 8. k | | | | | | | | | | | 18 | 18.8 | 5.1 | 7.1 | 117 | 0.9 | 50 | 18 | 17.8 | 8.1 7.3 | 125 | 1.0 | 54 | | | | | | | | 19 | 18.5 | 5.1 | | | | | 19 | 17.7 | 8.1 | | | | | | | | | | | 20 | 18.1 | 4.9 | | | | | 20 | 17.6 | 8.1. | | | | | | | | | | | 21 | 17.9 | 5.0 | 7.1 | 118 | 2.8 | - | 21 | 17.6 | 8.1 7.3 | 124 | 0.8 | - | | | | | | | | 22 | 17.7 | 5.1 | | | | | 22 | 17.5 | 8.1 | | | | | | | | | | | 23 | 17.5 | 4.9 | | | | | 23 | 17.5 | 8.1 | | | | | | | | | | | 24 | 17.2 | 5.3 | 7.1 | 117 | 1.0 | _ | 24 | 17.5 | | 125 | 1.1 | 50 | | | | | | | | 25 | 17.1 | 5.1 | | | | | 24.7 | _ | - Bott | | | | | | | | | | | 26 | 17.1 | 5.0 | | | | | | | | | | | | | | | | | | 27 | 17.0 | 5.2 | 7.0 | 116 | 2.3 | 50 | | | | | | | | | | | | | | 28 | 16.9 | 4.8 | Bott | | •- | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | Sta. A2L 044.9 212.1 Pit River Arm | May 16, 1983 @ 1120 Hrs. | Secchi 3.3m | |------------------------------------|--------------------------|-------------| |------------------------------------|--------------------------|-------------| | Denth(m) | Temp.(°C) | | pН | E.C. | Turb. | Alk. | Dep | th(m) Tem | p.(°C) | D.O. | pН | E.C. | Turb. | Alk. | |------------------|--------------|--------------|-------|------|-------|------|----------|-----------|------------|--------------|------|------|-------|------| | <u> zepen(m)</u> | | | | | | | | | | | | | | | | Surf. | 15.4 | 10.0 | 7.5 | 90 | 2.8 | 40 | 66 | | 7.3 | 10.2 | | | | | | 1<br>2 | 15.3<br>15.3 | 10.0<br>10.0 | | | | | 67<br>68 | | 7.3<br>7.3 | 10.2<br>10.2 | | | | | | 3 | 15.3 | 10.0 | 7.4 | 90 | 3.1 | _ | 69 | | 7.3 | 10.2 | | | | | | 4 | 15.1 | 10.0 | , | ,,, | 3.1 | | 70 | | 7,3 | 10.2 | 7.2 | 104 | 6.2 | 48 | | 5 | 14.7 | 10.0 | | | | | 71 | | 7.2 | 10.2 | | | | | | 6 | 12.2 | 9.9 | 7.4 | 91 | 3.3 | 39 | 72 | | 7.2 | 10.2 | | | | | | 7 | 12.0 | 10.0 | | | | | 73 | | 7.2 | 10.1 | | | | | | 8 | 11.8 | 10.0 | 7 / | 01 | 2 2 | | 74<br>75 | | 7.2 | 10.1 | 7 2 | 107 | 6.7 | _ | | 9 | 11.6<br>11.5 | 9.9<br>9.9 | 7.4 | 91 | 3.3 | - | 75<br>76 | | 7.2<br>7.2 | 10.0<br>10.0 | 1.2 | 107 | 0.7 | | | 10<br>11 | 11.1 | 10.0 | | | | | 77 | | 7.2 | 10,0 | | | | | | 12 | 10.8 | 10.0 | 7.4 | 111 | 3.5 | 50 | 78 | | 7.2 | 10.0 | | | | | | 13 | 10.5 | 10.2 | | | | | 79 | | 7.2 | 10.0 | | | | | | 14 | 10.5 | 10.3 | | | | | 80 | | 7.2 | 9.9 | 7.2 | 104 | 7.4 | 48 | | 15 | 10.3 | 10.3 | 7.4 | 113 | 3.5 | _ | 81 | | 7.2 | 9.9 | | | | | | 16 | 10.1<br>9.9 | 10.3 | | | | | 82<br>83 | | 7.2<br>7.2 | 9.9<br>9.8 | | | | | | 17<br>18 | 9.9 | 10.2<br>10.2 | 7.4 | 116 | 3.5 | 54 | 84 | | 7.2 | 9.7 | | | | | | 19 | 9.8 | 10.2 | 7.4 | 110 | 3.5 | J. | 85 | | 7.2 | 9:5 | 7.1 | 106 | 8.8 | 48 | | 20 | 9.7 | 10.2 | | | | | 86 | | 7.1 | 9.4 | | | | | | 21 | 9.7 | 10.2 | 7.4 | 114 | 3.5 | - | 87 | | 7.1 | 9.1 | | | | | | 22 | 9.7 | 10.2 | | | | | 87. | . 3 | - | <b></b> - | Bott | om | | | | 23 | 9.7 | 10.2 | | | | | | | | | | | | | | 24 | 9.4 | 10.2 | 7.4 | 116 | 3.2 | 55 | | | | | | | | | | 25<br>26 | 9.3<br>9.3 | 10.2<br>10.2 | | | | | | | | | | | | | | 27 | 9.3 | 10.2 | 7.4 | 115 | 3.4 | - | | | | | | | | | | 28 | 9.1 | 10.2 | • • • | | | | | | | | | | | | | 29 | 9.0 | 10.1 | | | | | | | | | | | | | | 30 | 8.8 | 10.1 | 7.4 | 114 | 3.2 | 55 | | | | | | | | | | 31 | 8.8 | 10.1 | | | | | | | | | | | | | | 32<br>33 | 8.5<br>8.4 | 10.1<br>10.0 | | | | | | | | | | | | | | 34 | 8.2 | 10.0 | | | | | | | | | | | | | | 35 | 8.2 | 10.0 | 7.3 | 111 | 3.8 | _ | | | | | | | | | | 36 | 8.1 | 10.0 | | | | | | | | | | | | | | 37 | 8.1 | 10.0 | | | | | | | | | | | | | | 38 | 8.1 | 10.0 | | | | | | | | | | | | | | 39 | 8.1 | 10.0 | 7 0 | 110 | 2 7 | E1 | | | | | | | | | | 40<br>41 | 8.1<br>8.1 | 10.0<br>10.0 | 1.2 | 110 | 3.7 | 51 | | | | | | | | | | 42 | 8.0 | 10.0 | | | | | | | | | | | | | | 43 | 8.0 | 10.0 | | | | | | | | | | | | | | 44 | 8.0 | 10.0 | | | | | | | | | | | | | | 45 | 7.9 | 10.0 | 7.2 | 110 | 4.1 | - | | | | | | | | | | 46 | 7.9 | 10.0 | | | | | | | | | | | | | | 47<br>48 | 7.8<br>7.8 | 10.0<br>10.0 | | | | | | | | | | | | | | 40<br>49 | 7.8 | 10.0 | | | | | | | | | | | | | | 50 | 7.7 | 10.0 | 7.2 | 110 | 4.5 | 49 | | | | •` | | | | | | 51 | 7.7 | 10.0 | | | | | | , | | | | | | | | 52 | 7.6 | 10.0 | | | | | | | | | | | | | | 53 | 7.6 | 10.0 | • | | | | 7. | | | ., | | | | | | 54<br>55 | 7.6 | 10.1 | 7 2 | 110 | 5 7 | _ | | | | | | | | | | 55<br>56 | 7.6<br>7.6 | 10.1 | 1.2 | 110 | 5.7 | - | | | | | | | | | | 57 | 7.5 | 10.1 | | | | | | | | | | | | | | 58 | 7.5 | 10.2 | | | | | | | | | | | | | | 59 | 7.5 | 10.2 | | | | | | | | | | | | | | 60 | 7.4 | 10.2 | 7.2 | 109 | 6.2 | 50 | | | | | | | | | | 61 | 7.4 | 10.2 | | | | | | | | | | | | | | 62 | 7.3 | 10.2<br>10.2 | | | | | | | | | | | | | | 63<br>64 | 7.3<br>7.3 | 10.2 | | | | | | | | | | | | | | 65 | 7.3 | | 7.2 | 108 | 6.3 | _ | | | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 044.9 212.1 Pit River Arm June 24, 1983 @ 1230 Hrs. Secchi 3.5m | | Sta. F | 12L U44 | .9 21 | Z.1 P1 | t Kive | Arm | June 24, 19 | 983 @ 1230 E | ırs. | Secon | 1 3.3 | <u>n</u> | | |----------|--------------|------------|-------|-------------|--------|------|-------------|--------------|------------|-------|-------|----------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | ) Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 23.3 | 8.6 | 7.8 | 93 | 2.8 | 43 | 66 | 8.7 | 8.7 | | | | | | 1 | 23.3 | 8.6 | 7.0 | ,,, | 2.0 | 43 | 67 | 8.7 | 8.6 | | | | | | 2 | 22.8 | 8.7 | | | | | 68 | 8.7 | 8.6 | | | | | | 3 | 22.4 | 8.7 | 7.9 | 96 | 2.1 | 44 | 69 | 8.6 | 8.6 | | | | | | 4 | 22.2 | 8.7 | | | | | 70 | 8.6 | 8.5 | 7.3 | 114 | 4.9 | 53 | | 5 | 22.0 | 8.6 | | | | | 71 | 8.5 | 8.5 | | | | | | 6 | 21.5 | 8.6 | 7.9 | 96 | 1.6 | - | 72 | 8.5 | 8.4 | | | | | | 7 | 21.1 | 8.5 | | | | | 73 | 8.4 | 8.4 | | | | | | 8<br>9 | 19.4<br>18.0 | 8.5<br>8.7 | 7.7 | 107 | 1.7 | 53 | 74<br>75 | 8.4<br>8.4 | 8.4 | 7.3 | 114 | 5.3 | _ | | 10 | 17.3 | 8.7 | ,., | 107 | 1.7 | ,, | 76 | 8.4 | 8.3 | 7.3 | 117 | 2.3 | | | 11 | 16.5 | 8.8 | | | | | 77 | 8.3 | 8.2 | | | | | | 12 | 16.3 | 8.8 | 7.4 | 111 | 2.3 | 55 | 78 | 8.3 | 8.2 | | | | | | 13 | 15.7 | 8.8 | | | | | 79 | 8.3 | 8.2 | | | | | | 14 | 15.6 | 8.7 | | | | | 80 | 8,3 | 8.2 | 7.5 | 94 | 1.9 | 43 | | 15 | 15.2 | 8.7 | 7.4 | 117 | 2.7 | - | 81 | 8.3 | 8.2 | | | | | | 16 | 15.0 | 8.7 | | | | | 82 | 8.2 | 8.2 | | | | | | 17 | 14.4 | 8.7 | 7 2 | 116 | 2 1 | | 83<br>84 | 8.2<br>8.2 | 8.1<br>8.0 | | | | | | 18<br>19 | 13.9<br>13.3 | 8.6<br>8.6 | 7.3 | 115 | 3.1 | - | 85 | 8.2 | | 7.7 | 94 | 1.8 | _ | | 20 | 12.6 | 8.9 | | | | | 86 | 8.2- | 8.0 | | ,4 | 1.0 | | | 21 | 12.3 | 9.0 | 7.3 | 100 | 2.4 | 46 | 87 | 8.2 | 8.0 | | | | | | 22 | 12.0 | 9.0 | | | | | 88 | 8.2 | 8.0 | | | | | | 23 | 11.9 | 9.0 | | | | | 89 | 8.1 | 8.0 | | | | | | 24 | 11.8 | 9.0 | 7.3 | 100 | 3.5 | - | 90 | 8.1 | 8.0 | 7.3 | | 6.2 | 52 | | 25 | 11.6 | 9.0 | | | | | 91 | 8.1 | 7.9 | Bott | OTO | | | | 26 | 11.2 | 9.1 | | | • • | | | | | | | | | | 27 | 11.1 | 9.1 | 7.3 | 107 | 3.0 | - | | | | | | | | | 28<br>29 | 11.0<br>10.9 | 9.0<br>9.0 | | | | | | | | | | | | | 30 | 10.8 | 9.0 | 7.3 | 110 | 3.4 | 49 | | | | | | | | | 31 | 10.6 | 9.1 | , , , | 110 | 3.4 | 7,2 | | | | | | | | | 32 | 10.4 | 9.1 | | | | | | | | | | | | | 33 | 10.4 | 9.1 | | | | | | | | | | | | | 34 | 10.4 | 9.1 | | | | | | | | | | | | | 35 | 10.4 | 9.1 | 7.3 | 112 | 3.1 | - | | | | | | | | | 36 | 10.3 | 9.1 | | | | | | | | | | | | | 37 | 10.1 | 9.1 | | | | | | | | | | | | | 38<br>39 | 10.1<br>10.0 | 9.1<br>9.1 | | | | | | | | | | | | | 40 | 9.9 | 9.0 | 7.3 | 103 | 3.2 | 49 | | | | | | | | | 41 | 9.7 | 9.0 | | | | | | | | | | | | | 42 | 9.6 | 9.0 | | | | | | | | | | | | | 43 | 9.6 | 9.1 | | | | | | | | | | | | | 44 | 9.4 | 9.1 | | | | | | | | | | | | | 45 | 9.4 | 9.1 | 7.3 | 10 <b>9</b> | 3.2 | - | | | | | | | | | 46<br>47 | 9.3 | 9.2 | | | | | | | | | | | | | 48 | 9.3<br>9.2 | 9.1<br>9.2 | | | | | | | | | | | | | 49 | 9.2 | 9.2 | | | | | | | | | | | | | 50 | 9.2 | 9.2 | 7.3 | 110 | 3.4 | 52 | | | • ~ | | | | | | 51 | 9.2 | 9.2 | | | | | | | | | | * | | | 52 | 9.1 | 9.2 | | | | | | | | | | | | | 53 | 9.1 | 9.2 | | | | | | | | | | • | | | 54 | 9.1 | 9.2 | | | | | | | • | - | | | | | 55<br>54 | 9.0 | 9.2 | 7.3 | 104 | 2.7 | - | | | | | | | | | 56<br>57 | 9.0<br>8.9 | 9.1<br>9.1 | | | | | | | | | | | | | 58 | 8.9 | 9.0 | | | | | | | | | | | | | 59 | 8.9 | 9.0 | | | | | | | | | | | | | 60 | 8.9 | 8.9 | 7.3 | 105 | 4.6 | 52 | | | | | | | | | 61 | 8.8 | 8.9 | | | | | | | | | | | | | 62 | 8.8 | 8.8 | | | | | | | | | | | | | 63 | 8.8 | 8.7 | | | | | | | | | | | | | 64<br>65 | 8.8<br>8.7 | 8.7<br>8.7 | 7 2 | 112 | 4.5 | _ | | | | | | | | | 0.5 | 0.1 | 0.7 | د. ، | 112 | 7.3 | _ | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2 | L 044 | .9 21 | 2,1 P | it Rive | Arm | July 26, 19 | 83 @ 0830 F | lrs. | Secch | i 2.9m | <u> </u> | | |----------|--------------|------------|-------|-------|---------|------|-------------|-------------|------------|-------|--------|----------|------| | Depth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 23.9 | 8.7 | 8.0 | 98 | 1.9 | 46 | 66 | 9.6 | 7.0 | | | | | | 1 | 23.8 | 8.7 | | | | | 67 | 9.5 | 6.9 | | | | | | 2<br>3 | 23.8<br>23.5 | 8.6<br>8.7 | 8.0 | 99 | 1.3 | 46 | 68<br>69 | 9.3 | 7.0 | | | | | | 4 | 23.2 | 8.3 | 0.0 | 23 | 1.3 | 40 | 70 | 9.3<br>9.2 | 7.0<br>7.1 | 7.0 | 113 | 5.2 | 55 | | 5 | 23.0 | 8.1 | | | | | 71 | 9.2 | 7.2 | . , . | | | | | 6 | 22.9 | 8.3 | 7.9 | 101 | 2.0 | - | 72 | 9.2 | 7.1 | | | | | | 7<br>8 | 22.5<br>22.0 | 7.7<br>7.3 | | | | | 73<br>74 | 9.2 | 7.0 | | | | | | 9 | 19.7 | 7.1 | 7.4 | 105 | 1.6 | _ | 74<br>75 | 9.1<br>9.1 | 7.0<br>7.1 | 7.0 | 115 | 5.2 | _ | | 10 | 18.4 | 7.6 | • | | | | 76 | 9.1 | 6.8 | | | | | | 11 | 17.8 | 7.9 | | | | | 77 | 9.1 | 6.7 | | | | | | 12<br>13 | 17.2<br>16.8 | 8.0 | 7.5 | 118 | 1.7 | 57 | 78<br>79 | 9.0 | 6.6 | | | | | | 14 | 16.7 | 8.0<br>7.9 | | | | | 80 | 9.0<br>9.0 | 6.6<br>6.5 | 6.9 | 114 | 5.6 | 54 | | 15 | 16.3 | 8.1 | 7.5 | 118 | 1.7 | - | 81 | 9.0 | 6.5 | 012 | | 3.0 | 3. | | 16 | 16.2 | 7.9 | | | | | 82 | 9.0 | 6.4 | | | | | | 17 | 16.1 | 7.9 | 7 5 | 117 | 2 1 | | 83 | 9.0 | 6.4 | | | | | | 18<br>19 | 16.0<br>15.7 | 7.6<br>7.3 | 7.5 | 117 | 2.1 | - | 83.2 | - | « | Bott | ОП | | | | 20 | 15.5 | 7.1 | | | | | | - | | | | | | | 21 | 14.9 | 7.2 | 7.3 | 112 | 2.1 | 54 | | | | | | | | | 22 | 14.6 | 7.6 | | | | | | | •• | | | | | | 23<br>24 | 14.1<br>13.9 | 7.6<br>7.8 | 7.3 | 100 | 2.4 | _ | | | | | | | | | 25 | 13.8 | 7.9 | , | 100 | | | | | | | | | | | 26 | 13.5 | 7.9 | | | | | | | | | | | | | 27 | 13.2 | 7.9 | 7.3 | 96 | 2.6 | - | | | | | | | | | 28<br>29 | 12.9<br>12.7 | 8.0<br>8.1 | | | | | | | | | | | | | 30 | 12.5 | 8.0 | 7.2 | 96 | 2.9 | 43 | | | | | | | | | 31 | 12.3 | 8.1 | | | | | | | | | | | | | 32 | 12.1 | 8.1 | | | | | | | | | | | | | 33<br>34 | 12.0<br>11.9 | 8.0<br>8.1 | | | | | | | | | | | | | 35 | 11.7 | 8.0 | 7.2 | 103 | 3.2 | _ | | | | | | | | | 36 | 11.6 | 7.9 | | | | | | | | | | | | | 37 | 11.4 | 8.0 | | | | | | | | | | | | | 38<br>39 | 11.3<br>11.2 | 8.0<br>7.9 | | | | | | | | | | | | | 40 | 11.1 | 8.0 | 7.2 | 108 | 3.6 | 49 | | | | | | | | | 41 | 11.0 | 8.1 | | | | | | | | | | | | | 42 | 11.0 | 8.1 | | | | | | | | | | | | | 43<br>44 | 11.0<br>10.9 | 7.9<br>8.0 | | | | | | | | | | | | | 45 | 10.8 | 8.0 | 7.2 | 110 | 3.4 | _ | | | | | | | | | 46 | 10.8 | 8.0 | | | | | | | | | | | | | 47 | 10.7 | 8.1 | | | | | | | | | | | | | 48<br>49 | 10.6<br>10.4 | 8.1<br>8.1 | | | | | | | | | | | | | 50 | 10.4 | 8,1 | 7.2 | 110 | 3.6 | 50 | | | • " | | | | | | 51 | 10.3 | 8.0 | | | | | | | +4.5 | | | | | | .52 | 10.2 | 8.1 | | | | | | | : | | | | | | 53<br>54 | 10.2<br>10.1 | 8.1 | | | • | | | | | | | | | | 55 | 10.0 | | 7.1 | 110 | 4.0 | - | | | | | | | | | 56 | 10.0 | 8.1 | | | | | | | | | | | | | 57 | 9.9 | 7.9 | | | | | | | | | | | | | 58<br>59 | 9.9<br>9.9 | 7.9<br>7.8 | | | | | | | | | | | | | 60 | 9.9 | 7.7 | 7.1 | 111 | 4.4 | 53 | | | | | | | | | 61 | 9.8 | 7.6 | | | | | | | | | | | | | 62 | 9.8 | 7.3 | | | | | | | | | | | | | 63<br>64 | 9.8<br>9.7 | 7.3<br>7.2 | | | | | | | | | | | | | 65 | 9.6 | | 7.1 | 114 | 4.8 | _ | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 044.9 212.1 Pit River Arm August 23, 1983 @ 0815 Hrs. Secchi 2.8m | Donth(m) | Town (°C) | | | | | | Death(n) Terr (10) D.OU. F.C. Terr Alle | |------------------|--------------|------------|-----|------|-------|------|--------------------------------------------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) Temp.(+C) D.O. pH E.C. Turb. Alk. | | Surf. | 24.7 | 8.1 | 8.5 | 97 | 1.7 | 43 | 66 9.8 5.0 | | 1 | 24.6 | 8.1 | | | | | 67 9.7 5.0 | | 2 | 24.6 | 7.9 | | 00 | | | 68 9.6 4.9 | | 3<br>4 | 24.5 | 7.9 | 8.5 | 99 | 1.7 | 43 | 69 9.6 4.7 | | 5 | 24.5<br>24.5 | 7.9<br>7.8 | | | | | 70 9.5 4.7 7.1 116 5.9 54<br>71 9.5 4.7 | | 6 | 24.5 | 7.8 | 8.5 | 99 | 1.7 | 43 | 72 9.2 4.7 | | 7 | 24.5 | 7.7 | 0.5 | | | | 73 9.2 4.6 | | 8 | 23.1 | 4.9 | | | | | 74 9.2 4.5 | | 9 | 21.7 | 4.3 | 7.2 | 107 | 1.0 | 46 | 74.2 Bottom | | 10 | 20.0 | 5.9 | | | | | | | 11 | 18.4 | 7.6 | 7 / | | | e 7 | | | 12<br>13 | 17.8<br>17.4 | 7.6<br>7.6 | 7.6 | 121 | 1.3 | 57 | | | 14 | 17.4 | 7.8 | | | | | | | 15 | 17.2 | 7.8 | 7.7 | 124 | 1.3 | 59 | | | 16 | 17.2 | 7.7 | | | | | | | 17 | 17.0 | 7.4 | | | | | | | 18 | 16.8 | | 7.5 | 122 | 1.6 | 58 | | | 19 | 16.4 | 6.9 | | | | | <b>,</b> | | 20<br>21 | 16.1<br>15.8 | 6.8<br>6.2 | 7.3 | 117 | 1.5 | 55 | | | 22 | 15.8 | 6.1 | 1.3 | 117 | 1.5 | رر | | | 23 | 15.4 | 6.2 | | | | | s.* | | 24 | 15.2 | 6.3 | 7.3 | 113 | 1.6 | 53 | | | 25 | 15.1 | 6.3 | | | | | | | 26 | 14.8 | 6.5 | _ | | | | | | 27 | 14.8 | 6.5 | 7.3 | 107 | 1.8 | 48 | | | 28<br>29 | 14.6 | 6.6 | | | | | | | 30 | 14.1<br>13.9 | 6.6<br>6.6 | 7.2 | 102 | 2.0 | 46 | | | 31 | 13.8 | 6.7 | 1.2 | 102 | 2.0 | 40 | | | 32 | 13.2 | 6.8 | | | | | | | 33 | 13.2 | 6.9 | | | | | | | 34 | 13.2 | 6.9 | | | | | | | 35 | 12.8 | 7.1 | 7.2 | 97 | 2.8 | 43 | | | 36<br>37 | 12.6<br>12.4 | 7.1<br>7.1 | | | | | | | 38 | 12.0 | 7.2 | | | | | | | 39 | 12.0 | 7.2 | | | | | | | 40 | 11.9 | 7.2 | 7.2 | 102 | 3.2 | 45 | | | 41 | 11.7 | 7.2 | | | | | | | 42 | 11.5 | 7.1 | | | | | | | 43<br>44 | 11.5<br>11.2 | 7.1<br>7.1 | | | | | | | 45 | 11.2 | 7.1 | 7,2 | 106 | 3.5 | 47 | | | 46 | 11.1 | 7.1 | | 200 | 3,3 | | | | 47 | 11.1 | 7.1 | | | | | | | 48 | 11.0 | 7.1 | | | | | | | 49 | 10.9 | 7.1 | | | | | | | 50 | 10.9 | 7.1 | 7.2 | 109 | 5.7 | 49 | • | | 51<br>52 | 10.9<br>10.8 | 7.1<br>7.1 | | | | | | | - 53 | 10.8 | 7.0 | | | | | | | 54 | 10.6 | 6.9 | | | | · . | | | 55 | 10.5 | | 7.2 | 111 | 4.1 | 50 | | | 56 | 10.3 | 6.8 | | | | | | | 57 | 10.2 | 6.7 | | | | | | | 58<br>5 <b>9</b> | 10.1 | 6.4 | | | | | | | 59<br>60 | 10.0<br>10.0 | 6.3 | 7 1 | 114 | 4 2 | 53 | | | 61 | 10.0 | 5.9 | ,,, | 114 | 7.5 | ,, | | | 62 | 10.0 | 5.7 | | | | | | | 63 | 9.9 | 5.6 | | | | | | | 64 | 9.9 | 5.4 | _ | | | | | | 65 | 9.8 | 5.0 | 7.1 | 115 | 5.0 | 54 | | | | Sta. A2L C | 44.9 | 212.1 | Pit R | iver Ar | m Sept | ember 29, | 1 <b>98</b> 3 @ 1130 | Hrs. | Sec | chi 4. | 7 m | | |------------|--------------|------------|-------|-------|---------|------------|-----------|----------------------|------------|------|--------|-------|------| | Depth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | | Surf.<br>l | 20.8 | 8.2 | 7.7 | 109 | 0.6 | 46 | 66 | 12.2 | 6.0 | | | | | | 2 | 20.8<br>20.8 | 8.2 | | | | | 67<br>68 | 12.2<br>12.2 | 6.0 | | | | | | 3 | 20.8 | 8.2 | 7.7 | 109 | 0.6 | _ | 69 | 12.2 | 6.1<br>6.1 | | | | | | 4 | 20.8 | 8.1 | | | | | 70 | 12.2 | 6.1 | 6.8 | 122 | 7.1 | 55 | | 5<br>6 | 20.8<br>20.8 | 8.0<br>8.0 | 7 6 | 100 | 0.0 | | 71 | - | - | | | | | | 7 | 20.8 | 8.0 | 7.6 | 109 | 0.9 | - | 71.2 | - | - | Bott | om | | | | 8 | 20.8 | 7.9 | | | | | | | | | | | | | 9 | 20.8 | 7.8 | 7.5 | 110 | 0.6 | 46 | | | | | | | | | 10<br>11 | 20.8<br>20.8 | 7.8<br>7.5 | | | | | | | | | | | | | 12 | 20.5 | 6.9 | 7.3 | 112 | 0.5 | _ | | | | | | | | | 13 | 20.2 | 6.4 | | | | | | | | | | | | | 14<br>15 | 19.2 | 5.8 | 7 2 | 101 | | | | | | | | | | | 16 | 18.5<br>17.9 | 5.5<br>5.6 | 7.2 | 124 | 0.8 | - | | | | | | | | | 17 | 17.2 | 6.2 | | | | | | | | | | | | | 18 | 17.1 | 6.4 | 7.3 | 128 | 0.5 | 57 | | | | | | | | | 19<br>20 | 16.8<br>16.8 | 6.8 | | | | | | | ٠. | | | | | | 21 | 16.5 | 7.3 | 7.4 | 129 | 0.7 | _ | | - | • | | | | | | 22 | 16.3 | 7.4 | | | | | | | | | | | | | 23<br>24 | 16.2<br>16.0 | 7.5<br>7.7 | 7.4 | 128 | 0.8 | _ | | | | | | | | | 25 | 15.9 | 7.8 | | 120 | 0.0 | _ | | | | | | | | | 26 | 15.8 | 7.9 | | | | | | | | | | | | | 27<br>28 | 15.7<br>15.6 | 8.0<br>8.0 | 7.5 | 128 | 0.9 | 5 <b>9</b> | | | | | | | | | 29 | 15.5 | 8.2 | | | | | | | | | | | | | 30 | 15.2 | 8.3 | 7.5 | 128 | 1.1 | - | | | | | | | | | 31<br>32 | 15.2<br>15.0 | 8.3<br>8.3 | | | | | | | | | | | | | 33 | 15.0 | 8.3 | | | | | | | | | | | | | 34 | 15.0 | 8.3 | | | | | | | | | | | | | 35<br>36 | 15.0<br>15.0 | 8.2<br>8.3 | 7.4 | 128 | 1.6 | - | | | | | | | | | 37 | 14.9 | 8.3 | | | | | | | | | | | | | 38 | 14.9 | 8.3 | | | | | | | | | | | | | 39<br>40 | 14.8<br>14.7 | 7.9<br>7.8 | 7.3 | 127 | 2.4 | 57 | | | | | | | | | 41 | 14.6 | 7.8 | , | 127 | 2.4 | ١, | | | | | | | | | 42 | 14.6 | 7.7 | | | | | | | | | | | | | 43<br>44 | 14.3<br>13.4 | 6.9 | | | | | | | | | | | | | 45 | 13.2 | 6.2 | 7.1 | 106 | 3.7 | _ | | | | | | | | | 46 | 13.0 | 6.3 | | | | | | | | | | | | | 47<br>48 | 12.9<br>12.8 | 6.4<br>6.5 | | | | | | | | | | | | | 49 | 12.5 | 6.5 | | | | | | | | | | | | | 50 | 12.5 | | 7.0 | 105 | 6.0 | - | | | | | | | | | 51<br>52 | 12.3<br>12.3 | 6.4<br>6.3 | | | | | | | | | | | | | 53 | 12.2 | 6.2 | | | | | | | | | | | | | 54 | 12.3 | 6.3 | | | | • | | | | | | | | | 55<br>56 | 12.3<br>12.3 | 6.2 | b.9 | 111 | 5.8 | 47 | | | | | | | | | 57 | 12.2 | 6.2 | | | | | | | | | | | | | 58 | 12.2 | 6.2 | | | | | | | | | | | | | 59<br>60 | 12.2<br>12.2 | 6.1<br>6.1 | 6.8 | 115 | 5.0 | _ | | | | | | | | | 61 | 12.2 | 6.2 | J.0 | | ٠.٠ | | | | | | | | | | 62 | 12.2 | 6.2 | | | | | | | | | | | | | 63<br>64 | 12.2<br>12.2 | 6.0 | | | | | | | | | | | | | 65 | 12.2 | 6.0 | 6.8 | 119 | 8.9 | - | | | | | | | | | | Sta. A2L | 044. | 9 212 | .l Pit | River | Arm No | vember 4, 1 | 983 @ 0915 | Hre | Seco | h i 4 7 | · m | | |------------------|--------------|------------|-------|--------|-------|----------------|-------------|--------------|------|------|---------|-------|------| | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | | Temp.(°C) | D.O. | | E.C. | | Alk. | | Surf. | 17.5 | 0 2 | - | | | | | | | P1.2 | | Turb. | AIK. | | 1 | 17.5 | 8.3 | | 114 | 0.7 | 53 | 66<br>67 | 13.6<br>13.6 | _ | | | | | | 2 | 17.5 | 8.3 | | | | | 68 | 13.6 | _ | | | | | | 3<br>4 | 17.5 | 8.3 | | 109 | 0.5 | - | 69 | 13.6 | - | | | | | | 5 | 17.5<br>17.5 | 8.3 | | | | | 70 | 13.6 | 9.7 | 7.3 | 124 | 2.9 | - | | 6 | 17.5 | 8.2 | | 108 | 0.6 | _ | 71<br>72 | 13.6<br>13.6 | _ | | | | | | 7 | 17.5 | 8.2 | | | | | 73 | 13.6 | _ | | | | | | 8<br>9 | 17.5 | 8.2 | | | | | 74 | 13.6 | - | | | | | | 10 | 17.5<br>17.5 | 8.2 | 7.3 | 109 | 0.9 | 50 | 75 | 13.6 | 9.8 | 7.3 | 124 | 6.7 | 61 | | 11 | 17.5 | 8.2 | | | | | 76<br>77 | 13.6<br>13.6 | - | | | , | | | 12 | 17.5 | 8.2 | 7.3 | 109 | 0.7 | - | 77.3 | - | _ | Bott | OTT | | | | 13<br>14 | 17.5 | 8.1 | | | | | | | | | | | | | 15 | 17.4<br>17.3 | 8.0<br>6.9 | 7.2 | 112 | 0.9 | | | | | | | | | | 16 | 17.3 | 6.6 | , | 112 | 0.9 | _ | | | | | | | | | 17 | 16.9 | 5.3 | | | | | | | | | | | | | 18<br>19 | 16.8 | 5.6 | 7.0 | 121 | 0.7 | 5 <del>9</del> | | | | | | | | | 20 | 16.6<br>16.6 | 5.7<br>5.9 | | | | | | • | • | | | | | | 21 | 16.4 | 6.0 | 7.1 | 123 | 0.7 | _ | | | | | | | | | 22 | 16.3 | 6.3 | | | | | | | | | | | | | 23<br>24 | 16.3 | 6.3 | ٠. | | | | | | | | | | | | 25 | 16.2<br>16.2 | 6.4<br>6.4 | 7.1 | 121 | 0.6 | | | | | | | | | | 26 | 16.0 | 6.4 | | | | | | | | | | | | | 27 | 15.9 | 6.6 | 7.1 | 122 | 0.6 | 59 | | | | | | | | | 28<br>29 | 15.8 | 6.6 | | | | | | | | | | | | | 30 | 15.7<br>15.7 | 6.7<br>6.7 | 7.1 | 120 | 0.6 | | | | | | | | | | 31 | 15.5 | 6.9 | 7.1 | 120 | 0.6 | _ | | | | | | | | | 32 | 15.4 | 7.1 | | | | | | | | | | | | | 33<br>34 | 15.4 | 7.1 | | | | | | | | | | | | | 34<br>35 | 15.4<br>15.2 | 7.2<br>7.4 | 7.2 | 115 | 0.7 | | | | | | | | | | 36 | 15.2 | 7.4 | ′ | 117 | 0.7 | - | | | | | | | | | 37 | 15.1 | 7.4 | | | | | | | | | | | | | 38<br>39 | 15.0 | 7.6 | | | | | | | | | | | | | 40 | 14.9<br>14.8 | 7.6<br>7.7 | 7.2 | 124 | 0.9 | 60 | | | | | | | | | 41 | 14.7 | 7.9 | , . 2 | 124 | 0.9 | 60 | | | | | | | | | 42 | 14.5 | 8.2 | | | | | | | | | | | | | 43<br>44 | 14.4 | 8.3 | | | | | | | | | | | | | 45 | 14.4<br>14.2 | 8.8<br>9.1 | 7.3 | 115 | 0.8 | _ | | | | | | | | | 46 | 13.9 | 9.3 | . • • | | 0.0 | | | | | | | | | | 47 | 13.8 | 9.4 | | | | | | | | | | | | | 48<br>49 | 13.7<br>13.7 | 9.4 | | | | | | | | | | | | | 50 | 13.7 | 9.4<br>9.5 | 7.3 | 124 | 3.0 | _ | | | *** | | | | | | 51 | 13.8 | - | | | 3.0 | | | | | | | | | | 52 | 13.8 | - | | | | | • | | | | | | | | 53<br>54 | 13.8<br>13.8 | - | | | | * | 100 | | ٠. | 2 | | | | | 55 | 13.8 | 9.5 | 7.3 | 124 | 3,0 | 60 | | | | | | | | | 56 | 13.7 | _ | | | 2,0 | 30 | | | | | | | | | 57<br>58 | 13.7 | - | | | | | | | | | | | | | 58<br>5 <b>9</b> | 13.7<br>13.7 | - | | | | | | | | | | | | | 50 | 13.7 | 9.6 | 7.3 | 123 | 3.3 | _ | | | | | | | | | 51 | 13.7 | - | - | | | | | | | | | | | | 52<br>53 | 13.7 | - | | | | | | | | | | | | | 54 | 13.7<br>13.6 | - | | | | | | | | | | | | | 55 | 13.6 | 9.6 | 7.3 | 125 | 3.2 | 61 | | | | | | | | Sta. A2L 044.9 212.1 Pit River Arm December 19, 1983 @ 1230 Hrs. Secchi 5.3m | Depth(m) | Temp.(°C) | D.O. | pH | E.C. | Turb. | Alk. | Dei | | Temp.(°C) | | pH | E.C. | Turb. | Alk. | |------------|--------------|--------------|------------|------|-------|------|----------|-----|------------|-----------|------|------|-------|------| | | | | | | | | | | | | | | | | | Surf.<br>l | 12.0<br>12.0 | 9.5<br>9.5 | 7.3 | 112 | 1.4 | 51 | 66<br>67 | | 8.3<br>8.3 | - | | | | | | 2 | 12.0 | 9.5 | | | | | 68 | | 8.3 | _ | | | | | | 3 | 12.0 | 9.5 | 7.3 | 113 | 1.3 | - | 69 | | 8.3 | - | | | | | | 4 | 12.0 | 9.4 | | | | | 70 | | 8.3 | 11.5 | 7.3 | 119 | 9.7 | - | | 5 | 12.0 | 9.4 | | | | | 71 | | 8.3 | - | | | | | | 6 | 12.0 | 9.4 | 7.3 | 113 | 1.1 | - | 72 | | 8.3 | - | | | | | | 7<br>8 | 12.0<br>12.0 | 9.4<br>9.4 | | | | | 73<br>74 | | 8.3<br>8.3 | -<br>11.6 | 7.3 | 119 | 9.7 | 53 | | 9 | 12.1 | 9.4 | 7.3 | 113 | 1.1 | 51 | 75 | | 8.3 | - | ,,, | 117 | 7.7 | 5.5 | | 10 | 12.1 | 9.4 | | | | | 76 | | 8.3 | | | | | | | 11 | 12.1 | 9.4 | | | | | 76 | . 3 | - | _ | Bott | om | | | | 12 | 12.1 | 9.4 | 7.3 | 113 | 1.0 | - | | | | | | | | | | 13 | 12.1 | 9.4 | | | | | | | | | | | | | | 14<br>15 | 12.0<br>12.1 | 9.4<br>9.4 | 7 3 | 113 | 1.4 | _ | | | | | | | | | | 16 | 12.1 | 9.4 | 7.5 | 113 | 1.4 | | | | | | | | | | | 17 | 12.1 | 9.4 | | | | | | | | | | | | | | 18 | 12.1 | 9.4 | 7.3 | 113 | 1.3 | 52 | | | | | | | | | | 19 | 12.1 | 9.4 | | | | | | | | ٠. | | | | | | 20 | 12.1 | 9.4 | <b>,</b> , | | | | | | - | | | • | | | | 21<br>22 | 12.1<br>12.1 | 9.4<br>9.4 | 1.3 | 113 | 1.4 | - | | | | | | | | | | 23 | 12.1 | 9.4 | | | | | | | | | | | | | | 24 | 12.1 | 9.4 | 7.3 | 113 | 1.2 | _ | | | | | | | | | | 25 | 12.1 | 9.4 | | | | | | | | | | | | | | 26 | 12.1 | 9.4 | | | | | | | | | | | | | | 27 | 12.1 | 9.4 | 7.3 | 113 | 1.2 | 53 | | | | | | | | | | 28<br>29 | 12.1<br>12.1 | 9.4<br>9.4 | | | | | | | | | | | | | | 30 | 12.1 | 9.4 | 7.3 | 113 | 1.8 | _ | | | | | | | | | | 31 | 12.0 | 9.4 | | | | | | | | | | | | | | 32 | 12.0 | 9.4 | | | | | | | | | | | | | | 33 | 12.0 | 9.4 | | | | | | | | | | | | | | 34 | 12.0 | 9.4 | 7 2 | 112 | | | | | | | | | | | | 35<br>36 | 11.9<br>11.2 | 9.5<br>9.9 | 7.3 | 113 | 1.6 | - | | | | | | | | | | 37 | 10.5 | 10.2 | | | | | | | | | | | | | | 38 | 9.7 | 10.2 | | | | | | | | | | | | | | 39 | 9.2 | 10.9 | | | | | | | | | | | | | | 40 | 9.0 | 11.1 | 7.3 | 118 | 7.0 | 54 | | | | | | | | | | 41 | 8.9 | 11.1 | | | | | | | | | | | | | | 42<br>43 | 8.4<br>8.3 | 11.3<br>11.4 | | | | | | | | | | | | | | 44 | 8.4 | 11.4 | | | | | | | | | | | | | | 45 | 8.3 | 11.4 | 7.3 | 120 | 9.1 | - | | | | | | | | | | 46 | 8.3 | 11.4 | | | | | | | | | | | | | | 47 | 8.3 | 11.4 | | | | | | | | | | | | | | 48<br>49 | 8.3<br>8.2 | 11.4<br>11.4 | | | | | | | | | | | | | | 50 | 8.2 | 11.4 | 7.3 | 120 | 8.7 | - | | | | • | | | | | | 51 | 8,4 | - | | | | | | | | | | | | | | 52 | 8.4 | - | | | | | | | • | | | | | | | 53 | 8.4 | - | | | | | | | | | | , | | | | 54<br>55 | 8.3 | 11 7 | 7 3 | 110 | 8.5 | 55 | | | | • | | | | | | 56 | 8.3<br>8.3 | _ | , . 3 | 117 | ر. ن | ,, | | | | | | | | | | 57 | 8.3 | - | | | | | | | | | | | | | | 58 | 8.3 | - | | | | | | | | | | | | | | 59 | 8.3 | - | <b>.</b> . | | | | | | | | | | | | | 60<br>61 | 8.3<br>8.3 | 11.6 | 1.3 | 119 | 9.5 | - | | | | | | | | | | 61<br>62 | 8.3<br>8.3 | _ | | | | | | | | | | | | | | 63 | 8.3 | _ | | | | | | | | | | | | | | 64 | 8.3 | - | | | | | | | | | | | | | | 65 | 8.3 | 11.5 | 7.3 | 119 | 9.6 | 54 | | | | | | | | | | | | | | | | | | | | | | | | | | | a. 107 ( | o o | ,,,,, | D4+ D | iver Ar | n Jan | narv 23. 19 | 984 @ 1000 | Hrs. | Secc | h <u>i 4,5</u> | <u>m</u> | | |------------|------------|--------------|-------|--------|---------|-------|-------------|------------|------|------|----------------|----------|------| | Depth(m) | Temp.(°C) | | pH | | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рĦ | E.C. | Turb. | Alk. | | Surf. | 9.6 | 10.5 | 7.3 | 100 | 1.3 | 47 | 66 | 6.3 | - | | | | | | 1 | 9.5 | 10.5 | | | | | 67 | 6.4<br>6.4 | _ | | | | | | 2 | 9.5 | 10.5 | 7 0 | 100 | 1.6 | _ | 68<br>69 | 6.4 | _ | | | | | | 3 | 9.5<br>9.5 | 10.6<br>10.6 | 7.3 | 100 | 1.4 | _ | 70 | 6.4 | 11.9 | 7.3 | 118 | - | - | | 4<br>5 | 9.4 | 10.5 | | | | | 71 | 6.4 | | | | | | | 6 | 9.4 | 10.5 | 7.3 | 101 | 1.2 | - | 72 | 6.4 | 12.1 | 7 3 | 116 | 6.8 | 60 | | 7 | 9.4 | 10.5 | | | | | 73<br>74 | 6.4<br>6.4 | 12.1 | 1.5 | 110 | 0.0 | | | 8 | 9.4 | 10.5 | 7,3 | 102 | 1.1 | 47 | 75.5 | 6.5 | _ | Bott | om | | | | 9<br>10 | 9.4<br>9.4 | 10.5<br>10.5 | 1.3 | 102 | 1.1 | •• | , - , - | | | | | | | | 11 | 9.4 | 10.5 | | | | | | | | | | | | | 12 | 9.4 | 10.5 | 7.3 | 102 | 1.2 | - | | | | | | | | | 13 | 9.5 | 10.5 | | | | | | | | | | | | | 14 | 9.5 | 10.5<br>10.5 | 7 3 | 102 | 1.4 | - | | | | | | | | | 15<br>16 | 9.6<br>9.6 | 10.5 | ,., | 100 | | | | | | | | | | | 17 | 9.4 | 10.5 | | | | | | | | | | | | | 18 | 9.4 | 10.5 | 7.3 | 102 | 1.1 | 47 | | | | | | | | | 19 | 9.3 | 10.5 | | | | | | | | | | | | | 20<br>21 | 9.3<br>9.3 | 10.5<br>10.4 | 7.3 | 101 | 1.3 | _ | | | €. | | | | | | 22 | 9.3 | 10.4 | | | | | | | | | | | | | 23 | 9.3 | 10.4 | | | | | | | * | | | | | | 24 | 9.3 | 10.4 | 7.3 | 103 | 1.1 | - | | | | | | | | | 25 | 9.3 | 9.3<br>9.3 | | | | | | | | | | | | | 26<br>27 | 9.3<br>9.3 | 9.3 | 7.3 | 102 | 1.1 | 48 | | | | | | | | | 28 | 9.3 | 9.3 | | | | | | | | | | | | | 29 | 9.2 | 9.2 | | | , , | | | | | | | | | | 30 | 9.2 | 10.4 | | 103 | 1.2 | - | | | | | | | | | 31 | 9.2<br>9.2 | 10.4<br>10.4 | | | | | | | | | | | | | 32<br>33 | 9.2 | 10.4 | | | | | | | | | | | | | 34 | 9.2 | 10.4 | | | | | | | | | | | | | 35 | 9.2 | 10.4 | | 102 | 1.5 | - | | | | | | | | | 36 | 9.2<br>9.2 | 10.4 | | | | | | | | | | | | | 37<br>38 | 9.2 | 10.5 | | | | | | | | | | | | | 39 | 8.9 | 10.5 | 5 | | | | | | | | | | | | 40 | 8.4 | 10.8 | | 106 | 2.7 | 50 | | | | | | | | | 41 | 8.3 | 10.8 | | | | | | | | | | | | | . 42<br>43 | 7.0<br>6.8 | 11.3 | | | | | | | | | | | | | 44 | 6.5 | 11.8 | 3 | | | | | | | | | | | | 45 | 6.4 | 11.9 | | 116 | 7.0 | - | | | | | | | | | 46 | 6.4 | 12.0 | | | | | | | | | | | | | 47<br>48 | 6.3<br>6.4 | 12.0 | | | | | | | | | | | | | 49 | 6.3 | 11.9 | | | | | | | | | | | | | 50 | 6.4 | 11.9 | 9 7.3 | 3 11,7 | 6.6 | | | | | | | | | | 51 | 6.3 | - | | | | | | | •** | | | | | | 52<br>53 | 6.3<br>6.3 | _ | | | | | | | | | | | | | 53<br>54 | 6.3 | | | | | | | | | | | | | | 55 | 6.3 | 12. | 1 7. | 3 117 | 6.7 | 56 | | | ٠, | | | | | | 56 | 6.3 | - | | | | | | | | | | | | | 57<br>58 | 6.3<br>6.3 | _ | | | | | | | | | | | | | 59 | 6.3 | _ | | | | | | | | | | | | | 60 | 6.3 | 12. | 1 7. | 3 117 | 7 6.9 | - | | | | | | | | | 61 | 6.3 | - | • | | | | | | | | | | | | 62 | 6.3<br>6.3 | - | | | | | | | | | | | | | 63<br>64 | 6.3 | _ | - | | | | | | | | | | | | 65 | 6.3 | 11. | 8 7. | 3 11 | 7 6. | 5 55 | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 044.9 212.1 Pit River Arm February 27, 1984 @ 1200 Hrs. Secchi 3.4m Temp.(°C) D.O. pH E.C. Turb. Alk. Depth(m) Temp.(°C) D.O. pH E.C. Turb. Alk. | Depth(m) | Temp.(°C) | D.O. | рΗ | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рĦ | E.C. | Turb. | Alk. | |----------|------------|--------------|-----|------|------------------|------|----------|-----------|------|----|------|-------|------| | Surf. | 10.0 | 11.2 | 7.5 | 107 | 0.9 | 46 | | | | | | | | | 1 | 9.4 | 11.2 | | | | | | | | | | | | | 2 | 9.0 | 11.3 | | | | | | | | | | | | | 3 | 9.0 | 11.4 | 7.5 | 107 | 0.8 | - | | | | | | | | | 4 | 9.0 | 11.4 | | | | | | | | | | | | | 5 | 9.0 | 11.4 | | | | | | | | | | | | | 6 | 9.0 | 11.3 | 7.5 | 107 | 1.1 | - | | | | | | | | | 7 | 9.0 | 11.3 | | | | | | | | | | | | | 8 | 9.0 | 11.3 | | | | | | | | | | | | | 9 | 9.0 | 11.2 | 7.5 | 108 | 0.9 | 50 | | | | | | | | | 10 | 9.0 | 11.1 | | | | | | | | | | | | | 11 | 8.9 | 11.1 | | | | | | | | | | | | | 12 | 8.9 | 11.0 | 7.4 | 108 | 1.1 | - | | | | | | | | | 13 | 8.9 | 11.0 | | | | | | | | | | | | | 14 | 8.9 | 11.0 | | | | | | | | | | | | | 15 | 8.9 | 11.0 | 7.4 | 108 | 1.1 | - | | | | | | | | | 16 | 8.9 | 11.0 | | | | | | | | | | | | | 17 | 9.0 | 11.0 | | | | | | | | | | | | | 18 | 9.0 | 11.0 | 7.3 | 107 | 0.9 | 47 | | | | | | | | | 19 | 9.0 | 11.0 | | | | | | | •*. | | | | | | 20 | 9.0 | 11.0 | | | | | | - | • | | | | | | 21 | 8.9 | 11.1 | 7.3 | 108 | 1.2 | - | | | | | | | | | 22 | 8.9 | 11.0 | | | | | | | | | | | | | 23 | 8.8 | 10.9 | | | | | | | | | | | | | 24 | 8.8 | 10.9 | 7.3 | 108 | 1.3 | - | | | | | | | | | 25 | 8.8 | 10.9 | | | | | | | | | | | | | 26 | 8.8 | 10.9 | | | | | | | | | | | | | 27 | 8.8 | 10.9 | 7.3 | 108 | 1.3 | 47 | | | | | | | | | 28 | 8.8 | 10.9 | | | | | | | | | | | | | 29 | 8.7 | 10.9 | | | | | | | | | | | | | 30 | 8.7 | 10.9 | 7.3 | 107 | 1.2 | - | | | | | | | | | 31 | 8.7 | 10.9 | | | | | | | | | | | | | 32 | 8.7 | 10.9 | | | | | | | | | | | | | 33 | 8.7 | 11.0 | | | | | | | | | | | | | 34 | 8.6 | 11.0 | 7 2 | 110 | 1 0 | _ | | | | | | | | | 35 | 8.6 | 11.0 | 1.3 | 110 | 1.8 | _ | | | | | | | | | 36<br>37 | 8.5 | 11.0<br>11.1 | | | | | | | | | | | | | 38 | 7.9<br>7.6 | 11.5 | | | | | | | | | | | | | 39 | 7.8 | 11.7 | | | | | | | | | | | | | 40 | 7.0 | 11.8 | 7 3 | 130 | 7.4 | 47 | | | | | | | | | 41 | 7.0 | 11.8 | , | 150 | · • <del>-</del> | 77 | | | | | | | | | 42 | 6.9 | 11.8 | | | | | | | | | | | | | 43 | 6.9 | 11.8 | | | | | | | | | | | | | 44 | 6.9 | 11.8 | | | | | | | | | | | | | 45 | 6.8 | 11.8 | 7.3 | 129 | 8.5 | - | | | | | | | | | 46 | 6.8 | 11.8 | | | | | | | | | | | | | 47 | 6.8 | 11.8 | | | | | | | | | | | | | 48 | 6.8 | 11.8 | | | | | | | | | | | | | 49 | 6.8 | 11.8 | | | | | | | | | | | | | 50 | 6.8 | 11.8 | 7.3 | 130 | 8.4 | - | | | , ·. | | | | | | 51 | 6.8 | 11.9 | | | | | | | | | | | | | 52 | 6.8 | 11.8 | | | | | | * | * . | | | | | | 53 . | 6.8 | 11.8 | | | | | | | : | | * | | | | 54 | 6.8 | 11.8 | • | | * | | | | | | | | | | 55 | 6.8 | 11.8 | 7.3 | 130 | 9.6 | 60 | | | | | | | | | 56 | 6.8 | 11.9 | | | | | | | | | | | | | 57 | 6.8 | 11.9 | | | | | | | | | | | | | 58 | 6.8 | 11.7 | Bot | tom | | | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | Sta. A2L 044.9 212.1 Pit River Arm April 2 | . 1984 | @ 1030 Hrs. | Secchi 5 4m | |--------------------------------------------|--------|-------------|-------------| |--------------------------------------------|--------|-------------|-------------| | Depth(m) | Temp.(°C) | | pH | E.C. | Turb. | Alk. | | n) Temp.(°C) | | pH | | Turb. | Alk. | |------------|--------------|--------------|------------------|------|-----------------------------------------|------|----------|--------------------|--------------|------|------|-------|--------| | | | | | | *************************************** | | | | | p | 2.0. | raro. | 11111. | | Surf.<br>1 | 13.0<br>13.0 | 10.5<br>10.8 | 7.4 | 108 | 1.4 | 47 | 66<br>67 | 7.3<br>7.3 | 11.3<br>11.3 | | | | | | 2 | 12.4 | 10.9 | | | | | 68 | 7.3 | 11.3 | | | | | | 3 | 12.4 | 10.8 | 7.4 | 108 | 1.6 | - | 69 | 7.2 | 11.2 | | | | | | 4<br>5 | 12.2 | 10.8 | | | | | 70 | 7.1 | 11.1 | 7.3 | 134 | 9.6 | 60 | | 6 | 12.0<br>11.8 | 10.7<br>10.6 | 7.4 | 106 | 1.4 | _ | 71<br>72 | 7.1<br>7.0 | 11.0<br>11.0 | | | | | | 7 | 11.6 | 10.6 | , . <del>.</del> | 100 | 1.4 | _ | 73 | 7.0 | 11.0 | | | | | | 8 | 11.5 | 10.6 | | | | | 74 | 7.0 | 11.0 | | | | | | 9 | 11.2 | 10.6 | 7.4 | 106 | 1.4 | 46 | 75 | 7.0 | 10.9 | 7.3 | 135 | 10.0 | - | | 10<br>11 | 11.0<br>10.8 | 10.6<br>10.7 | | | | | 76<br>77 | 7.0 | 10.9 | | | | | | 12 | 10.3 | 10.7 | 7.4 | 108 | 1.9 | _ | 78 | 7.0<br>7.0 | 10.8<br>10.8 | | | | | | 13 | 10.7 | 10.7 | | | , | | 79 | 7.0 | 10.7 | | | | | | 14 | 10.5 | 10.8 | | | | | 80 | 7.0 | 10.6 | 7.3 | 135 | 10.0 | 60 | | 15<br>16 | 10.3 | 10.9 | 7.4 | 119 | 5.5 | 52 | 81 | 7.0 | 10.6 | | | | | | 17 | 10.1<br>10.0 | 11.1<br>11.2 | | | | | 82<br>83 | 7.0<br><b>7</b> .0 | 10.5 | | | | | | 18 | 9.9 | 11.2 | 7.4 | 125 | 7.5 | 57 | 83.5 | 7.0 | 10.5 | Bott | OM. | | | | 19 | 9.8 | 11.2 | | | | | | | •. | 2000 | - | | | | 20 | 9.8 | 11.2 | | | | | | ~ | • | | | | | | 21<br>22 | 9.8<br>9.7 | 11.3 | 7.4 | 125 | 7.7 | - | | | | | | | | | 23 | 9.6 | 11.3 | | | | | | | 1.5 | | | | | | 24 | 9.5 | 11.3 | 7.4 | 125 | 7.6 | - | | | | | | | | | 25 | 9.4 | 11.3 | | | | | | | | | | | | | 26<br>27 | 9.3<br>9.3 | 11.3 | 7 / | 105 | 7 7 | | | | | | | | | | 28 | 9.2 | 11.3<br>11.4 | 7.4 | 125 | 7.7 | 57 | | | | | | | | | 29 | 9.1 | 11.4 | | | | | | | | | | | | | 30 | 9.0 | 11.4 | 7.3 | 125 | 7.7 | - | | | | | | | | | 31 | 9.0 | 11.4 | | | | | | | | | | | | | 32<br>33 | 9.0<br>8.9 | 11.4<br>11.4 | | | | | | | | | | | | | 34 | 8.9 | 11.5 | | | | | | | | | | | | | 35 | 8.8 | | 7.3 | 125 | 7.8 | - | | | | | | | | | 36 | 8.8 | 11.5 | | | | | | | | | | | | | 37<br>38 | 8.8<br>8.8 | 11.5<br>11.5 | | | | | | | | | | | | | 39 | 8.8 | 11.5 | | | | | | | | | | | | | 40 | 8.8 | 11.6 | 7.3 | 125 | 7.9 | 58 | | | | | | | | | 41 | 8.8 | 11.6 | | | | | | | | | | | | | 42<br>43 | 8.7 | 11.5 | | | | | | | | | | | | | 44 | 8.7<br>8.6 | 11.5<br>11.5 | | | | | | | | | | | | | 45 | 8.6 | 11.5 | 7.3 | 126 | 8.0 | _ | | | | | | | | | 46 | 8.6 | 11.5 | | | | | | | | | | | | | 47<br>49 | 8.5 | 11.4 | | | | | | | | | | | | | 48<br>49 | 8.4<br>8.3 | 11.4<br>11.4 | | | | | | | | | | | | | 50 | 8.3 | 11.3 | 7.3 | 126 | 7.5 | _ | | | | | | | | | 51 | 8.2 | 11.2 | | | | | | | | | | | | | 52 | 8.1 | 11.1 | | | | | - | | | | | | | | 53<br>54 | 8.0<br>8.0 | 11.1<br>11.1 | | | • | | | | | | | | | | 55 | 7.9 | | 7.3 | 129 | 5.7 | 59 | | | · | | | | | | 56 | 7.8 | 11.2 | , | | ٠ | | | | | | | | | | 57 | 7.8 | 11.2 | | | | | | | | | | | | | 58<br>59 | 7.7 | 11.2<br>11.2 | | | | | | | | | | | | | 60 | 7.7<br>7.7 | 11.2 | 7.3 | 132 | 6.6 | _ | | | | | | | | | 61 | 7.6 | 11.3 | , | 1-4 | 0.0 | | | | | | | | | | 62 | 7.6 | 11.3 | | | | | | | | | | | | | 63 | 7.5 | 11.3 | | | | | | | | | | | | | 64<br>65 | 7.5<br>7.3 | 11.3<br>11.3 | 7 <b>२</b> | 133 | 7.6 | _ | | | | | | | | | <b></b> | , | 41,5 | | | | - | | | | | | | | Sta. A2L 044.9 212.1 Pit River Arm May 7, 1984 @ 0830 Hrs. Secchi 5.5m | Surf. 14.5 10.2 7.7 99 1.0 46 1 14.5 10.2 7.7 101 1.0 - 2 14.5 10.2 7.7 101 1.0 - 4 14.5 10.2 7.6 102 1.0 - 5 14.4 10.2 7.6 102 1.0 - 7 14.4 10.3 | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) Temp.(°C) D.O. pH E.C. Turb. Alk. | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------|------|------|-------|------|--------------------------------------------| | 1 | Surf. | 14.5 | 10.2 | 7.7 | 99 | 1.0 | 46 | | | 2 14.5 10.2 7.7 101 1.0 - 4 14.5 10.2 7.7 101 1.0 - 5 14.4 10.2 6 14.4 10.2 7.6 102 1.0 - 7 14.4 10.3 8 14.4 10.3 9 14.4 10.3 11 14.1 10.2 11 14.1 10.2 12 13.3 10.1 7.5 106 1.5 - 13 13.0 10.0 14 12.9 10.0 15 12.1 10.2 7.5 116 2.5 - 16 11.9 10.2 17 11.5 10.3 18 11.3 10.3 7.5 121 3.1 60 19 11.3 10.4 20 11.2 10.4 21 11.1 10.7 7.5 119 3.1 - 22 11.0 10.4 22 11.0 10.4 23 11.0 10.4 24 10.9 10.3 7.5 120 3.2 - 25 10.8 10.3 26 10.8 10.3 27 10.8 10.2 7.4 120 3.5 60 28 10.6 10.1 29 10.1 10.0 30 10.0 10.0 7.3 119 4.1 - 31 9.8 10.0 32 9.6 10.0 33 9.5 10.0 34 9.5 10.0 35 9.4 10.0 36 9.4 9.9 37 9.3 9.9 38 9.2 10.0 40 9.0 10.0 7.3 115 3.9 55 41 9.0 10.0 42 9.0 10.0 43 9.5 10.0 44 9.0 10.0 45 9.0 10.0 46 9.0 10.0 47 8.9 10.0 48 8.9 10.0 49 8.9 10.0 50 8.9 10.0 7.3 115 5.1 - 51 8.8 10.0 52 8.8 10.0 53 8.8 10.0 54 8.7 10.0 55 8.8 10.0 55 8.7 10.0 7.3 118 5.5 60 56 8.6 10.0 57 8.6 10.0 57 8.6 10.0 57 8.6 10.0 57 8.6 10.0 57 8.6 10.0 57 8.6 10.0 57 8.6 10.0 57 8.6 10.0 | | | | | | • | • | | | 4 14.5 10.2 5 14.4 10.2 6 14.4 10.2 7 14.4 10.3 8 14.4 10.3 9 14.4 10.3 7.6 101 1.0 47 10 14.3 10.2 11 14.1 10.2 12 13.3 10.1 7.5 106 1.5 13 13.0 10.0 14 12.9 10.0 15 12.1 10.2 7.5 116 1.9 10.3 18 11.3 10.3 7.5 121 3.1 60 19 11.3 10.4 20 11.2 10.4 21 11.1 10.4 7.5 119 3.1 22 11.0 10.4 23 11.0 10.4 24 10.9 10.3 25 10.8 10.3 26 10.8 10.3 26 10.8 10.3 27 10.8 10.2 7.4 120 30 10.0 10.0 7.3 119 4.1 31 32 9.6 10.0 33 9.5 10.0 34 9.5 10.0 35 9.4 10.0 7.3 117 4.1 36 9.4 9.9 37 9.3 9.9 38 9.2 10.0 40 9.0 10.0 7.3 115 3.9 55 41 9.0 10.0 44 9.0 10.0 45 9.0 10.0 46 9.0 10.0 47 8.9 10.0 48 8.9 10.0 50 8.9 10.0 73 115 5.1 51 51 8.8 10.0 52 8.8 10.0 53 8.8 10.0 54 8.7 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 8.6 10.0 75 76 77 77 78 79 79 79 79 79 | | | | | | | | | | 5 | 3 | 14.5 | 10.2 | 7.7 | 101 | 1.0 | - | | | 7 | 4 | 14.5 | 10.2 | | | | | | | 7 | 5 | 14.4 | 10.2 | | | | | | | 8 14.4 10.3 7.6 10 1.0 47 10 14.3 10.2 1 1.0 47 11 14.1 10.2 1 1.5 - 13 13.0 10.0 1.5 - 1.0 0 14 12.9 10.0 1.5 12.1 10.2 7.5 116 2.5 - 15 12.1 10.2 7.5 116 2.5 - 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 | 6 | | | 7.6 | 102 | 1.0 | - | | | 9 | | | | | | | | | | 10 | | | | | | | | | | 11 | | | | 7.6 | 101 | 1.0 | 47 | | | 12 | | | | | | | | | | 13 | | | | | | | | | | 14 12,9 10.0 15 12.1 10.2 7.5 116 2.5 - 16 11.9 10.2 1 10.3 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | | | | 7.5 | 106 | 1.5 | - | | | 15 | | | | | | | | | | 16 | | | | 7 C | 116 | 2 5 | | | | 17 | | | | 1.5 | 110 | 2.5 | _ | | | 18 | | | | | | | | | | 19 | | | | 7 5 | 121 | 3 1 | 60 | | | 20 | | | | | | ٠ | 00 | <b>∢</b> | | 21 | | | | | | | | •. | | 22 | | | | 7.5 | 119 | 3.1 | _ | | | 11.0 10.4 24 10.9 10.3 7.5 120 3.2 - 25 10.8 10.3 26 10.8 10.3 27 10.8 10.2 7.4 120 3.5 60 28 10.6 10.1 29 10.1 10.0 30 10.0 10.0 7.3 119 4.1 - 31 9.8 10.0 32 9.6 10.0 33 9.5 10.0 34 9.5 10.0 35 9.4 10.0 7.3 117 4.1 - 36 9.4 9.9 37 9.3 9.9 38 9.2 10.0 39 9.2 10.0 40 9.0 10.0 7.3 115 3.9 55 41 9.0 10.0 42 9.0 10.0 43 9.0 10.0 44 9.0 10.0 45 9.0 10.0 47 8.9 10.0 48 8.9 10.0 49 8.9 10.0 50 8.9 10.0 7.3 115 5.1 - 51 8.8 10.0 52 8.8 10.0 53 8.8 10.0 54 8.7 10.0 7.3 118 5.5 60 56 8.6 10.0 | | | | | | | | <b>્ર</b> * | | 24 | | | | | | | | | | 25 | 24 | | | 7.5 | 120 | 3.2 | - | | | 27 | | | | | | | | | | 28 | | | 10.3 | | | | | | | 29 | 27 | 10.8 | 10.2 | 7.4 | 120 | 3.5 | 60 | | | 30 | | | | | | | | | | 31 | | | | | | | | | | 32 | | | | 7.3 | 119 | 4.1 | - | | | 33 | | | | | | | | | | 34 | | | | | | | | | | 35 | | | | | | | | | | 36 | | | | | | , , | | | | 37 | | | | 1.3 | 11/ | 4.1 | - | | | 38 | | | | | | | | | | 39 | | | | | | | | | | 40 | | | | | | | | | | 41 | | | | 7.3 | 115 | 3.9 | 55 | | | 42 | | | | | | | | | | 43 | | | | | | | | | | 45 9.0 10.0 7.3 115 4.5 - 46 9.0 10.0 47 8.9 10.0 48 8.9 10.0 49 8.9 10.0 50 8.9 10.0 7.3 115 5.1 - 51 8.8 10.0 52 8.8 10.0 53 8.8 10.0 54 8.7 10.0 55 8.7 10.0 7.3 118 5.5 60 56 8.6 10.0 57 8.6 10.0 | | | | | | | | | | 46 9.0 10.0<br>47 8.9 10.0<br>48 8.9 10.0<br>49 8.9 10.0<br>50 8.9 10.0 7.3 115 5.1 -<br>51 8.8 10.0<br>52 8.8 10.0<br>53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | 10.0 | | | | | | | 47 8.9 10.0<br>48 8.9 10.0<br>49 8.9 10.0<br>50 8.9 10.0 7.3 115 5.1 -<br>51 8.8 10.0<br>52 8.8 10.0<br>53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | 7.3 | 115 | 4.5 | - | | | 48 8.9 10.0<br>49 8.9 10.0<br>50 8.9 10.0 7.3 115 5.1 -<br>51 8.8 10.0<br>52 8.8 10.0<br>53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | | | | | | | 49 8.9 10.0<br>50 8.9 10.0 7.3 115 5.1 -<br>51 8.8 10.0<br>52 8.8 10.0<br>53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | | | | | | | 50 8.9 10.0 7.3 115 5.1 - 51 8.8 10.0 52 8.8 10.0 53 8.8 10.0 54 8.7 10.0 55 8.7 10.0 7.3 118 5.5 60 56 8.6 10.0 57 8.6 10.0 | | | | | | | | | | 51 8.8 10.0<br>52 8.8 10.0<br>53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | | | | | | | 52 8.8 10.0<br>53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | 7.3 | 115 | 5.1 | - | • • | | 53 8.8 10.0<br>54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | | | | | | | 54 8.7 10.0<br>55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | | | | | | | 55 8.7 10.0 7.3 118 5.5 60<br>56 8.6 10.0<br>57 8.6 10.0 | | | | | | | • | | | 56 8.6 10.0<br>57 8.6 10.0 | | | | 7 3 | 118 | 5 5 | 60 | · | | 57 8.6 10.0 | | | | 1.5 | LIO | ر. ر | 80 | | | | | | | | | | | | | 58 8.6 9.9 Bottom | | | | Bott | om | | | | | | Sta. A2 | L 044 | .9 21 | 2.1 Pi | t River | Arm | une 5, 1984 @ 0800 Hrs. Secchi 5. | 3m | | |----------|--------------|------------|-------|--------|---------|------|-----------------------------------|----|------| | Depth(m) | Temp.(°C) | | | | Turb. | Alk. | Depth(m) Temp.(°C) D.O. pH E. | | Alk. | | Surf. | 20.0 | 8.6 | 7.6 | 109 | 1.3 | 47 | 66 8.6 7.0 | | | | 1 | 20.0 | 8.6 | | | | | 67 8.5 6.8 | | | | 2<br>3 | 20.0 | 8.6 | 7.5 | 109 | 1.5 | _ | 68 8.5 6.6<br>69 8.3 6.4 | | | | 4 | 20.1<br>20.1 | 8.5<br>8.5 | 1.5 | 103 | 1.5 | | 70 8.2 6.2 | | | | 5 | 19.5 | 8.6 | | | | | 71 8.2 6.1 Bottom | | | | 6 | 18.7 | 8.9 | 7.7 | 120 | 1.5 | 54 | | | | | 7<br>8 | 17.7<br>17.0 | 8.7<br>8.7 | | | | | | | | | 9 | 16.4 | | 7.7 | 129 | 1.5 | 59 | | | | | 10 | 15.8 | 8.3 | | | | | | | | | 11<br>12 | 15.6<br>15.5 | 8.3<br>8.2 | 7 4 | 130 | 1.6 | _ | | | | | 13 | 15.4 | 8.1 | 7.0 | 130 | 1.0 | | | | | | 14 | 14.8 | 7.9 | | | | | | | | | 15 | 14.5 | 7.9 | 7.5 | 129 | 1.6 | - | | | | | 16<br>17 | 14.2<br>13.6 | 7.7<br>8.1 | | | | | | | | | 18 | 13.2 | 8.1 | 7.4 | 127 | 2.0 | 58 | | | | | 19 | 12.7 | 8.1 | | | | | <b></b> | | | | 20 | 12.2<br>11.9 | 7.6<br>7.7 | 7 3 | 125 | 2.2 | _ | | | | | 21<br>22 | 11.4 | 7.8 | 7.5 | 123 | 2.2 | | • | | | | 23 | 11.2 | 7.7 | | | | | | | | | 24 | 11.0 | 7.7 | 7.3 | 125 | 2.5 | - | | | | | 25<br>26 | 10.9<br>10.9 | 7.7<br>7.8 | | | | | | | | | 27 | 10.8 | 7.8 | 7.3 | 125 | 2.7 | 58 | | | | | 28 | 10.7 | 7.9 | | | | | | | | | 29<br>30 | 10.6<br>10.5 | 7.9<br>7.9 | 7 3 | 125 | 2.7 | _ | | | | | 31 | 10.4 | 8.0 | , | 123 | 2.7 | | | | | | 32 | 10.2 | 8.0 | | | | | | | | | 33 | 10.1 | 8.0 | | | | | | | | | 34<br>35 | 10.0<br>9.9 | 8.0<br>7.9 | 7.3 | 123 | 3.3 | - | | | | | 36 | 9.8 | 7.9 | | | | | | | | | 37 | 9.7 | 7.9 | | | | | | | | | 38<br>39 | 9.6<br>9.5 | 8.0<br>8.0 | | | | | | | | | 40 | 9.4 | 7.9 | 7.3 | 122 | 3.3 | 54 | | | | | 41 | 9.3 | 7.9 | | | | | | | | | 42<br>43 | 9.2<br>9.2 | 7.9<br>7.9 | | | | | | | | | 44 | 9.2 | 8.0 | | | | | | | | | 45 | 9.2 | 8.0 | 7.3 | 121 | 3.4 | - | | | | | 46<br>47 | 9.1<br>9.1 | 7.9<br>8.0 | | | | | | | | | 48 | 9.1 | 7.9 | | | | | | | | | 49 | 9.0 | 7.9 | | | | | | | | | 50 | 9.0 | 7.9 | 7.3 | 121 | 3.6 | - | • ` | | | | 51<br>52 | 9.0<br>9.0 | 7.9<br>7.9 | | | | | | * | | | | . 8.9 | 7.9 | | | | • | | | | | 54 | 8.9 | 7.8 | | 100 | | | ·- | | | | 55<br>56 | 8.9<br>8.9 | 7.8 | 7.3 | 122 | 4.0 | 55 | | | | | 57 | 8.8 | 7.7 | | | | | | | | | 58 | 8.8 | 7.6 | | | | | | | | | 59<br>60 | 8.8<br>8.8 | 7.5 | 7 2 | 123 | 4.8 | _ | | | | | 61 | 8.8 | 7.4 | , . 2 | 143 | →,0 | ٠ | | | | | 62 | 8.8 | 7.4 | | | | | | | | | 63<br>64 | 8.7<br>8.7 | 7.3<br>7.2 | | | | | | | | | 65 | 8.6 | | | 126 | 5.6 | 56 | | | | | | | | | | | | | | | Sta. A2L 044.9 212.1 Pit River Arm July 10, 1984 @ 0830 Hrs. Secchi 3.0m | Alk. | Turb. | E.C. | Hq | D.0. | Temp.(°C) | Depth(m) | Alk. | Turb. | E.C. | Нq | D.0. | Temp.(°C) | Depth(m) | |------|-------|------|------|------|-----------|----------|------|--------------|------|-----|------------|--------------|----------------------------| | _ | 4.5 | 125 | 7.0 | 7.3 | 11.7 | 70 | 52 | 0.4 | 108 | 7.7 | 8.1 | 26.8 | Surf. | | 60 | 4,5 | 126 | 7.0 | 6.5 | 11.7 | 74 | | | | | 8.1 | 26.8 | 1 | | | | ωo | Bott | - | - | 75 | | | | | 8.1 | 26.8 | 2 | | | | | | | | | _ | 0.6 | 109 | 7.7 | 8.1 | 26,8 | 2<br>3<br>5<br>6<br>7<br>8 | | | | | | | | | | | | | 8.2 | 26.8 | 4 | | | | | | | | | | | | | 8.2 | 26.7 | 5 | | | | | | | | | - | 0.5 | 108 | 7.6 | 8.6 | 24.9 | 9 | | | | | | | | | | | | | 8.6 | 24.2 | 7 | | | | | | | | | | | | | 8.2 | 23.2 | 8 | | | | | | | | | 58 | 0.6 | 125 | 7.6 | 8.6 | 21.1 | 6 | | | | | | | | | | | | | 8.5 | 20.3 | 10 | | | | | | | | | _ | 0 r | 120 | | 8.6 | 19.4 | 11 | | | | | | | | | _ | 1.0 | 130 | 7.6 | 8.6 | 18.9 | 12 | | | | | | | | | | | | | 8.9 | 18.3 | 13 | | | | | | | | | - | 1.1 | 001 | 7.5 | 8.8<br>8.7 | 18.2 | 14 | | | | | | | | | | 1.1 | €21 | ٠.١ | 8.5 | 18.0<br>17.5 | 15 | | | | | | | | | | | | | 8.4 | 17.1 | 16<br>17 | | | | | | | | | 62 | 1.1 | 126 | 7.3 | 8,1 | 16.8 | 18 | | | | | | | | | | *** | 031 | | 0.8 | 15.9 | 19 | | | | | | | | | | < | | | 0.8 | 15.3 | 20 | | | | | | | | | _ | ' 1.5 | 123 | 7.3 | 8.1 | 15.0 | 21 | | | | | | | | | | | | | 8.1 | 14.7 | 22 | | | | | | | | | | , <u>.</u> • | | | 8.1 | 14.4 | 23 | | | | | | | | | - | 1.5 | 122 | 7.3 | 8.2 | 14.1 | 24 | | | | | | | | | | | | | 8.4 | 13.8 | 25 | | | | | | | | | | | | | 8.5 | 13.5 | 26 | | | | | | | | | 58 | 1.2 | 118 | 7.3 | 8.7 | 13.2 | 27 | | | | | | | | | | | | | 8.8 | 12.9 | 28 | | | | | | | | | | | | | 8.8 | 12.6 | 29 | | | | | | | | | _ | 1.8 | 118 | 7.3 | 8.8 | 12.3 | 30 | | | | | | | | | | | | | 8.8 | 12.0 | 31 | | | | | | | | | | | | | 8.7 | 11.8 | 32 | | | | | | | | | | | | | 8.7 | 11.8 | 33 | | | | | | | | | | | | | 8.7 | 11.4 | 34 | | | | | | | | | _ | 2.2 | 121 | 7.3 | 8.7 | 11.3 | 35 | | | | | | | | | | | | | 8.7 | 11.2 | 36 | | | | | | | | | | | | | 8.7 | 11.1 | 37 | | | | | | | | | | | | | 8.7<br>8.7 | 11.0<br>10.9 | 38 | | | | | | | | | 59 | 2.3 | 122 | e 7 | 8.7 | 10.9 | 39<br>40 | | | | | | | | | | C. 2 | 221 | ٠.١ | 8.7 | 10.8 | 40 | | | | | | | | | | | | | 8.7 | 10.6 | 42 | | | | | | | | | | | | | 8.7 | 10.5 | 43 | | | | | | | | | | | | | 8.7 | 10.3 | 44 | | | | | | | | | _ | 2.5 | 121 | 7.3 | 8.7 | 10.3 | 45 | | | | | | | | | | | | | 8.7 | 10.2 | 46 | | | | | | | | | | | | | 8.7 | 10,2 | 4.7 | | | | | | | | | | | | | 8.7 | 10.1 | 48 | | | | | | | | | | | | | 8.7 | 10.1 | 49 | | | | | | | | | | 2.7 | 120 | 7.2 | 8.6 | 10.1 | 50 | | | | | | | | | 57 | ~ 2.6 | 120 | 7.2 | 8.6 | 12.2 | 55 | | | | | | | | | | 3.0 | 120 | 7.2 | | 11.7 | 09 | | | | | | | | | 57 | 3.4 | 121 | 7.1 | 7.7 | 11.7 | 65 | | | | | | | | | | | | | | | | | | Sta. A2L | 044. | 9 212 | .1 Pit | River | Arm | August 13, 1 | .984 @ 0930 | Hrs. | Secc | hi 3.4 | m | | |-----------------|--------------|------------|-------|--------|-------|------|--------------|-------------|------|------------|--------|------------|---------| | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | | Temp.(°C) | D.O. | | E.C. | | Alk. | | Surf. | 26.0 | 8.3 | 8.0 | 113 | 1.5 | 48 | 66 | 9.7 | 1.9 | | | | | | 1 | 26.0 | 8.2 | | | | | 67 | 9.6 | 1.8 | | | | | | 2 | 26.0 | 8.0 | | | | | 68 | 9.5 | 1.7 | | | | | | 3<br>4 | 25.8 | 7.9 | 8.0 | 113 | 1.1 | - | 69 | 9.4 | 1.6 | 7.0 | | 2. | | | 5 | 25.6<br>25.6 | 7.9<br>7.8 | | | | | 70<br>71 | 9.3<br>9.2 | 1.4 | 7.0<br>7.0 | 133 | 3.1<br>5.0 | -<br>61 | | 6 | 25.5 | 7.8 | 8.0 | 113 | 0.6 | _ | 72 | 9.1 | 1.3 | 7.0 | 137 | ٠,٠ | OL | | 7 | 25.5 | 7.7 | 0.0 | | ••• | | 73 | 9.1 | 0.9 | | | | | | 8 | 25.3 | 6.3 | | | | | 73.5 | - | _ | Bott | om | | | | 9 | 24.2 | 4.9 | 7.2 | 117 | 0.8 | 52 | | | | | | | | | 10 | 22.8 | 4.0 | | | | | | | | | | | | | 11 | 21.4 | 5.1 | 7 / | 122 | 1.0 | 60 | | | | | | | | | 12<br>13 | 20.1<br>19.9 | 6.0<br>6.2 | 7.4 | 133 | 1.0 | 60 | | | | | | | | | 14 | 19.2 | 6.5 | | | | | | | | | | | | | 15 | 19.0 | 6.4 | 7.4 | 134 | 0.9 | _ | | | | | | | | | 16 | 18.8 | 6.5 | | | | | | | | | | | | | 17 | 18.7 | 6.6 | | | | | | | | | | | | | 18 | 18.5 | 6.5 | 7.4 | 135 | 1.1 | - | | | | | | | | | 19 | 18.4 | 6.4 | | | | | | | •< | | | | | | 20<br>21 | 18.2<br>18.1 | 6.3<br>6.2 | 7.3 | 135 | 1.0 | 62 | | | | | | | | | 22 | 17.7 | 5.8 | ,., | 133 | 1.0 | 02 | | | | | | | | | 23 | 17.2 | 5.2 | | | | | | | JA* | | | | | | 24 | 16.8 | 5.1 | 7.3 | 131 | 1.3 | - | | | | | | | | | 25 | 16.3 | 5.1 | | | | | | | | | | | | | 26 | 16.0 | 5.1 | | | | | | | | | | | | | 27 | 15.7 | 5.1 | 7.3 | 131 | 1.3 | - | | | | | | | | | 28<br>29 | 15.4<br>15.0 | 5.1<br>5.1 | | | | | | | | | | | | | 30 | 14.7 | 5.1 | 7 3 | 130 | 1.3 | 60 | | | | | | | | | 31 | 14.4 | 5.1 | ,., | 150 | 1.3 | 00 | | | | | | | | | 32 | 14.2 | 5.1 | | | | | | | | | | | | | 33 | 13.9 | 5.1 | | | | | | | | | | | | | 34 | 13.8 | 5.1 | | | _ | | | | | | | | | | 35 | 13.5 | 5.2 | 7.3 | 127 | 1.7 | - | | | | | | | | | 36<br>37 | 13.1<br>12.8 | 5.3<br>5.3 | | | | | | | | | | | | | 38 | 12.6 | 5.3 | | | | | | | | | | | | | 39 | 12.3 | 5.3 | | | | | | | | | | | | | 40 | 12.2 | 5.3 | 7.3 | 125 | 1.9 | - | | | | | | | | | 41 | 12.1 | 5.3 | | | | | | | | | | | | | 42 | 12.0 | 5.2 | | | | | | | | | | | | | 43<br>44 | 11.9 | 5.1 | | | | | | | | | | | | | 45 | 11.8<br>11.5 | 5.0<br>5.0 | 7 2 | 126 | 2.1 | 57 | | | | | | | | | 46 | 11.3 | 5.0 | 1.12 | 120 | 2.1 | ٠, | | | | | | | | | 47 | 11.2 | 4.9 | | | | | | | | | | | | | 48 | 11.1 | 4.8 | | | | | | | | | | | | | 49 | 11.0 | 4.7 | | | | | | | | | | | | | 50 | 11.0 | 4.5 | 7.2 | 127 | 2.4 | - | | | • ** | | | | | | 51<br>52 | 10.9<br>10.8 | 4.3<br>4.1 | | | | | | | | | | | | | 53 | 10.7 | 3.9 | | | | | | | | | | | | | 54 | 10.6 | 3.7 | • | | ٠. | | | | | | | | | | 55 | 10.5 | 3.2 | 7.1 | 129 | 2.1 | - | | | | | | | | | 56 | 10.4 | 3.0 | | | | | | | | | | | | | 57 | 10.3 | 2.7 | | | | | | | | | | | | | 58<br><b>59</b> | 10.3<br>10.2 | 2.5 | | | | | | | | | | | | | 60 | 10.2 | | 7.0 | 131 | 2.5 | 58 | | | | | | | | | 61 | 10.0 | 2.2 | | | | | | | | | | | | | 62 | 10.0 | 2.0 | | | | | | | | | | | | | 63 | 9.9 | 2.0 | | | | | | | | | | | | | 64 | 9.9 | 1.9 | 7 ^ | 120 | 2 / | | | | | | | | | | 65 | 9.8 | 1.9 | 7.0 | 132 | 2.4 | - | | | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 0 | 44.9 | 212.1 | Pit R | iver Ar | m Sep | tember 11, | 1984 @ 0815 | Hrs. | Sec | chi 5. | Om | | |----------|--------------|------------|-------|-------|---------|--------------|------------|-------------|------|------|-----------|-------|------| | Depth(m) | Temp.(°C) | | | | Turb. | Alk. | | Temp.(°C) | | pН | E.C. | Turb. | Alk. | | Surf. | 23.6 | 7.8 | 7.8 | 118 | 0.8 | 52 | 66 | 9.8 | 0.4 | | | | | | 1 | 23.6 | 7.8 | | | | | 67<br>68 | 9.7<br>9.3 | 0.3 | | | | | | 2<br>3 | 23.6<br>23.6 | 7.8<br>7.7 | 7.8 | 118 | 0.9 | _ | 69 | 9.1 | 0.1 | | | | | | 4 | 23.6 | 7.7 | , | | • • • | | 70 | 9.1 | 0.0 | 6.9 | 137 | 4.4 | 63 | | 5 | 23.5 | 7.6 | | | | | 71 | 9.0 | 0.0 | | | | | | 6 | 23.5 | 7.6 | 7.8 | 118 | 0.7 | - | 72<br>72.8 | 9.0<br>9.0 | 0.0 | Bott | O.M. | | | | 7<br>8 | 23.4<br>23.2 | 7.3<br>7.1 | | | | | 72.0 | 7.0 | 0.0 | 5000 | · · · · · | | | | 9 | 23.1 | 6.4 | 7.4 | 119 | 0.7 | 53 | | | | | | | | | 10 | 22.9 | 5.2 | | | | | | | | | | | | | 11 | 21.4 | 3.2 | 7 2 | 120 | 0.7 | _ | | | | | | | | | 12<br>13 | 20.7<br>20.0 | 4.8<br>5.7 | 7.2 | 129 | 0.7 | <del>-</del> | | | | | | | | | 14 | 19.3 | 6.2 | | | | | | | | | | | | | 15 | 19.0 | 6.6 | 7.3 | 132 | 0.6 | - | | | | | | | | | 16 | 18.7 | 6.8 | | | | | | | | | | | | | 17<br>18 | 18.4<br>18.2 | 7.2<br>7.5 | 7 5 | 134 | 0.9 | 60 | | | | | | | | | 19 | 18.0 | 7.6 | | *** | | | | | | | | | | | 20 | 17.9 | 7.7 | | | | | | _ | ٠, | | | | | | 21 | 17.4 | 8.0 | 7.6 | 136 | 0.9 | - | | | | | | | | | 22<br>23 | 17.2<br>17.2 | 8.0<br>8.0 | | | | | | | | | | | | | 24 | 17.1 | 8.0 | 7.6 | 137 | 1.1 | - | | | | | | | | | 25 | 17.0 | 8.0 | | | | | | | | | | | | | 26 | 17.0 | 8.0 | | 120 | 1 6 | 42 | | | | | | | | | 27<br>28 | 17.0<br>16.9 | 8.0<br>7.9 | 7.5 | 138 | 1.6 | 62 | | | | | | | | | 29 | 16.9 | 7.9 | | | | | | | | | | | | | 30 | 16.8 | 7.8 | 7.5 | 138 | 1.5 | - | | | | | | | | | 31 | 16.8 | 7.7 | | | | | | | | | | | | | 32<br>33 | 16.2<br>15.2 | 6.9<br>5.6 | | | | | | | | | | | | | 34 | 15.1 | 5.6 | | | | | | | | | | | | | 35 | 14.8 | 5.5 | 7.2 | 132 | 2.2 | - | | | | | | | | | 36 | 14.6 | 5.5 | | | | | | | | | | | | | 37<br>38 | 14.3<br>14.1 | 5.5<br>5.4 | | | | | | | | | | | | | 39 | 13.9 | 5.5 | | | | | | | | | | | | | 40 | 13.8 | 5.5 | 7.1 | 131 | 2.2 | 59 | | | | | | | | | 41 | 13.6 | 5.6 | | | | | | | | | | | | | 42<br>43 | 13.3<br>13.1 | 5.6<br>5.5 | | | | | | | | | | | | | 44 | 12.9 | 5.4 | | | | | | | | | | | | | 45 | 12.6 | 5.0 | | 130 | 2.1 | - | | | | | | | | | 46 | 12.5 | 4.9<br>4.6 | | | | | | | | | | | | | 47<br>48 | 12.3<br>12.1 | 4.3 | | | | | | | | | | | | | 49 | 12.0 | 4.1 | | | | | | | | | | | | | 50 | 11.9 | 3.6 | | 131 | 2.7 | - | | | | | | | | | 51 | 11.8<br>11.8 | 3.6<br>3.3 | | | | | | | | | | | | | 52<br>53 | 11.5 | 2.8 | | | | | | | | | | | | | 54 | 11.3 | 2.0 | - | | | | *. | | | | | | | | 55 | 11.2 | | | 134 | 2.2 | 60 | | | • | | | | | | 56<br>57 | 11.1<br>10.9 | 1.5<br>1.3 | | | | | | | | | | | | | 57<br>58 | 10.9 | 1.1 | | | | | | | | | | | | | 59 | 10.8 | 1.0 | | | | | | | | | | | | | 60 | 10.6 | | | 136 | 3.6 | - | | | | | | | | | 61 | 10.4 | 1.1<br>1.1 | | | | | | | | | | | | | 62<br>63 | 10.3<br>10.2 | 1.0 | | | | | | | | | | | | | 64 | 10.0 | 0.7 | | | | | | | | | | | | | 65 | 9.9 | 0.5 | 6.9 | 136 | 3.6 | - | | | | | | | | Sta. A2L 045.4 225.5 Little Backbone Creek Inlet May 13, 1983 @ 1300 Hrs. Secchi 2.3m | | | | | | Backbone | Creek | Inlet May | 13, 1983 | d 1300 | Hrs. | Seco | hi 2.3m | 1 | |----------|--------------|--------------|---------|------|----------|-------|-----------|-----------|--------|------|------|---------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 14.5 | 10.5 | 7.4 | 73 | 2.9 | 30 | 66 | 7.2 | 10.3 | | | | | | 1 | 14.4 | 10.5 | | | | | 66.3 | - | - | Bot | tom | | | | 2 | 13.3 | 10.5 | | | | | | | | | | | | | 3<br>4 | 12.9 | 10.4 | 7.4 | 74 | 2.4 | - | | | | | | | | | 4 | 12.3 | 10.3 | | | | | | | | | | | | | 5 | 12.1 | 10.3 | | | | | | | | | | | | | 6 | 12.0 | 10.3 | 7.4 | 74 | 2.7 | 28 | | | | | | | | | 7 | 11.9 | 10.3 | | | | | | | | | | | | | 8 | 11.7 | 10.3 | | ٦, | • • | | | | | | | | | | 9 | 11.3 | 10.3 | 7.3 | 74 | 2.4 | - | | | | | | | | | 10 | 11.1 | 10.3 | | | | | | | | | | | | | 11 | 11.0 | 10.2 | 7 2 | 72 | 2.6 | 30 | | | | | | | | | 12<br>13 | 10.9<br>10.5 | 10.2<br>10.1 | 7.2 | 72 | 2.0 | 30 | | | | | | | | | . 14 | 10.3 | 10.1 | | | | | | | | | | | | | 15 | 10.3 | 10.0 | 7.2 | 72 | 2.7 | _ | | | | | | | | | 16 | 10.1 | 10.0 | / · · · | , ~ | | | | | | | | | | | 17 | 10.1 | 10.0 | | | | | | | | | | | | | 18 | 9.9 | 10.0 | 7.2 | 72 | 2.7 | 30 | | | | | | | | | 19 | 9.3 | 10.0 | | | | | | | ٠. | | | | | | 20 | 9.0 | 10.0 | | | | | | • | | | * | | | | 21 | 8.7 | 10.0 | 7.2 | 73 | 2.6 | - | | | | | | | | | 22 | 8.5 | 10.0 | | | | | | | | | | | | | 23 | 8.2 | 10.0 | | | | | | | | | | | | | 24 | 8.1 | 10.0 | 7.2 | 77 | 1.8 | 31 | | | | | | | | | 25 | 8.1 | 10.0 | | | | | | | | | | | | | 26 | 8.1 | 10.0 | | | | | | | | | | | | | 27 | 8.0 | 10.0 | 7.2 | 81 | 3.6 | - | | | | | | | | | 28 | 8.0 | 10.0 | | | | | | | | | | | | | 29 | 8.0 | 10.0 | | | | 2.0 | | | | | | | | | 30 | 8.0 | 10.1 | 7.2 | 80 | 2.2 | 36 | | | | | | | | | 31 | 8.0 | 10.1 | | | | | | | | | | | | | 32<br>33 | 8.0 | 10.1 | | | | | | | | | | | | | 33<br>34 | 7.9<br>7.9 | 10.2<br>10.2 | | | | | | | | | | | | | 35 | 7.9 | 10.2 | 7.2 | 82 | 2.3 | _ | | | | | | | | | 36 | 7.9 | 10.2 | 1.2 | 02 | 2.5 | | | | | | | | | | 37 | 7.9 | 10.2 | | | | | | | | | | | | | 38 | 7.9 | 10.2 | | | | | | | | | | | | | 39 | 7.9 | 10.2 | | | | | | | | | | | | | 40 | 7.8 | 10.2 | 7.2 | 83 | 2.4 | 36 | | | | | | | | | 41 | 7.8 | 10.2 | | | | | | | | | | | | | 42 | 7.8 | 10.2 | | | | | | | | | | | | | 43 | 7.8 | 10.2 | | | | | | | | | | | | | 44 | 7.7 | 10.2 | | | | | | | | | | | | | 45 | 7.7 | 10.2 | 7.2 | 83 | 3.0 | - | | | | | | | | | 46 | 7.7 | 10.2 | | | | | | | | | | | | | 47 | 7.7 | 10.3 | | | | | | | | | | | | | 48 | 7.7 | 10.3 | | | | | | | | | | | | | 49<br>50 | 7.6<br>7.6 | 10.3 | 7.2 | 83 | 3.2 | 36 | | | • " | | | | | | 51 | 7.6 | 10.3<br>10.3 | 1.2 | 0.5 | 3,2 | 30 | | | | | | | | | 52 | 7.6 | 10.3 | | | | | | , | | | | | | | 53 | 7.5 | 10.3 | | | | | 1 | | | | | | | | 54 | 7.5 | 10.3 | | | | | | | | | | | | | 55 | 7.5 | | 7.2 | 84 | 3.4 | 37 | | | | | | | | | 56 | 7.4 | 10.3 | | | | | | | | | | | | | 57 | 7.4 | 10.3 | | | | | | | | | | | | | 58 | 7.4 | 10.3 | | | | | | | | | | | | | 59 | 7.4 | 10.3 | | | | | | | | | | | | | 60 | 7.4 | 10.3 | 7.2 | 86 | 6.4 | 39 | | | | | | | | | 61 | 7.3 | 10.3 | | | | | | | | | | | | | 62 | 7.3 | 10.3 | | | | | | | | | | | | | 63 | 7.3 | 10.3 | | | | | | | | | | | | | 64 | 7.2 | 10.3 | | | | | | | | | | | | | 65 | 7.2 | 10.3 | | | | | | | | | | | | | Depth(m) | Temp.(° | C) D. | .о. р | H E.C | Turb | . Alk | Inlet June | Temp.(°C) | | | | hi 3.5 | _ | |----------|--------------|----------|-------|-------|------|-------|------------|-----------|------|-------|-------|--------|-------------| | Surf. | 22.8 | | | | | | | remp.('C) | D.O. | рH | E.C. | Turb. | <u>A1k.</u> | | 1 | 22.6 | 8.<br>8. | | 7 76 | 1.8 | 34 | 66 | 8.7 | 9.4 | | | | | | 2 | 22.4 | 8. | | | | | 67 | 8.7 | 9.4 | | | | | | 3 | 22.1 | 8. | | 7 76 | , . | | 68 | 8.6 | 9.4 | | | | | | 4 | 21.6 | 8. | | 7 76 | 1.5 | - | 69 | 8.5 | 9.4 | | | | | | 5 | 21.4 | 8. | | | | | 70 | 8.5 | 9.4 | 7.3 | _ | - | _ | | 6 | 21.2 | 8. | | 7 78 | 1 6 | 24 | 71 | 8.5 | 9.4 | | | | | | 7 | 21.0 | 8. | | , ,, | 1.6 | 36 | 72 | 8.4 | 9.4 | | | | | | 8 | 20.8 | 8. | | | | | 73 | 8.4 | 9.4 | | | | | | 9 | 19.8 | 8. | | 7 79 | 1.7 | | 74 | 8.4 | 9.4 | | | | | | 10 | 16.8 | 8. | | ., | 1.7 | _ | 75<br>76 | 8.4 | 9.4 | 7.3 | 84 | 5.0 | 37 | | 11 | 15.7 | 8. | | | | | 76 | 8.4 | 9.4 | | | | | | 12 | 14.9 | 8. | | 94 | 2.4 | 45 | 77 | 8.4 | 9.4 | | | | | | 13 | 14.4 | 8. | | | | 43 | 77.2 | - | - | Botto | O TEE | | | | 14 | 14.0 | 8.9 | | | | | | | | | | | | | 15 | 13.6 | 8.9 | | 82 | 2.4 | _ | | | | | | | | | 16 | 13.1 | 8.9 | | | | | | | | | | | | | 17 | 12.9 | 8.9 | • | | | | | | | | | | | | 18 | 12.6 | 8.9 | 7.4 | 84 | 2.6 | 37 | | | • | | | | | | 19 | 12.4 | 9.0 | | | | | • | | ٠. | | | | | | 20 | 12.3 | 9.0 | | | | | | | | | • | | | | 21 | 12.1 | 9.0 | 7.4 | 82 | 2.6 | _ | | | | | | | | | 22 | 11.9 | 9.1 | | | | | | | •• | | | | | | 23 | 11.8 | 9.1 | | | | | | | | | | | | | 24<br>25 | 11.8 | 9.1 | | 77 | 2.4 | 34 | | | | | | | | | 26 | 11.3 | 9.2 | | | | | | | | | | | | | 27 | 11.1 | 9.2 | | | | | | | | | | | | | 28 | 11.0 | 9.2 | | 77 | 2.4 | - | | | | | | | | | 29 | 11.0 | 9.2 | | | | | | | | | | | | | 30 | 10.9 | 9.2 | | | | | | | | | | | | | 31 | 10.8 | 9.2 | | 81 | 2.6 | 36 | | | | | | | | | 32 | 10.6<br>10.5 | 9.2 | | | | | | | | | | | | | 33 | 10.4 | 9.2 | | | | | | | | | | | | | 34 | 10.4 | 9.2 | | | | | | | | | | | | | 35 | 10.3 | 9.3 | 7 2 | 0.4 | | | | | | | | | | | 36 | 10.1 | 9.3 | 7.3 | 84 | 2.7 | - | | | | | | | | | 37 | 10.0 | 9.3 | | | | | | | | | | | | | 38 | 10.0 | 9.3 | | | | | | | | | | | | | 39 | 9.9 | 9.3 | | | | | | | | | | | | | 40 | 9.9 | 9.3 | 7.3 | 80 | 4.0 | 24 | | | | | | | | | 41 | 9.8 | 9.3 | ٠., | 80 | 4.0 | 36 | | | | | | | | | 42 | 9.7 | 9.3 | | | | | | | | | | | | | 43 | 9.7 | 9.3 | | | | | | | | | | | | | 44 | 9.5 | 9.3 | | | | | | | | | | | | | 45 | 9.5 | 9.3 | 7.3 | 83 | 3.4 | _ | | | | | | | | | 46 | 9.4 | 9.3 | | | 3.4 | | | | | | | | | | 47 | 9.2 | 9.4 | | | | | | | | | | | | | 48 | 9.2 | 9.4 | | | | | | | | | | | | | 49 | 9.2 | 9.4 | | | | | | | • | | | | | | 50 | 9.1 | 9.4 | 7.3 | 82 | 3.8 | 37 | | | - | | | | | | 51 | 9.1 | 9.4 | | | | | | | | | | | | | 52 | 9.0 | 9.4 | | | | | | | + 5 | | ; | | | | 53 | 9.0 | 9.4 | | | • | | 1 1 | | | | | | | | 54 | 9.0 | 9.4 | | | | | | | | | | | | | 55 | 9.0 | | 7.3 | 83 | 4.2 | - | | | | | | | | | 56 | 9.0 | 9.5 | | | | | | | | | | | | | 57 | 9.0 | 9.5 | | | | | | | | | | | | | 58 | 8.9 | 9.5 | | | | | | | | | | | | | 59 | 8.9 | 9.4 | _ | | | | | | | | | | | | 50 | 8.9 | | 7.3 | 82 | 4.8 | 39 | | | | | | | | | 1 | 8.8 | 9.4 | | | | | | | | | | | | | 3 | 8.8 | 9.4 | | | | | | | | | | | | | 4 | 8.7 | 9.4 | | | | | | | | | | | | | 5 | | 9.4 | | | | | | | | | | | | | , | 8.7 | 9.4 | /.3 | 81 | 4.8 | - | | | | | | | | | | Cro 121 | 046 / | 1 212 | 9 Sau | aw Cree | k Arm | June 24, 19 | 983 @ 0900 | Hrs | Secci | ni 4.6 | m | | |----------|--------------|------------|-------|-------|---------|-------|-------------|------------|------------|-------|--------|-------|------| | D 1- (-) | Temp.(°C) | | | | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Deptn(m) | Temp.( C) | | _ pit | 5.0. | 1410. | | | | | | | | | | Surf. | 22.3 | | 7.9 | 103 | 1 | 45 | 66<br>67 | 8.7<br>8.7 | 9.2<br>9.2 | | | | | | 1 | 22.3 | 8.5 | | | | | 68 | 8.7 | 9.1 | | | | | | 2<br>3 | 22.3<br>22.2 | 8.5<br>8.5 | 7.9 | 100 | 1 | 45 | 69 | 8.7 | 9.1 | | | | 4.0 | | 4 | 22.0 | 8.5 | | | | | 70 | 8.6 | 9.1 | 7.3 | 115 | 2 | 49 | | 5<br>6 | 21.9 | 8.4 | | | | | 71<br>72 | 8.6<br>8.6 | 9.1<br>9.1 | | | | | | 6 | 21.7<br>21.4 | 8.4<br>8.3 | 7.8 | 104 | 1 | _ | 73 | 8.5 | 9.1 | | | | | | 7<br>8 | 19.9 | 8.3 | | | | | 74 | 8.5 | 9.0 | | | | | | 9 | 17.0 | 8.3 | 7.4 | 116 | 1 | - | 75 | 8.5 | 9.0 | 7.3 | 117 | 2 | 51 | | 10 | 16.2 | 8.4 | | | | | 76<br>77 | 8.5<br>8.5 | 9.0<br>9.0 | | | | | | 11<br>12 | 16.6<br>16.2 | 8.4<br>8.4 | 7.4 | 118 | 1 | 53 | 7.8 | 8.4 | 9.0 | | | | | | 13 | 16.0 | 8.5 | ,.4 | -10 | _ | | 79 | 8.4 | 8.7 | | | | | | 14 | 15.7 | 8.5 | | | _ | | 80 | 8.4 | 8.5<br>8.1 | | | | | | 15 | 15.2 | 8.5 | 7.3 | 118 | 1 | - | 81<br>81.3 | 8.3 | - | Bott | om | | | | 16<br>17 | 15.1<br>14.6 | 8.5<br>8.6 | | | | | 01.5 | | | | | | | | 18 | 13.9 | 8.6 | 7.3 | 114 | 2 | - | | | | | | | | | 19 | 13.1 | 8.7 | | | | | | _ | ٠. | | | | | | 20 | 12.7 | 9.0 | 7 3 | 105 | 3 | 48 | | | | | • | | | | 21<br>22 | 12.1<br>11.7 | 9.0<br>9.1 | 7.3 | 103 | , | 40 | | | | | | | | | 23 | 11.5 | 9.1 | | | | | | | | | | | | | 24 | 11.4 | 9.1 | 7.3 | 102 | 2 | - | | | | | | | | | 25 | 11.3<br>11.3 | 9.1<br>9.1 | | | | | | | | | | | | | 26<br>27 | 11.3 | 9.1 | 7.3 | 108 | . 2 | _ | | | | | | | | | 28 | 11.1 | 9.1 | | | | | | | | | | | | | 29 | 11.0 | 9.0 | | | • | 49 | | | | | | | | | 30 | 10.9<br>10.9 | 9.0<br>9.0 | 7.3 | 111 | 2 | 49 | | | | | | | | | 31<br>32 | 10.9 | 9.1 | | | | | | | | | | | | | 33 | 10.5 | 9.1 | | | | | | | | | | | | | 34 | 10.4 | 9.1 | | 114 | 2 | _ | | | | | | | | | 35<br>36 | 10.4<br>10.2 | 9.1<br>9.1 | | 114 | 2 | | | | | | | | | | 37 | 10.1 | 9.1 | | | | | | | | | | | | | 38 | 10.1 | 9.1 | | | | | | | | | | | | | 39 | 10.0 | 9.2 | | 113 | 2 | 48 | | | | | | | | | 40<br>41 | 10.0<br>9.9 | 9.2<br>9.2 | | 113 | - | 40 | | | | | | | | | 42 | 9.9 | 9.2 | | | | | | | | | | | | | 43 | 9.8 | 9.3 | | | | | | | | | | | | | 44 | 9.7<br>9.7 | 9.2<br>9.2 | | 3 114 | 2 | _ | | | | | | | | | 45<br>46 | 9.6 | 9.1 | | | _ | | | | | | | | | | 47 | 9.4 | 9.2 | ! | | | | | | | | | | | | 48 | 9.4 | 9.2 | | | | | | | | | | | | | 49<br>50 | 9.2<br>9.1 | 9.2<br>9.2 | | 3 111 | 3 | 51 | | | •** | | | | | | 51 | 9.1 | 9.2 | 2 - | | | | | | | | | • | | | . 52 | 9.1 | 9.2 | | | | | | | | | | | | | 53 | 9.1<br>9.1 | 9.2<br>9.2 | | | | • | | | | | | | | | 54<br>55 | 9.1 | 9.2 | 7. | 3 117 | 2 | - | | | | | | | | | 56 | 9.1 | 9.2 | 2 | | | | | | | | | | | | 57 | 9.1 | 9.2 | | | | | | | | | | | | | 58<br>59 | 9.0<br>9.0 | 9.2 | | | | | | | | | | | | | 60 | 9.0 | 9.3 | 27. | 3 115 | 5 | 49 | | | | | | | | | 61 | 9.0 | 9.: | 2 | | | | | | | | | | | | 62<br>63 | 8.9<br>8.9 | 9.:<br>9.: | | | | | | | | | | | | | 64 | 8.8 | 9. | | | | | | | | | | | | | 65 | 8.8 | | | 3 116 | 2 | - | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 045.4 225.5 Little Backbone Creek Inlet July 27, 1983 @ 1200 Hrs. Secchi 2.6m | Depth(m) | Temp.(°C) | D.0 | . pH | E.C. | Turb. | A 11- | | | | | 1200 | | Seco | | | |----------|--------------|------------|-------|------|-------|------------|-------|-----|---------|----|------|----|------|-------|------| | | | | | | | Alk. | vepth | (m) | Temp.(° | U) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 24.8 | 8.1 | 7,8 | 88 | 1.8 | 39 | | | | | | | | | | | 1 | 24.3 | 8.1 | | | | | | | | | | | | | | | 2 | 24.0 | 8.1 | | | | | | | | | | | | | | | 3<br>4 | 23.5 | 8.1 | 7.9 | 89 | 1.6 | 39 | | | | | | | | | | | 5 | 23.2 | 8.2 | | | | | | | | | | | | | | | 5<br>6 | 23.1<br>23.0 | 8.2 | 7.0 | • | | | | | | | | | | | | | 7 | 22.9 | 8.2 | 7.9 | 90 | 1.4 | - | | | | | | | | | | | 8 | 22.7 | 8.1 | | | | | | | | | | | | | | | 9 | 22.2 | 8.0 | 7.7 | 89 | 1 6 | | | | | | | | | | | | 10 | 20.3 | 7.6 | 1.1 | 07 | 1.6 | - | | | | | | | | | | | 11 | 18.2 | 7.2 | | | | | | | | | | | | | | | 12 | 17.3 | 7.2 | 7.3 | 106 | 1.7 | 49 | | | | | | | | | | | 13 | 16.9 | 7.1 | | 200 | 1., | 7, | | | | | | | | | | | 14 | 16.3 | 7.2 | | | | | | | | | | | | | | | 15 | 16.1 | 7.2 | 7.3 | 105 | 1.9 | _ | | | | | | | | | | | 16 | 16.0 | 7.2 | | | | | | | | | | | | | | | 17 | 15.8 | 7.2 | | | | | | | | | _ | | | | | | 18 | 15.5 | 7.3 | 7.3 | 103 | 2.0 | - | | | | | •. | | | | | | 19 | 15.3 | 7.3 | | | | | | | - | | | | | | | | 20 | 15.0 | 7.4 | | | | | | | | | | | | | | | 21 | 14.9 | 7.5 | 7.3 | 100 | 2.2 | 47 | | | | | 1,4 | | | | | | 22 | 14.6 | 7.6 | | | | | | | | | | | | | | | 23 | 14.2 | 7.6 | | | | | | | | | | | | | | | 24 | 13.9 | 7.8 | 7.2 | 93 | 2.4 | - | | | | | | | | | | | 25 | 13.6 | 7.8 | | | | | | | | | | | | | | | 26<br>27 | 13.2 | 7.9 | | | | | | | | | | | | | | | 28 | 13.0 | 8.1 | 7.2 | 88 | 2.4 | - | | | | | | | | | | | 29 | 12.9<br>12.5 | 8.0 | | | | | | | | | | | | | | | 30 | 12.3 | 8.2 | 7 2 | 0.0 | 2.4 | 20 | | | | | | | | | | | 31 | 12.1 | 8.2<br>8.3 | 7.2 | 88 | 2.4 | 38 | | | | | | | | | | | 32 | 12.0 | 8.4 | | | | | | | | | | | | | | | 33 | 11.9 | 8.3 | | | | | | | | | | | | | | | 34 | 11.5 | 8.3 | | | | | | | | | | | | | | | 35 | 11.3 | 8.4 | 7.2 | 81 | 3.1 | _ | | | | | | | | | | | 36 | 11.3 | 8.4 | | 01 | 3.1 | | | | | | | | | | | | 37 | 11.1 | 8.4 | | | | | | | | | | | | | | | 38 | 11.0 | 8.4 | | | | | | | | | | | | | | | 39 | 11.0 | 8.4 | | | | | | | | | | | | | | | 40 | 11.0 | 8.4 | 7.2 | 81 | 3.5 | 35 | | | | | | | | | | | 41 | 10.9 | 8.4 | | | | | | | | | | | | | | | 42 | 10.9 | 8.4 | | | | | | | | | | | | | | | 43 | 10.8 | 8.4 | | | | | | | | | | | | | | | 44 | 10.8 | 8.5 | | | | | | | | | | | | | | | 45 | 10.6 | 8.5 | 7.2 | 81 | 3.2 | - | | | | | | | | | | | 46 | 10.4 | 8.5 | | | | | | | | | | | | | | | 47 | 10.4 | 8.5 | | | | | | | | | | | | | | | 48<br>49 | 10.3 | 8.5 | | | | | | | | | | | | | | | 50 | 10.2 | 8.5 | 7.0 | | | | | | | | | | | | | | 51 | 10.2<br>10.1 | 8.5 | 7.2 | 84 | 3.5 | <b>3</b> 5 | | | | | 1.1 | | | | | | 52 | 10.1 | 8.5 | .: | | | | | • | | | | | | | | | 53 | 10.0 | 8.5<br>8.3 | | | • | | 7 | | | | ٠ | | | | | | 54 | 10.0 | 8.4 | 7.1 | _ | | | | | | | | | | | | | 55 | 10.0 | 8.4 | | ·m | | | | | | | | | | | | | | 10.0 | J. 4 | Botto | ım | | | | | | | | | | | | | Sta. | A2L 045.4 | 225.5 | Litt | le Bac | kbone ( | reek I | nlet Augusi | t 24, 1983 | @ 114 | 5 Hrs | . Sec | chi 3.4 | ÷m | |------------------|--------------|------------|------------|--------|---------|--------|-------------|------------|------------|-------|-------|---------|------| | epth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | urf. | 24.5 | 7.6 | 7.6 | 94 | 1.8 | 41 | 66 | 9.2 | 8.0 | | | | | | 1<br>2 | 24.5<br>24.2 | 7.5<br>7.6 | | | | | 67<br>68 | 9.2<br>9.2 | 8.0<br>8.0 | 7.1 | 89 | 3.6 | 36 | | 3 | 24.1 | 7.5 | 7.8 | 94 | 1.7 | - | 69 | 9.0 | 8.0 | | 0,5 | 3.0 | 30 | | 4<br>5 | 24.1<br>24.0 | 7.5<br>7.5 | | | | | 69.4 | - | - | Botte | om | | | | 6 | 24.0 | 7.5 | 7.8 | 94 | 1.7 | _ | | | | | | | | | 7 | 23.9 | 7.5 | | | | | | | | | | | | | 8<br>9 | 23.9<br>23.5 | 7.4 | 7 4 | 06 | 1 6 | 20 | | | | | | | | | 10 | 21.6 | 7.2<br>6.3 | 7.6 | 96 | 1.6 | 39 | | | | | | | | | 11 | 19.8 | 6.0 | | | | | | | | | | | | | 12 | 18.5 | 5.9 | 7.1 | 109 | 1.6 | - | | | | | | | | | 13<br>14 | 17.9<br>17.4 | 6.0<br>6.0 | | | | | | | | | | | | | 15 | 17.1 | 6.1 | 7.1 | 111 | 1.8 | _ | | | | | | | | | 16 | 16.9 | 6.1 | | | | | | | | | | | | | 17<br>18 | 16.8<br>16.5 | 6.2<br>6.3 | 7.2 | 115 | 1.8 | 50 | | | | | | | | | 19 | 16.3 | 6.3 | | 113 | 1.0 | ,,, | | | ٠. | | | | | | 20 | 16.1 | 6.3 | <b>,</b> . | | | | | | | | * | | | | 21<br>22 | 15.9<br>15.8 | 6.3 | 7.2 | 116 | 1.8 | - | | | 7,5 | - | | | | | 23 | 15.6 | 6.5 | | | | | | | | | | | | | 24 | 15.4 | 6.7 | 7.2 | 110 | 2.0 | - | | | | | | | | | 25<br>2 <b>6</b> | 15.2<br>15.1 | 6.6 | | | | | | | | | | | | | 27 | 14.9 | 6.7<br>6.7 | 7.2 | 108 | 2.2 | 39 | | | | | | | | | 28 | 14.6 | 6.9 | | | | - | | | | | | | | | 29 | 14.3 | 7.1 | | | | | | | | | | | | | 30<br>31 | 14.1<br>13.8 | 7.1<br>7.3 | 7.2 | 95 | 2.4 | - | | | | | | | | | 32 | 13.5 | 7.4 | | | | | | | | | | | | | 33 | 13.2 | 7.6 | | | | | | | | | | | | | 34<br>35 | 12.9<br>12.7 | 7.6 | 7 2 | 90 | 2.6 | | | | | | | | | | 36 | 12.4 | 7.6<br>7.7 | 7.2 | 90 | 2.0 | - | | | | | | | | | 37 | 12.2 | 7.8 | | | | | | | | | | | | | 38 | 12.0 | 7.8 | | | | | | | | | | | | | 39<br>40 | 11.8<br>11.7 | 8.0<br>8.0 | 7.2 | 87 | 2.8 | 39 | | | | | | | | | 41 | 11.6 | 8.0 | | • | | | | | | | | | | | 42 | 11.4 | 8.0 | | | | | | | | | | | | | 43<br>44 | 11.2<br>11.1 | 8.1<br>8.1 | | | | | | | | | | | | | 45 | 10.9 | 8.1 | 7.2 | 86 | 2.8 | - | | | | | | | | | 46 | 10.9 | 8.1 | | | | | | | | | | | | | 47<br>48 | 10.8<br>10.7 | 8.1<br>8.2 | | | | | | | | | | | | | 49 | 10.6 | 8.2 | | | | | | | | | | | | | 50 | 10.6 | 8.2 | 7.3 | 88 | 3.0 | - | | | • | | | | | | 51<br>52 | 10.5 | 8.1 | • | | | | | * | 1 - 1 | | | | | | 52<br>53 | 10.4 | 8.1<br>8.1 | | | | | | | | | , | | | | 54 | 10.3 | 8.1 | | | | | | | | • | | | | | 55 | 10.1 | 8.2 | 7.1 | 87 | 3.1 | 35 | | | | | | | | | 56<br>57 | 10.1<br>10.0 | 8.2 | | | | | | | | | | | | | 58 | 9.9 | 8.1 | | | | | | | | | | | | | 59 | 9.9 | 8.2 | _ | | | | | | | | | | | | 60<br>61 | 9.8<br>9.6 | 8.2 | 7.0 | 88 | 9.3 | - | | | | | | | | | 52 | 9.5 | 8.2 | | | | | | | | | | | | | 63 | 9.4 | 8.1 | | | | | | | | | | | | | 54<br>55 | 9.4 | 8.1 | 7.0 | 00 | 4.3 | | - | | | | | | | | 3.5 | 9,3 | 8.1 | 7.0 | 90 | 4.2 | - | | | | | | | | | Sta. A2L | 045.4 225. | 5 Lit | tle E | ackbor | ne Creek | Inlet | Sta. A2L | 045.4 225. | 5 Lit | tle E | ackbon | e Creek | Inlet | |----------|--------------|------------|------------------|--------|----------|-------|----------|--------------|------------|------------|--------|---------|------------| | | 3, 1983 @ C | 810 н | rs. | Secchi | i 5.3m | | October | 26, 1983 @ | 0815 | Hrs. | | i 6.4m | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | | D.O. | pН | E.C. | Turb. | Alk. | | G | 10.0 | | | | | | | | | | | | | | Surf. | 19.8 | 8.2 | 8.0 | 104 | 0.4 | 43 | Surf. | 17.8 | 8.7 | 7.4 | 107 | 0.6 | 48 | | 1<br>2 | 19.8<br>19.8 | 8.2 | | | | | 1 | 17.8 | 8.7 | | | | | | 3 | 19.8 | | 7 6 | 104 | 0 5 | | 2 | 17.8 | 8.7 | | | | | | 4 | 19.8 | 8.2 | 7.6 | 104 | 0.5 | _ | 3 | 17.8 | 8.6 | 7.4 | 108 | 0.5 | - | | 5 | 19.8 | | | | | | 4 | 17.8 | 8.6 | | | | | | 6 | 19.8 | 8.1<br>8.1 | 7.6 | 104 | 0.5 | _ | 5<br>6 | 17.8 | 8.6 | | 107 | | | | 7 | 19.8 | 8.1 | 7.0 | 104 | 0.5 | - | 7 | 17.8 | 8.6 | 7.4 | 107 | 0.4 | - | | 8 | 19.8 | 8,1 | | | | | 8 | 17.8 | 8.6 | | | | | | 9 | 19.8 | 8.1 | 7.4 | 105 | 0.6 | 45 | 9 | 17.8 | 8.6 | 7 / | 107 | A 6 | | | 10 | 19.8 | 8.1 | 7.4 | 105 | 0.0 | 4.7 | 10 | 17.8 | 8.6 | 7.4 | 107 | 0.5 | 46 | | 11 | 19.8 | 8.1 | | | | | 11 | 17.8 | 8.6 | | | | | | 12 | 19.8 | 8.0 | 7.1 | 114 | 0.5 | _ | 12 | 17.8 | 8.6 | 7 / | 100 | 0.5 | | | 13 | 19.8 | 8.0 | , . <del>.</del> | 114 | 0.5 | | 13 | 17.8<br>17.8 | 8.6 | 7.4 | 108 | 0.5 | - | | 14 | 19.8 | 7.8 | | | | | 14 | 17.8 | 8.6 | | | | | | 15 | 18.8 | 5.9 | 7.4 | 105 | 0.5 | _ | 15 | 17.8 | 8.6<br>8.5 | 7.4 | 108 | 0.4 | | | 16 | 17.4 | 5.4 | • • • | 10, | 0.5 | | 16 | 17.8 | 8.4 | 7.4 | 100 | 0.4 | - | | 17 | 17.0 | 5.7 | | | | | 17 | 17.6 | 8.3 | | | | | | 18 | 16.9 | 5.6 | 7.0 | 121 | 0.6 | 57 | 18 | 17.4 | 7.8 | 7.3 | 109 | 0.5 | 48 | | 19 | 16.8 | 5.4 | - | | | | 19 | 17.0 | 5,3 | , | 10) | 0.5 | 70 | | 20 | 16.5 | 5.4 | | | | | 20 | 16.3 | 5.7 | | | | | | 21 | 16.2 | 5.7 | 7.0 | 119 | 0.7 | _ | 21 | 16.2 | 6.0 | 7.1 | 118 | 0.5 | _ | | 22 | 16.1 | 5.8 | | | | | 22 | 16.1 | 6.1 | , | 110 | 0.5 | | | 23 | 16.0 | 5.8 | | | | | 23 | 16.0 | 5.9 | | | | | | 24 | 15.9 | 5.9 | 7.0 | 117 | 0.8 | - | 24 | 16.0 | 5.7 | 7.1 | 117 | 0.5 | - | | 25 | 15.9 | 6.0 | | | | | 25 | 15.9 | 6.0 | | | 0.5 | | | 26 | 15.8 | 6.1 | | | | | 26 | 15.8 | 6.0 | | | | | | 27 | 15.7 | 6.1 | 7.0 | 115 | 0.9 | 55 | 27 | 15.6 | 5.9 | 7.1 | 115 | 0.6 | 53 | | 28 | 15.6 | 6.2 | | | | | 28 | 15.5 | 6.2 | | 223 | •.• | ,,, | | 29 | 15.5 | 6.1 | | | | | 29 | 15.3 | 6.2 | | | | | | 30 | 15.4 | 6.1 | 7.0 | 114 | 1.0 | - | 30 | 15.2 | 6.7 | 7.1 | 112 | 0.8 | - | | 31 | 15.2 | 6.1 | | | | | 31 | 15.1 | 6.5 | | | | | | 32 | 15.1 | 6.1 | | | | | 32 | 15.0 | 6.7 | | | | | | 33 | 15.0 | 6.2 | | | | | 33 | 15.0 | 6.7 | | | | | | 34 | 14.9 | 6.5 | | | | | 34 | 14.9 | 6.8 | | | | | | 35 | 14.8 | 6.5 | 7.0 | 109 | 1.7 | - | 35 | 14.9 | 6.7 | 7.1 | 108 | 1.1 | - | | 36 | 14.8 | 6.6 | | | | | 36 | 14.8 | 7.0 | | | | | | 37 | 14.7 | 6.5 | | | | | 37 | 14.7 | 7.0 | | | | | | 38 | 14.4 | 6.6 | | | | | 38 | 14.7 | 7.1 | | | | | | 39 | 14.2 | 6.8 | 7.0 | | | | 39 | 14.5 | 7.3 | _ | | | | | 40 | 14.0 | 6.8 | 7.0 | 103 | 1.4 | 44 | 40 | 14.4 | 7.3 | 7.1 | 106 | 1.0 | 45 | | 41<br>42 | 13.8 | 7.0 | | | | | 41 | 14.4 | 7.2 | | | | | | 42 | 13.7 | 7.2 | | | | | 42 | 14.3 | 7.1 | | | | | | 44 | 13.6<br>13.5 | 7.1<br>7.1 | | | | | 43 | 14.2 | 7.3 | | | | | | 45 | 13.3 | 7.1 | 60 | 00 | 1 1 | | 44 | 14.2 | 7.2 | <b>.</b> . | 100 | | | | 46 | 13.3 | 7.1 | 6.8 | 98 | 1.1 | - | 45 | 14.2 | 7.1 | 7.0 | 103 | 1.0 | - | | 47 | 13.3 | 7.1 | | | | | 46<br>47 | 14.1 | 6.9 | | | | | | 48, | 13.2 | 6.8 | 6.8 | 97 | 1.9 | 41 | 47<br>48 | 14.0 | 7.0 | | | | | | 49 | 13.1 | 6.8 | 5.0 | 21 | 1.7 | 41 | 48<br>49 | 14.0 | 7:Ì | | | | | | 49.2 | - | - | Bott | om. | | | 50 | 13.9 | 7.0 | 7 0 | 101 | 1 0 | | | | | | BULL | OIII | | | 51 | 13.9<br>13.7 | 7.2<br>7.1 | 7.0 | 101 | 1.8 | - | | | | | - | | | | 52 | 13.7 | 7.0 | | | | | | | | | | | | | . 53 | 13.3 | 7.1 | | | | | | | | | | | | | 54 | 13.2 | 7.1 | 6.9 | 99 | 1.6 | 41 | | | | | | | | | 55 | 13.1 | 7.1 | ٠.۶ | 22 | 1.0 | <b>→</b> T | | | | | | | | | 55,7 | 13.1 | 7.1 | Botte | OTT. | | | | | | | | | | | | • • | | 2000 | · ··· | | | | Sta. A2L | 045.4 225 | .5 Lit | tle E | Backbon | e Creek | Inlet | Sta. A2L | 045.4 225 | .5 Lit | tle F | ackhon | e Creek | Inlet | |----------|-----------|--------|-------|---------|---------|-------|-----------|------------|--------|-------|--------|---------|-------| | December | 20, 1983 | 0845 | Hrs. | Seco | hi 4.6m | | January 2 | 24, 1984 @ | 1100 | Hrs. | Secch | i 5.4m | Intec | | | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Temp.(°C) | | | E.C. | Turb. | Alk. | | | | | | | | | | | | | | 10101 | | | Surf. | 12.0 | 9.6 | 7.3 | 107 | 1.0 | 46 | Surf. | 9.7 | 10.5 | 7.2 | 96 | 0.8 | 43 | | 1 | 12.0 | 9.6 | | | | | 1 | 9.6 | 10.5 | | | | | | 2 | 12.1 | 9.6 | | | | | 2 | 9.6 | 10.5 | | | | | | 3 | 12.1 | 9.6 | 7.2 | 106 | 1.0 | - | 3 | 9.6 | 10.5 | 7.2 | 98 | 0.9 | _ | | 4 | 12.1 | 9.6 | | | | | 4 | 9.6 | 10.6 | | 70 | 0.7 | | | 5 | 12.1 | 9.6 | | | | | 5 | 9.6 | 10.6 | | | | | | 6 | 12.1 | 9.6 | 7.2 | 106 | 1.0 | _ | 6 | 9.5 | 10.6 | 7.2 | 97 | 1.0 | | | 7 | 12.1 | 9.6 | | | | | 7 | 9.5 | 10.5 | 1.2 | 7/ | 1.0 | _ | | 8 | 12.1 | 9.6 | | | | | 8 | 9.5 | | | | | | | 9 | 12.1 | 9.6 | 7.2 | 106 | 1.2 | 46 | 9 | | 10.5 | • • | | | | | 10 | 12.1 | 9.6 | | 100 | 1.2 | 70 | 10 | 9.5 | 10.5 | 7.2 | 97 | 0.7 | 42 | | 11 | 12.1 | 9.6 | | | | | | 9.5 | 10.5 | | | | | | 12 | 12.1 | 9.6 | 7.2 | 106 | 1.2 | | 11 | 9.5 | 10.4 | | | | | | 13 | 12.1 | 9.6 | 1.2 | 100 | 1.2 | - | 12 | 9.5 | 10.4 | 7.2 | 98 | 0.8 | - | | 14 | 12.1 | 9.5 | | | | | 13 | 9.5 | 10.4 | | | | | | 15 | | | 7 0 | 101 | | | 14 | 9.5 | 10.4 | | | | | | 16 | 12.1 | 9.5 | 7.2 | 106 | 1.3 | - | 15 | 9.5 | 10.4 | 7.2 | 97 | 0.9 | - | | 17 | 12.1 | 9.5 | | | | | 16 | 9.5 | 10.4 | | | | | | | 12.1 | 9.5 | | | | | 17 | 9.5 | 10.4 | | | | | | 18 | 12.1 | 9.5 | 7.2 | 106 | 1.3 | 45 | 18 | 9.5 | 10.4 | 7.2 | 97 | 0.9 | 42 | | 19 | 12.1 | 9.5 | | | | • | 19 | 9.5 | 10.4 | | | | | | 20 | 12.1 | 9.5 | | | | | 20 | 9.5 | 10.4 | | | | | | 21 | 12.0 | 9.5 | 7.2 | 106 | 1.3 | - | 21 | 9.4 | 10.4 | 7.2 | 96 | 1.1 | _ | | 22 | 12.0 | 9.5 | | | | | 22 | 9.4 | 10.4 | | | | | | 23 | 12.0 | 9.5 | | | | | 23 | 9.5 | 10.4 | | | | | | 24 | 12.0 | 9.6 | 7.2 | 106 | 1.2 | - | 24 | 9.5 | 10.4 | 7.2 | 97 | 1.0 | - | | 25 | 12.0 | 9.6 | | | | | 25 | 9.5 | 10.4 | | • | 0 | | | 26 | 12.0 | 9.6 | | | | | 26 | 9.5 | 10.4 | | | | | | 27 | 12.0 | 9.6 | 7.2 | 106 | 1.3 | 45 | 27 | 9.5 | 10.4 | 7.2 | 97 | 1.0 | 43 | | 28 | 12.0 | 9.6 | | | -,, | ,,, | 28 | 9.5 | 10.4 | 1.2 | 97 | 1.0 | 4.3 | | 29 | 12.0 | 9.6 | | | | | 29 | 9.5 | 10.4 | | | | | | 30 | 12.0 | 9.6 | 7.2 | 106 | 1.4 | _ | 30 | | | 7 0 | | | | | 31 | 12.0 | 9.6 | | 100 | 1.4 | | 31 | 9.5 | 10.4 | 7.2 | 97 | 0.9 | - | | 32 | 11.9 | 9.6 | | | | | | 9.4 | 10.4 | | | | | | 33 | 11.8 | 9.7 | | | | | 32 | 9.4 | 10.4 | | | | | | 34 | 11.7 | 9.7 | | | | | 33 | 9.4 | 10.4 | | | | | | 35 | 11.6 | 9.7 | 7 2 | 00 | | | 34 | 9.4 | 10.4 | | | | | | 36 | 11.4 | | 7.2 | 99 | 1.6 | - | 35 | 9.3 | 10.4 | 7.2 | 96 | 1.3 | - | | 37 | | 9.6 | | | | | 36 | 9.3 | 10.4 | | | | | | 38 | 11.4 | 9.6 | | | | | 37 | 9.2 | 10.3 | | | | | | | 11.3 | 9.6 | | | | | 38 | 9.1 | 10.2 | | | | | | 39 | 11.2 | 9.4 | | | | | 39 | 9.0 | 10.2 | | | | | | 40 | 11.2 | 9.2 | 7.2 | 102 | 2.1 | 43 | 40 | 9.0 | 10.2 | 7.2 | 101 | 3.2 | 45 | | 41 | 11.1 | 9.0 | | | | | 41 | 8.9 | 10.2 | | | | | | 42 | 10.9 | 8.9 | | | | | 42 | 8.9 | 10.2 | | | | | | 43 | 10.8 | 9.1 | | | | | 43 | 8.8 | 10,1 | 7.2 | 98 | 2.2 | 44 | | 44 | 10.7 | 9.0 | | | | | 43.5 | _ | _ | Botte | | | | | 45 | 10.5 | 9.2 | 7.1 | 110 | 3.3 | - | | | | | | | | | 46 | 10.5 | 9.3 | | | | | | | | | | | | | 47 | 10.4 | 9.4 | | | | | | | | | | | | | 48 | 10.4 | 9.3 | | | | | | | • | | | | | | 49 | 10.3 | 9.1 | | | | | | | | | | | | | . 50 | 10.3 | 9.0 | 7.1 | 113 | 3.4 | · _ | | | : | | | | | | 51 | 10.2 | _ | | | | | | | | | • | | | | 52 | 10.2 | - | | | | | | | ٠. | | | | | | 53 | 10.2 | - | | | | | | | | | | | | | 54 | 10.3 | _ | | | | | | | | | | • | | | 55 | 10.3 | 9.2 | 7.0 | 113 | 4.0 | ۸۵. | | | | | | | | | 56 | 10.2 | - | ,,, | 113 | 4.0 | 49 | | | | | | | | | 56.7 | | _ | Po++- | | | | | | | | | | | | | | | Botto | ) III | | | | | | | | | | | Sta. A2L | 045.4 225 | . 5 T.fr | tle R | ackhor | ne Creek | : Inlet | Sta. A21. | 045.4 225 | .S. Life: | +1e R | ackhor | e Creek | Inler | |----------|------------|--------------|-------|--------|----------|---------|----------------------|--------------|--------------|------------------|--------|---------|-------| | | 28, 1984 | | | | hi 3.1m | | | 1984 @ 12 | | | cchi 4 | | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | | | | | | | | | | | | | | | | Surf. | 9.5 | 11.3 | 7.3 | 94 | 1.3 | 37 | Surf. | 13.0 | 10.8 | 7.4 | 98 | 1.5 | 41 | | 1 | 9.5 | 11.4 | | | | | 1 | 12.9 | 10.9 | | | | | | 2 | 9.2 | 11.4 | | | | | 2 | 12.8 | 10.9 | <b>.</b> , | | | | | 3 | 9.1 | 11.3 | 7.3 | 95 | 1.2 | - | 3 | 12.2 | 11.0 | 7.6 | 98 | 1.3 | - | | 4 | 9.0 | 11.2 | | | | | 4 | 12.0 | 11.1 | | | | | | 5<br>6 | 9.0 | 11.0 | 7 2 | 06 | 1 ( | | 5 | 11.8 | 11.1 | 7 6 | 98 | 1 4 | | | 7 | 9.0<br>8.9 | 11.0<br>10.9 | 7.3 | 96 | 1.4 | _ | 6<br>7 | 11.6<br>11.5 | 11.0<br>10.9 | 7.6 | 90 | 1.4 | _ | | 8 | 8.9 | 10.9 | | | | | 8 | 11.4 | 10.9 | | | | | | 9 | 8.8 | 10.9 | 7.3 | 95 | 1.5 | 43 | 9 | 11.4 | 10.9 | 7.5 | 98 | 1.5 | 41 | | 10 | 8.8 | 10.9 | , | ,, | 1.5 | 7.7 | 10 | 11.2 | 10.9 | | 70 | 1.5 | 41 | | 11 | 8.8 | 10.9 | | | | | 11 | 11.2 | 10.9 | | | | | | 12 | 8.8 | 10.9 | 7.3 | 96 | 1.5 | - | 12 | 11.1 | 10.9 | 7.4 | 99 | 1.3 | _ | | 13 | 8.8 | 10.9 | | ,,, | 2.5 | | 13 | 11.0 | 10.9 | , , <del>,</del> | " | 1.5 | | | 14 | 8.8 | 10.9 | | | | | 14 | 10.9 | 10.9 | | | | | | 15 | 8.8 | 10.9 | 7.3 | 96 | 1.3 | _ | 15 | 10.6 | 10.8 | 7.3 | 100 | 1.4 | _ | | 16 | 8.8 | 10.8 | | ,, | | | 16 | 10.3 | 10.8 | | 100 | | | | 17 | 8.8 | 10.8 | | | | | 17 | 10.0 | 10.8 | | | | | | 18 | 8.8 | | 7,2 | 96 | 1.5 | 41 | 18 | 9.7 | 10.7. | 7.3 | 101 | 1.5 | 38 | | 19 | 8.8 | 10.8 | | | | ,- | 19 | 9.4 | 10.7 | | | | | | 20 | 8.8 | 10.8 | | | | | 20 | 9.3 | 10.7 | | | | | | 21 | 8.8 | | 7.2 | 97 | 1.5 | _ | 21 | 9.2 | 10.7 | 7.3 | 99 | 1.5 | | | 22 | 8.8 | 10.8 | | | | | 22 | 9.2 | 10.7 | | | | | | 23 | 8.8 | 10.7 | | | | | 23 | 9.1 | 10.7 | | | | | | 24 | 8.7 | 10.7 | 7.2 | 96 | 1.5 | - | 24 | 9.1 | 10.6 | 7.3 | 100 | 1.2 | _ | | 25 | 8.7 | 10.7 | | | | | 25 | 9.0 | 10.6 | | | | | | 26 | 8.7 | 10.7 | | | | | 26 | 9.0 | 10.6 | | | | | | 27 | 8.7 | 10.7 | 7.2 | 96 | 1.4 | 39 | 27 | 8.9 | 10.6 | 7.3 | 100 | 1.1 | 41 | | 28 | 8.7 | 10.7 | | | | | 28 | 8.8 | 10.6 | | | | | | 29 | 8.7 | 10.7 | | | | | 29 | 8.8 | 10.6 | | | | | | 30 | 8.7 | 10.7 | 7.2 | 96 | 1.5 | - | 30 | 8.7 | 10.6 | 7.3 | 100 | 1.3 | _ | | 31 | 8.6 | 10.7 | | | | | 31 | 8.6 | 10.6 | | | | | | 32 | 8.7 | 10.7 | | | | | 32 | 8.5 | 10.6 | | | | | | 33 | 8.6 | 10.7 | | | | | 33 | 8.5 | 10.6 | | | | | | 34 | 8.5 | 10.7 | | | | | 34 | 8.4 | 10.5 | | | | | | 35 | 8.5 | 10.6 | 7.2 | 95 | 1.7 | 41 | 35 | 8.4 | 10.5 | 7.3 | 101 | 1.1 | - | | 36 | 8.1 | 10.6 | | | | | 36 | 8.3 | 10.5 | | | | | | 37 | 8.0 | 10.5 | | | | | 37 | 8.3 | 10.5 | | | | | | 38 | 8.0 | 10.5 | | | | | 38 | 8.3 | 10.5 | | | | | | 39 | 8.0 | 10.5 | | | | | 39 | 8.3 | 10.5 | | | | | | 40 | 7.9 | 10.5 | 7.2 | 98 | 2.6 | _ | 40 | 8.3 | 10.5 | 7.3 | 101 | 1.1 | 43 | | 41 | 7.8 | 10.5 | | | | | 41 | 8.2 | 10.5 | | | | | | 42 | 7.7 | 10.5 | | | | | 42 | 8.2 | 10.5 | | | | | | 43 | 7.8 | 10.3 | | | | | 43 | 8.2 | 10.4 | | | | | | 44 | 7.9 | 10.4 | | | | | 44 | 8.1 | 10.4 | | | | | | 45 | 7.9 | 10.1 | 7.2 | 95 | 1.7 | 42 | 45 | 8.0 | 10.4 | 7.3 | 103 | 1.5 | . — | | 46 | - | _ | Bott | om | | | 46 | 8.0 | 10.4 | | | | | | | | | | | | | 47 | 8.0 | 10.4 | | | | | | 4 | | | | | | | 48 | 7.9 | 10.4 | | | | | | | | | | | | | 49 | 7.8 | 10.4 | | | , | | | | | | | | | | 50 | 7.8 | 10.4 | 7.3 | 106 | 1.8 | 45 | | | | | | | | | 51 | 7.8 | 10.4 | | | | | | | | | • | | | * | 52 | 7.7 | 10.4 | 4 | | | | | | | | | | | | 53 | 7.6 | 10.4 | | | | | | | | | | | | | 54 | 7.5 | 10.4 | 7 7 | 100 | 2 1 | | | | | | | | | | 55 | 7.4 | 10.4 | 1.3 | 109 | 2.1 | - | | | | | | | | | 56<br>57 | 7.4 | 10.4 | | | | | | | | | | | | | 57 | 7.4 | 10.4 | | | | | | | | | | | | | 58<br>50 | 7.3 | 10.4 | | | | | | | | | | | | | 5 <del>9</del><br>60 | 7.3<br>7.3 | 10.4<br>10.4 | 7 2 | 112 | 2 5 | 47 | | | | | | | | | 61 | 7.3 | 10.4 | 1.2 | 112 | 2.5 | 4/ | | | | | | | | | 61.2 | 7.2 | - | Bott | OΠ | | | | | | | | | | | 01.2 | _ | _ | DULL | Jiii | | | | Sta. A2L | 045.4 225 | .5 Lit | tle Ba | ackbor | e Creek | Inlet | Sta. A2L | 045.4 225. | 5 Litt | tle B | ackbor | e Creek | Inlet | |-----------|-----------|--------|--------|--------|---------|-------|----------|-------------|------------|-------|--------|---------|-------| | May 8, 19 | | | | ni 6.8 | | | June 7, | 1984 @ 1130 | Hrs. | Şec | chi 6. | . 5a | | | Depth(m) | | | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рĦ | E.C. | Turb. | Alk. | | | | | | | | | | | | 7.5 | 98 | 1.5 | 42 | | Surf. | 17.3 | 9.8 | 7.6 | 93 | 0.5 | 43 | Surf. | 18.8 | 9.0 | 7.5 | 90 | 1.5 | 42 | | 1 | 16.2 | 9.9 | | | | | 1 | 18.8 | 9.0 | | | | | | 2 | 16.0 | 9.9 | | | | | 2 | 18.7 | 9.0 | | | | | | 3 | 14.8 | 10.1 | 7.6 | 93 | 0.6 | - | 3 | 18.6 | 9.0 | 7.6 | 101 | 1.5 | - | | 4 | 14.5 | 10.2 | | | | | 4 | 18.4 | 9.0 | | | | | | 5 | 14.4 | 10.2 | | | | | 5 | 18.2 | 9.0 | | | | | | 6 | 14.2 | 10.2 | 7.6 | 95 | 0.5 | - | 6 | 18.1 | 9.0 | 7.6 | 101 | 1.5 | - | | 7 | 14.1 | 10.2 | | | | | 7 | 18.1 | 9.0 | | | | | | 8 | 14.0 | 10.1 | | | | | 8 | 18.1 | 9.0 | | | | | | 9 | 13.9 | 10.1 | 7.6 | 94 | 0.6 | 42 | 9 | 18.0 | 9.0 | 7.5 | 101 | 1.5 | 42 | | 10 | 13.8 | 10.0 | | | | | 10 | 18.0 | 9.0 | | | | | | 11 | 13.8 | 10.0 | | | | | 11 | 18.0 | 9.0 | | | | | | 12 | 13.7 | 10.0 | 7.6 | 95 | 0.6 | _ | 12 | 17.9 | 9.0 | 7.4 | 101 | 1.5 | _ | | 13 | 13.7 | 9.9 | 7.0 | ,, | 0.0 | | 13 | 16.0 | 9.1 | | | | | | 14 | 13.5 | 9.9 | | | | | 14 | 14.8 | 9.2 | | | | | | | | | 7.3 | 93 | 0.9 | _ | 15 | 14.2 | 9.3 | 7.3 | 104 | 1.5 | 49 | | 15 | 12.8 | 9.8 | 1.3 | 73 | 0.9 | - | 16 | 13.9 | 9.3 | , | 104 | 1.5 | "," | | 16 | 12.3 | 9.8 | | | | | 17 | 13.5 | | | | | | | 17 | 12.0 | 9.8 | | | | | | | 9.3<br>9.3 | 7.3 | 104 | 1.5 | 44 | | 18 | 11.8 | 9.8 | 7.3 | - | 1.0 | 42 | 18 | 13.1 | | 1,3 | 104 | 1.5 | 44 | | 19 | 11.5 | 9.8 | | | | | 19 | 13.0 | 9.3 | | | | | | 20 | 10.4 | 9.7 | | | | | 20 | 12.9 | 9.3. | | | | ,, | | 21 | 9.8 | 9.8 | 7.3 | 98 | 1.0 | _ | 21 | 12.6 | | 7.3 | 105 | 1.5 | 44 | | 22 | 9.6 | 9.8 | | | | | 22 | 12.2 | 9.3 | | | | | | 23 | 9.4 | 9.8 | | | | | 23 | 12.0 | 9.3 | | | | | | 24 | 9.3 | 9.8 | 7.3 | 100 | 1.0 | - | 24 | 11.5 | 9.3 | 7.3 | 105 | 1.6 | - | | 25 | 9.2 | 9.8 | | | | | 25 | 11.1 | 9.2 | | | | | | 26 | 9.2 | 9.8 | | | | | 26 | 11.0 | 9.2 | | | | | | 27 | 9.2 | 9.8 | 7.3 | 99 | 1.0 | 45 | 27 | 10.8 | 9.2 | 7.3 | 108 | 1.9 | - | | 28 | 9.1 | 9.8 | | | | | 28 | 10.7 | 9.3 | | | | | | 29 | 9.1 | 9.8 | | | | | 29 | 10.5 | 9.3 | | | | | | 30 | 9.1 | 9.7 | 7.3 | 98 | 0.7 | _ | 30 | 10.4 | 9.2 | 7.3 | 110 | 2.2 | 47 | | 31 | 9.0 | 9.7 | | ,, | • • • • | | 31 | 10.3 | 9.2 | | | | | | 32 | 9.0 | 9.7 | | | | | 32 | 10.2 | 9.2 | | | | | | 33 | 9.0 | 9.7 | | | | | 33 | 10,1 | 9.2 | | | | | | 34 | 9.0 | 9.7 | | | | | 34 | 10.0 | 9.2 | | | | | | | | | 7.3 | 98 | 0.6 | 44 | 35 | 10.0 | 9.2 | 7.3 | 109 | 2.1 | _ | | 35 | 8.9 | 9.6 | 7.3 | 90 | 0,0 | 44 | 36 | 9.9 | 9.2 | 1.5 | 107 | | | | 36 | 8.9 | 9.6 | | | | | | | | 7.2 | 109 | 2.1 | 46 | | 37 | 8.8 | 9.6 | | | | | 37 | 9.8 | 9.2 | 1.2 | 109 | 2.1 | 40 | | 38 | 8.8 | 9.6 | | | | | 38 | 9.7 | 9.2 | | | | | | 39 | 8.8 | 9.6 | | | | | 39 | 9.5 | 9.0 | Bot | com | | | | 40 | 8.8 | 9.6 | 7.3 | 98 | 0.7 | - | | | | | | | | | 41 | 8.7 | 9.6 | | | | | | | | | | | | | 42 | 8.7 | 9.6 | 7.3 | 99 | 0.9 | 45 | | | | | | | | | 43 | 8.6 | 9.6 | | | | | | | | | | | | | 43.3 | _ | _ | Bott | om | | | | | | | | | | | | | | | | | | | | | | | | | | | 1984 @ 080 | | | cchi 4 | | | | 4, 1984@1 | | rs. | Secchi | | | |----------|------------|------|------|--------|-------|------|----------|-----------|------|------|--------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 25.7 | 7.7 | 7.7 | 103 | 0.5 | 45 | Surf. | 26.3 | 7.7 | 7.2 | 109 | 1.0 | 46 | | 1 | 25.6 | 7.7 | | | | | 1 | 25.2 | 7.8 | | | | | | 2 | 25.6 | 7.7 | | | | | 2 | 26.0 | 7.8 | | | | | | 3 | 25.6 | 7.7 | 7.7 | 103 | 0.6 | _ | 3 | 26.0 | 7.9 | 7.4 | 108 | 0.6 | _ | | 4 | 25.3 | 7.7 | | | | | 4 | 25.8 | 7.9 | | | | | | 5 | 25.2 | 7.7 | | | | | 5 | 25.7 | 7.9 | | | | | | 6 | 25.2 | 7.7 | 7.7 | 103 | 0.5 | - | 6 | 25.6 | | 7.5 | 107 | 0.7 | - | | 7 | 25.0 | 7.8 | | | | | 7 | 25.4 | 7.8 | | | | | | 8 | 24.2 | 7.8 | | | | | 8 | 25.4 | 7.8 | | | | | | 9 | 22.8 | 7.9 | 7.5 | 101 | 0.5 | 45 | 9 | 25.0 | 7.4 | 7.3 | 107 | 0.7 | 44 | | 10 | 20.7 | 8.0 | | | | | 10 | 23.4 | 7.0 | | ••• | *** | | | 11 | 19.5 | 8.0 | | | | | 11 | 21.8 | 6.7 | | | | | | 12 | 18.8 | 7.9 | 7.3 | 103 | 0.5 | - | 12 | 20.5 | 6.6 | 7 2 | 112 | 0.8 | - | | 13 | 18.3 | 7.9 | | ••• | | | 13 | 19.9 | 6.3 | | | 0.0 | | | 14 | 17.6 | 7.9 | | _ | | | 14 | 19.5 | 6.2 | | | | | | 15 | 17.1 | 7.9 | 7.3 | 108 | 0.8 | - | 15 | 19.1 | 6.2 | 7 2 | 114 | 1.1 | 50 | | 16 | 16.6 | 7.9 | | 100 | 0.0 | | 16 | 18.7 | 6.2 | , | *** | 1.1 | 50 | | 17 | 16.4 | 8.0 | | | | | 17 | 18.5 | 6.2 | | | | | | 18 | 16.2 | 8.0 | 7.3 | 112 | 0.7 | 53 | 18 | 18.3 | | 7 2 | 117 | 1.0 | _ | | 19 | 16.0 | 8.0 | , | 112 | 0.7 | ,,, | 19 | 18.0 | 6.0 | 1.2 | 11, | 1.0 | _ | | 20 | 15.8 | 8.0 | | | | | 20 | 17.8 | 6.0 | | | | | | 21 | 15.3 | 8.1 | 7.3 | 114 | 0.9 | - | 21 | 17.4 | | 7 2 | 115 | 1 4 | _ | | 22 | 15.0 | 8.1 | 1.3 | 114 | 0.9 | - | 22 | | | 1.2 | 113 | 1.4 | - | | 23 | 14.8 | 8.1 | | | | | | 17.1 | 6.0 | | | | | | 24 | 14.4 | | 7 2 | 110 | 0.0 | | 23 | 16.7 | 6.1 | 7 0 | | | | | 25 | 14.4 | 8.2 | 7.2 | 110 | 0.9 | - | 24 | 16.3 | 6.0 | 1.2 | 115 | 1.2 | 51 | | 26 | | 8.2 | | | | | 25 | 16.0 | 6.2 | | | | | | 27 | 13.8 | 8.3 | 7 0 | 107 | | | 26 | 15.8 | 6.2 | | | | | | | 13.3 | 8.3 | 7.2 | 107 | 0.7 | 49 | 27 | 15.5 | | 7.2 | 117 | 1.0 | - | | 28 | 13.2 | 8.3 | | | | | 28 | 15.3 | 6.3 | | | | | | 29 | 12.8 | 8.5 | | | • • | | 29 | 15.1 | 6.2 | | 1.2 | | | | 30 | 12.5 | 8.6 | 7.2 | 105 | 0.6 | - | 30 | 14.8 | 6.0 | 7.2 | 117 | 1.0 | - | | 31 | 12.2 | 8.6 | | | | | 31 | 14.4 | 6.0 | | | | | | 32 | 12.1 | 8.6 | | | | | 32 | 14.2 | 6.2 | | | | | | 33 | 12.0 | 8.6 | | | | | 33 | 14.0 | 6.2 | | | | | | 34 | 11.6 | 8.5 | | | | | 34 | 14.0 | 6.2 | | | | | | 35 | 11.4 | 8.5 | 7.2 | 108 | 1.1 | 46 | 35 | 14.0 | 6.2 | 7.1 | 114 | 1.4 | 50 | | 36 | 11.3 | 8.5 | | | | | 36 | 13.6 | 6.3 | | | | | | 37 | 11.2 | 8.5 | | | | | 37 | 13.1 | 6.4 | | | | | | 38 | 11.1 | 8.6 | | | | | 37.5 | _ | - | Bott | om | | | | 39 | 11.0 | 8.5 | | | | | | | | | | | | | 40 | 10.9 | 8.6 | 7.2 | 108 | 1.5 | - | | | | | | | | | 41 | 10.8 | 8.6 | | | | | | | | | | | | | 42 | 10.7 | 8.7 | | | | | | | | | | | | | 43 | 10.5 | 8.7 | | | | | | | | | | | | | 44 | 10.4 | 8.7 | | | | | | | | | | | | | 45 | 10.4 | 8.7 | 7.2 | 108 | 1.5 | 49 | | | | | | | | | 46 | 10.3 | 8.5 | | | | | | | | | | | | | 47 | 10.2 | 8.3 | Bott | om | | | | | | | | | | | Sta. A2L | 045.4 225 | 5 Lit | tle B | ackbon | e Creel | . Inlet | Sta. A2L | 045.4 225. | 5 Lit | tle B | ackbon | e Creek | Inlet | |-------------|-----------|-------|-------|--------|---------|---------|----------|------------|-------|-------|--------|---------|-------| | | 13, 1984 | | | | chi 6.0 | | October | 17, 1984 @ | 1100 | Hrs. | | i 5.8m | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | | | | | | | | | | | | | | | | Surf. | 22.9 | 7.9 | 7.5 | 116 | 0.6 | 48 | Surf. | 17.0 | | 7.3 | 124 | 0.8 | 52 | | 1 | 22.9 | 7.9 | | | | | 1 | 17.0 | 7.9 | | | | | | 2 | 22.9 | 7.9 | | | | | 2 | 17.0 | 7.8 | | | | | | 2<br>3<br>4 | 22.9 | 7.8 | 7.5 | 116 | 0.7 | _ | 3 | 17.0 | 7.8 | 7.3 | 124 | 1.0 | - | | | 22.9 | 7.8 | | | | | 4 | 17.0 | 7.8 | | | | | | 5 | 22.9 | 7.8 | | | | | 5 | 17.0 | 7.8 | | | | | | 6 | 22.9 | 7.8 | 7.5 | 116 | 0.7 | - | 6 | 17.0 | 7.7 | 7.3 | 123 | 0.8 | - | | 7 | 22.9 | 7.8 | | | | | 7 | 17.0 | 7.7 | | | | | | 8 | 22.8 | 7.8 | | | | | 8 | 17.0 | 7.7 | | | | | | 9 | 22.8 | 7.7 | 7.5 | 116 | 0.7 | 45 | 9 | 17.0 | 7.8 | 7.3 | 123 | 1.0 | 51 | | 10 | 22.7 | 7.6 | | | | | 10 | 16.9 | 7.8 | | | | | | 11 | 22.7 | 7.6 | | | | | 11 | 16.9 | 7.8 | | | | | | 12 | 22.3 | 7.3 | 7.3 | 116 | 0.7 | - | 12 | 16.9 | 7.7 | 7.3 | 123 | 0.9 | - | | 13 | 21.0 | 5.6 | | | | | 13 | 16.9 | 7.7 | | | | | | 14 | 19.5 | 5.6 | | | | | 14 | 16.9 | 7.7 | | | | | | 15 | 19.2 | 5.5 | 7.2 | 124 | 0.7 | - | 15 | 16.9 | 7.7 | 7.3 | 123 | 0.9 | - | | 16 | 19.0 | 5.2 | | | | | 16 | 16.9 | 7.7 | | | | | | 17 | 18.8 | 5.1 | | | | | 17 | 16.9 | 7.8 | | | | | | 18 | 18.6 | 5.2 | 7.1 | 126 | 1.0 | 55 | 18 | 16.9 | 7.8 | 7.3 | 123 | 1.0 | 53 | | . 19 | 18.4 | 5.2 | | | | | 19 | 16.9 | 7.8 | | | | | | 20 | 18.2 | 5.3 | | | | | 20 | 16.8 | 7.8. | | | | | | 21 | 18.1 | 5.3 | 7.1 | 126 | 1.0 | - | 21 | 16.8 | 7.8 | 7.3 | 124 | 1.0 | - | | 22 | 18.0 | 5.3 | | | | | 22 | 16.8 | 7.8 | | | | | | 23 | 17.9 | 5.2 | | | | | 23 | 16.8 | 7.8 | | | | | | 24 | 17.7 | 5.2 | 7.1 | 122 | 1.2 | 53 | 24 | 16.7 | 7.7 | 7.3 | 123 | 1.0 | - | | 25 | 17.4 | 5.2 | | | | | 25 | 16.7 | 7.7 | | | | | | 26 | 17.2 | 5.2 | | | | | 26 | 16.7 | 7.5 | | | | | | 27 | 17.1 | 5.2 | 7.0 | 121 | 1.3 | - | 27 | 16.4 | 7.4 | 7.2 | 124 | 1.1 | 53 | | 28 | 16.9 | 5.2 | | | | | 28 | 16.2 | 6.2 | | | | | | 29 | 16.5 | 5.2 | | | | | 29 | 15.8 | 5.6 | | | | | | 30 | 16.1 | 5.3 | 7.0 | 121 | 1.5 | 53 | 30 | 15.5 | 5.6 | 7.1 | 124 | 1.5 | 54 | | 30.8 | - | - | Bott | com | | | 31 | 15.2 | 5.6 | | | | | | | | | | | | | 31.5 | - | - | Bott | com | | | | | | | | | | | | | | | | | | Sta. A2L 046.4 212.9 Squaw Creek Arm May 13, 1983 @ 1045 Hrs. Secchi 2.6m | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | |----------|--------------|--------------|-----------------|------|-------|------|----------|-----------|------|----|------|-------|------| | Surf. | 14.0 | 10.3 | 7.4 | 91 | 4.6 | 40 | | | | | | | | | 1<br>2 | 14.0 | 10.3 | | | | | | | | | | | | | 3 | 13.8<br>13.1 | 10.3 | 7.4 | 91 | 3.4 | _ | | | | | | | | | 4 | 12.1 | 10.3 | , . <del></del> | 31 | 2.4 | | | | | | | | | | 5 | 11.8 | 10.3 | | | | | | | | | | | | | 6 | 11.2 | 10.2 | 7.3 | 91 | 3.4 | 39 | | | | | | | | | 7 | 11.1 | 10.1 | | | | | | | | | | | | | 8 | 11.1 | 10.1 | 7.0 | | | | | | | | | | | | 9<br>10 | 11.0<br>10.9 | 10.1<br>10.1 | 7.3 | 92 | 3.1 | - | | | | | | | | | 11 | 10.7 | 10.1 | | | | | | | | | | | | | 12 | 10.5 | 10.1 | 7.3 | 95 | 3.1 | 41 | | | | | | | | | 13 | 10.2 | 10.2 | | | | | | | | | | | | | 14 | 10.0 | 10.2 | | | | | | | | | | | | | 15 | 9.8 | 10.2 | 7.3 | 105 | 3.0 | - | | | | | | | | | 16<br>17 | 9.8<br>9.8 | 10.2 | | | | | | | | | | | | | 18 | 9.8 | 10.3 | 7.3 | 111 | 3.0 | 51 | | | •*. | | | | | | 19 | 9.8 | 10.3 | | | 0.0 | | | - | ٠. | | | | | | 20 | 9.7 | 10.4 | | | | | | | | | | | | | 21 | 9.6 | | 7.3 | 111 | 3.3 | - | | | `* | | | | | | 22<br>23 | 9.4 | 10.3 | | | | | | | | | | | | | 23 | 9.3<br>9.2 | 10.3<br>10.3 | 7.3 | 109 | 3.7 | 50 | | | | | | | | | 25 | 9.1 | 10.2 | 7.3 | 109 | 3.7 | 50 | | | | | | | | | 26 | 9.0 | 10.2 | | | | | | | | | | | | | 27 | 9.0 | | 7.3 | 108 | 3.6 | - | | | | | | | | | 28 | 8.9 | 10.2 | | | | | | | | | | | | | 29<br>30 | 8.8 | 10.2 | 7 2 | 107 | 2.0 | | | | | | | | | | 31 | 8.8<br>8.7 | 10.2 | 7.3 | 107 | 2.9 | 49 | | | | | | | | | 32 | 8.7 | 10.2 | | | | | | | | | | | | | 33 | 8.7 | 10.2 | | | | | | | | | | | | | 34 | 8.6 | 10.2 | | | | | | | | | | | | | 35 | 8.5 | 10.2 | 7.3 | 108 | 2.9 | - | | | | | | | | | 36<br>37 | 8.2<br>8.2 | 10.2 | | | | | | | | | | | | | 38 | 8.2 | 10.2 | | | | | | | | | | | | | 39 | 8.1 | 10.2 | | | | | | | | | | | | | 40 | 8.1 | 10.3 | 7.3 | 109 | 2.9 | 49 | | | | | | | | | 41 | 8.0 | 10.3 | | | | | | | | | | | | | 42<br>43 | 8.0<br>7.9 | 10.3 | | | | | | | | | | | | | 44 | 7.9 | 10.3 | | | | | _ | | | | | | | | 45 | 7.9 | | 7.2 | 112 | 2.7 | - | | | | | | | | | 46 | 7.9 | 10.3 | | | | | | | | | | | | | 47 | 7.9 | 10.3 | | | | | | | | | | | | | 48 | 7.8 | 10.3 | | | | | | | | | | | | | 49<br>50 | 7.8<br>7.8 | 10.3 | 7.2 | 110 | 3.4 | 50 | | | | | | | | | 51 | 7.8 | 10.3 | 1.2 | 110 | 3.4 | 30 | | | 1. | | | • | | | 52 | . 7.8 | 10.3 | | | | | | | 1.0 | | | | | | 53 | 7.8 | 10.3 | * | | | • | | • | ٠. | | | | | | 54 | 7.8 | 10.3 | | | | | | | | | | | | | 55 | 7.8 | 10.3 | 7.2 | 112 | 4.1 | - | | | | | | | | | 56<br>57 | 7.7<br>7.7 | 10.3 | | | | | | | | | | | | | 58 | 7.7 | 10.3 | | | | | | | | | | | | | 59 | 7.7 | 10.3 | | | | | | | | | | | | | 60 | 7.6 | 10.3 | 7.2 | 111 | 5.2 | 51 | | | | | | | | | 60.7 | - | - | Bott | om | | | | | | | | | | | | Sta. A2L | 044.9 | 212. | 1 Pit | River ! | Arm Oc | tober 15, 1 | 1984 @ 0845 | Hrs. | Secci | ni 4.0 | m | | |------------|---------------|------------|------|-------|---------|--------|-------------|-------------|------|-------|--------|-------|------| | Depth(m) | Temp.(°C) | p.0. | | E.C. | Turb. | Alk. | | ) Temp.(+C) | D.O. | | E.C. | Turb. | Alk. | | | | 7.7 | 7 3 | 120 | 1.9 | 56 | 66 | 10.2 | 0.0 | | | | | | Surf.<br>l | 17.7<br>17.7 | 7.7<br>7.7 | 7.3 | 129 | 1., | 20 | 67 | 10.2 | 0.0 | | | | | | 2 | 17.7 | 7.7 | | | | | 68 | 10.0 | 0.0 | | | | | | 3 | 17.7 | 7.7 | 7.3 | 127 | 1.0 | - | 69 | 9.8 | 0.0 | _ | | | | | 4 | 17.7 | 7.7 | | | | | 70 | 9.5 | 0.0 | 6.8 | 142 | 6.3 | 65 | | 5 | 17.7 | 7.7 | | | | | 71 | 9.3 | 0.0 | | | | | | 6 | 17.7 | 7.7. | 7.3 | 127 ' | 1.0 | - | 72 | 9.1 | 0.0 | | | | | | 7 | 17.7 | 7.7 | | | | | 73 | 9.1 | 0.0 | | | | | | 8 | 17.7 | 7.7 | | | | | 74 | 9.0 | 0.0 | Bott | ~= | | | | 9 | 17.7 | | 7.3 | 126 | 1.0 | 58 | 75 | 9.0 | 0.0 | BOLL | OM. | | | | 10 | 17.7 | 7.7 | | | | | | | | | | | | | 11 | 17.7 | 7.7 | 7 2 | 107 | 1.1 | _ | | <b>!</b> | | | | | | | 12 | 17.7<br>17.7 | 7.7<br>7.7 | 7.3 | 127 | 1.1 | | | | | | | | | | 13<br>14 | 17.7 | 7.7 | | | | | | | | | | | | | 15 | 17.7 | 7.6 | 7.3 | 127 | 1.0 | _ | | | | | | | | | 16 | 17.7 | 7.6 | | | | | | | | | | | | | 17 | 17.7 | 7.6 | | | | | | | | | | | | | 18 | 17.7 | 7.4 | 7.3 | 130 | 1.8 | 57 | | | | | | | | | 19 | 17.7 | 7.3 | | | | | | | | | | | | | 20 | 17.7 | 7.1 | | | | | | | | | | | | | 21 | 17.7 | 6.9 | 7.3 | 137 | 1.0 | - | | | | | | | | | 22 | 17.2 | 7.0 | | | | | | | | | | | | | 23 | 16.9 | 6.3 | 7 2 | 127 | 1.0 | _ | | | | | | | | | 24 | 16.7 | 6.6 | 7.2 | 137 | 1.0 | _ | | | | | | | | | 25<br>26 | .16.5<br>16.3 | 6.8<br>6.8 | | | | | | | | | | | | | 27 | 16.3 | 6.9 | 7.2 | 137 | 1.2 | 63 | | | | | | | | | 28 | 16.2 | 7.0 | | | | | | | | | | | | | 29 | 16.2 | 7.1 | | | | | | | | | | | | | 30 | 15.9 | 7.2 | 7.2 | 138 | 1.0 | - | | | | | | | | | 31 | 15.7 | 7.4 | | | | | | | | | | | | | 32 | 15.5 | 7.6 | | | | | | | | | | | | | 33 | 15.3 | 7.7 | | | | | | | | | | | | | 34 | 15.0 | 8.0 | 7.0 | 127 | | _ | | | | | | | | | 35 | 14.5 | 8.3<br>8.4 | 7.3 | 137 | 1.2 | _ | | | | | | | | | 36<br>37 | 14.2<br>14.0 | 8.6 | | | | | • | | | | | | | | 38 | 13.8 | 8.8 | | | | | | | | | | | | | 39 | 13.7 | 8.8 | | | | | | | | | | | | | 40 | 13.7 | 8.8 | 7.3 | 139 | 1.5 | 62 | | | | | | | | | 41 | 13.5 | 8.9 | | | | | | | | | | | | | 42 | 13.5 | 8.9 | | | | | | | | | | | | | 43 | 13.5 | 8.9 | | | | | | | | | | | | | 44 | 13.5 | 8.9 | | 126 | 3.0 | _ | | | | | | | | | 45 | 13.5 | 8.9<br>8.9 | | 139 | 3.0 | _ | | | | | | | | | 46<br>47 | 13.3<br>13.3 | 8.9 | | | | | | | | | | | | | 48 | 13.3 | 8.8 | | | | | | | | | | | | | 49 | 13.3 | 8.8 | | | | | | | | | | | | | 50 | 13.3 | 8.8 | | 139 | 3.4 | - | | | | | | | | | 51 | 13.3 | 8.8 | | | | | | | | | | | | | 52 | 13.3 | 8.8 | | | | | | | | | | | | | 53 | 13.3 | 8.8 | | | | | | | | | | | | | 54 | 13.3 | 8.8 | | 140 | 3.6 | 63 | | | | | | | | | 55<br>54 | 13.3<br>13.3 | 8.8 | | 140 | 3.0 | 33 | | | | | | | | | 56<br>57 | 13.3 | 8.6 | | | | | | | | | | | | | 58 | 13.1 | 8.1 | | | | | | | | | | | | | 59 | 13.0 | 7.5 | | | | | | | | | | | | | 60 | 12.9 | 7.1 | | 140 | 3.7 | - | | | | | | | | | 61 | 11.2 | 1.1 | | | | | | | | | | | | | 62 | 11.2 | 0.9 | | | | | | | | | | | | | 63 | 11.0 | 0.5 | | | | | | | | | | | | | 64 | 11.0 | 0.1 | | | 7.0 | | | | | | | | | | 65 | 10.5 | 0.0 | 6.8 | 140 | 7.0 | _ | | | | | | | | | Sta. A2L 046.4 212.9 Squaw Creek Arm<br>July 26, 1983 @ 1145 Hrs. Secchi 3.4m | | | | | | | | 046.4 212.<br>3, 1983 @ 1 | | | eek Ar<br>Secchi | | | |-------------------------------------------------------------------------------|--------------|------------|-------|-----|-------|------|----------|---------------------------|------------|------------|------------------|-------|------| | | Temp.(°C) | D.O. | | | Turb. | Alk. | | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | | | | | | | | | | | | | | | | | Surf. | 24.3 | 8.0 | 8.1 | 100 | 1.3 | 45 | Surf. | 25.8 | 8.2 | 8.4 | 100 | 1.2 | 44 | | 1<br>2 | 24.2<br>24.0 | 8.0 | | | | | 1<br>2 | 25.3<br>24.7 | 8.2 | | | | | | 3 | 23.7 | 7.9 | 8.2 | 102 | 1.7 | 45 | 3 | 24.5 | 8.2 | 8.5 | 99 | 1.4 | 44 | | 4 | 23.5 | 8.0 | 0.2 | 102 | 1.7 | 45 | 4 | 24.5 | 8.2 | 0.5 | ,, | 1.4 | | | 5 | 23.4 | 8.0 | | | | | 5 | 24.3 | 8,2 | | | | | | 6 | 22.8 | 7.5 | 8.1 | 103 | 1.4 | - | 6 | 24.3 | 8.1 | 8.5 | 99 | 1.6 | 44 | | 7 | 22.1 | 7.2 | | | | | 7 | 24.3 | 7.9 | | | | | | 8 | 21.4 | 6.7 | | | | | 8 | 22.8 | 5.1 | | | | | | 9 | 20.1 | 6.4 | 7.4 | 108 | 1.4 | - | 9 | 21.7 | 4.3 | 7.4 | 108 | 1.0 | 46 | | 10 | 18.5 | 7.0 | | | | | 10 | 19.8 | 5.3 | | | | | | 11 | 17.9 | 7.3 | | | | | 11 | 18.2 | 6.9 | | | | | | 12 | 17.0 | 7.4 | 7.5 | 120 | 1.7 | 57 | 12 | 17.8 | 7.5 | 7.5 | 121 | 1.2 | 59 | | 13 | 16.7 | 7.4 | | | | | 13 | 17.7 | 7.6 | | | | | | 14<br>15 | 16.4<br>16.5 | 7.5<br>7.5 | 7.5 | 191 | 1.4 | | 14<br>15 | 17.4<br>17.1 | 7.5<br>7.4 | 7 5 | 122 | 1.3 | 58 | | 16 | 16.4 | 7.5 | 1.3 | 121 | 1.4 | - | 16 | 16.9 | 6.8 | , | 122 | 2.3 | 30 | | 17 | 16.1 | 7.3 | | | | | 17 | 16.8 | 6.6 | | | | | | 18 | 15.9 | 6.9 | 7.3 | 118 | 1.7 | _ | 18 | 16.8 | 6.6 | 7.3 | 121 | 1.3 | 57 | | 19 | 15.6 | 6.7 | | | -•- | | 19 | 16.7 | 6.1 | | | - • - | | | 20 | 15.3 | 6.7 | | | | | 20 | 15.8 | 5.7 | | | | | | 21 | 15.0 | 6.8 | 7.3 | 113 | 1.9 | 56 | 21 | 15.6 | 5,6 | 7.2 | 117 | 1.6 | 55 | | 22 | 14.6 | 6.9 | | | | | 22 | 15.0 | 6.1 | | | | | | 23 | 14.1 | 7.1 | | | | | 23 | 15.2 | 6.2 | | | | | | 24 | 13.9 | 7.5 | 7.2 | 99 | 2.4 | - | 24 | 14.9 | 6.3 | 7.2 | 113 | 1.6 | 52 | | 25 | 13.5 | 7.4 | | | | | 25 | 14.8 | 6.5 | | | | | | 26 | 13.2 | 7.7 | | | | | 26 | 14.5 | 6.6 | | | | | | 27 | 13.0 | 7.8 | 7.3 | 95 | 2.4 | - | 27 | 14.2 | 6.6 | 7.2 | 110 | 1.5 | 50 | | 28<br>29 | 12.9 | 7.6 | | | | | 28<br>29 | 14.1 | 6.8 | | | | | | 30 | 12.6<br>12.5 | 7.6<br>7.7 | 7.2 | 100 | 2.7 | 44 | 30 | 13.9<br>13.8 | 6.8<br>6.8 | 7.2 | 106 | 2.0 | 46 | | 31 | 12.2 | 7.6 | 7.2 | 100 | 2.7 | 77 | 31 | 13.4 | 6.9 | , | 100 | 2.0 | 40 | | 32 | 12.0 | 7.6 | | | | | 32 | 13.1 | 6.9 | | | | | | 33 | 12.0 | 7.6 | | | | | 33 | 13.0 | 7.0 | | | | | | 34 | 11.9 | 7.7 | | | | | 34 | 12.8 | 7.1 | | | | | | 35 | 11.7 | 7.7 | 7.3 | 105 | 3.1 | - | 35 | 12.5 | 7.2 | 7.2 | 102 | 2.2 | 45 | | 36 | 11.5 | 7.7 | | | | | 36 | 12.1 | 7.3 | | | | | | 37 | 11.3 | 7.7 | | | | | 37 | 12.1 | 7.3 | | | | | | 38 | 11.2 | 7.7 | | | | | 38 | 11.9 | 7.4 | | | • | | | 39 | 11.2 | 7.7 | | 107 | | | 39 | 11.8 | 7.4 | <b>7</b> ^ | 100 | | ., | | 40<br>41 | 11.0<br>11.0 | 7.7<br>7.8 | 7.3 | 107 | 2.9 | 47 | 40<br>41 | 11.6 | 7.4<br>7.5 | 7,2 | 103 | 2.5 | 46 | | 42 | 11.0 | 7.8 | | | | | 42 | 11.6<br>11.3 | 7.5 | | | | | | 43 | 10.9 | 7.8 | | | | | 43 | 11.2 | 7.6 | | | | | | 44 | 10.8 | 7.8 | | | | | 44 | 11.2 | 7.6 | | | | | | 45 | 10.7 | 7.8 | 7.2 | 110 | 2.7 | - | 45 | 11.1 | 7.6 | 7.2 | 107 | 2.8 | 47 | | 46 | 10.6 | 7.8 | | | | | 46 | 10.9 | 7.5 | | | | | | 47 | 10.5 | 7.8 | | | | | 47 | 10.9 | 7.5 | | | | | | 48 | 10.5 | 7.8 | | | | | 48 | 10.8 | 7.5 | | | | | | 49 | 10.5 | 7.8 | | | | | 49 | 10.8 | 7.5 | | | | | | 50 | 10.3 | | 7.2 | 111 | 2.6 | 50 | 50 | 10.6 | 7.5 | 7.2 | 108 | 2.7 | 48 | | 51 | 10.2 | 7.8 | 7 0 | 110 | 2. | 5.0 | 51 | 10.4 | 7.5 | | | | | | 52<br>53 | 10.2 | 7.7<br>7.7 | 7.2 | 110 | 2.6 | 50 | 52<br>53 | 10.4 | 7.4<br>7.3 | | | | | | 54 | 10.1<br>10.0 | 7.5 | | | | | 54 | 10.4<br>10.3 | 7.3 | | | | | | 54.3 | - | - | Bott | O#R | | | 54.2 | 10.3 | - | Bott | OM. | | | | 24.3 | • | | DOC L | | | | J-1.2 | | | DULL | | | | | | | | | | | THMOLO | GIC DAIR | | | | | | |---------------|--------------|------------|------|-------|---------|--------|-------------|------------|--------|------------|------|------| | | Cin A21 0/ | 6 6 2 | 12 0 | Causu | Crack A | irm So | ptember 29, | 1983 @ 083 | 30 Hrs | . Secchi 4 | . 9m | | | Depth(m) | Temp.(°C) | | | | | Alk. | | Temp.(°C) | | | | Alk. | | | 20.6 | e 0 | 7.7 | 100 | 0.4 | 48 | 66 | 12.2 | 6.4 | | | | | Surf.<br>l | 20.8<br>20.8 | 8.9 | /./ | 109 | 0.4 | 40 | 67 | 12.2 | 6.4 | | | | | 2 | 20.8 | 8.9 | | | | | 68 | 12.2 | 6.4 | Bottom | | | | 3 | 20.8 | 8.9 | 7.7 | 110 | 0.4 | - | | | | | | | | 4 | 20.8 | 8.9 | | | | | | | | | | | | 5<br><b>6</b> | 20.8<br>20.8 | 8.8<br>8.8 | 7 6 | 110 | 0.5 | _ | | | | | | | | 7 | 20.8 | 8.8 | , | *** | 0.5 | | | | | | | | | 8 | 20.6 | 8.6 | | | | | | | | | | | | 9 | 20.5 | 8.5 | 7.5 | 110 | 0.5 | 48 | | | | | | | | 10 | 20.3 | 7.9 | | | | | | | | | | | | 11<br>12 | 20.1<br>19.8 | 7.9<br>7.3 | 7 3 | 116 | 0.3 | - | | | | | | | | 13 | 19.5 | 7.1 | | 110 | 0.5 | | | | | | | | | 14 | 19.1 | 6.4 | | | | | | | | | | | | 15 | 18.6 | 6.1 | 7.2 | 122 | 0.4 | - | | | | | | | | 16 | 17.7 | 6.2 | | | | | | | | | | | | 17<br>18 | 17.1<br>16.9 | 6.6<br>6.5 | 7.2 | 126 | 0.5 | 58 | | | | | | | | 19 | 16.9 | 6.8 | | | | | | | | | | | | 20 | 16.5 | 6.6 | | | | | | | | | | | | 21 | 16.4 | 6.6 | 7.2 | 126 | 0.5 | - | | | | | | | | 22<br>23 | 16.2<br>16.1 | 6.7<br>6.9 | | | | | | | | | | | | 24 | 16.0 | 6.9 | 7.2 | 126 | 0.6 | _ | | | | | | | | 25 | 15.8 | 7.1 | | | | | | | | | | | | 26 | 15.6 | 7.2 | | | | | | | | | | | | 27 | 15.5 | 7.4 | 7.2 | 128 | 0.6 | 58 | | | | | | | | 28<br>29 | 15.3<br>15.2 | 7.7<br>7.7 | | | | | | | | | | | | 30 | 15.2 | 7.9 | 7.2 | 127 | 0.8 | _ | | | | | | | | 31 | 15.2 | 7.9 | | | | | | | | | | | | 32 | 15.2 | 8.2 | | | | | | | | | | | | 33<br>34 | 15.2<br>15.2 | 8.1<br>8.1 | | | | | | | | | | | | 35 | 15.0 | 7.9 | 7.3 | 125 | 0.9 | _ | | | | | | | | 36 | 15.0 | 8.3 | | | | | | | | | | | | 37 | 15.0 | 7.7 | | | | | | | | | | | | 38 | 14.5 | 6.6 | | | | | | | | | | | | 39<br>40 | 14.2<br>14.2 | 6.5<br>6.5 | 7.0 | 114 | 1.7 | 50 | | | | | | | | 41 | 14.0 | 6.2 | .,. | | | | | | | | | | | 42 | 14.0 | 6.3 | | | | | | | | | | | | 43 | 13.8 | 6.5 | | | | | | | | | | | | 44<br>45 | 13.5<br>13.4 | 6.6<br>6.7 | 7 0 | 113 | 1.8 | _ | | | | | | | | 46 | 13.0 | 6.6 | | | | | | | | | | | | 47 | 12.8 | 6.4 | | | | | | | | | | | | 48 | 12.6 | 6.3 | | | | | | | | | | | | 49<br>50 | 12.5<br>12.3 | 6.3<br>6.4 | 6 9 | 117 | 6.7 | - | | | | | | | | 51 | 12.2 | 6,4 | | | ••• | | | | | | | | | 52 | 12.2 | 6.4 | | | | | | | | | | | | 53 | 12.2 | 6.4 | | | | | | | | | | | | 54<br>55 | 12.2<br>12.2 | 6.4 | ۷ 0 | 117 | 1.9 | 49 | | | | | | | | 56 | 12.2 | 6.5 | 0.9 | 11, | 1.7 | 47 | | | | | | | | 57 | 12.2 | 6.5 | | | | | | | | | | | | 58 | 12.2 | 6.3 | | | | | | | | | | | | 59 | 12.2 | 6.3 | | 110 | 1 0 | _ | | | | | | | | 60<br>61 | 12.2<br>12.2 | 6.3 | 6.9 | 118 | 1.9 | - | | | | | | | | 62 | 12.2 | 6.3 | | | | | | | | | | | | 63 | 12.2 | 6.3 | | | | | | | | | | | | 64 | 12.2 | 6.4 | | | | F.C. | | | | | | | | 65 | 12.2 | 6.4 | 6.9 | 120 | 4.3 | 50 | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 046 October 28, Depth(m) Ter Surf. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | 1983 @ | 8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.2<br>8.2<br>8.2 | 7.5 7.5 7.5 7.6 7.5 7.4 7.2 7.1 | Secon E.C. 113 112 112 112 113 | 1 5.7m<br>Turb.<br>0.9<br>1.0<br>0.9<br>0.8<br>0.9<br>0.8<br>0.9 | Alk. 51 49 - 55 - 58 | December Depth(m) Surf. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 19, 1983 @ Temp.(°C) 12.1 12.1 12.1 12.2 12.2 12.1 12.1 12 | D.O. | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 112<br>112<br>113 | 1.2<br>1.0<br>1.2<br>1.1<br>1.0<br>1.1<br>1.2<br>1.3 | 51 50 53 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------| | Depth(m) Tes<br>Surf<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | mp.(°C) 17.6 17.6 17.6 17.6 17.5 17.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.5 17.6 17.6 17.6 17.6 17.5 17.6 17.6 17.6 17.5 17.6 17.6 17.6 17.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17. | 8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.2<br>8.2<br>8.2<br>8.2<br>8.2<br> | PR 7.5 7.5 7.5 7.5 7.6 7.5 7.4 7.2 7.1 7.2 | 113 112 112 112 113 115 121 126 126 | 0.9<br>1.0<br>0.9<br>0.8<br>0.9<br>0.8<br>0.9 | 51<br>-<br>-<br>49<br>-<br>-<br>55 | Surf. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 12.1 12.1 12.1 12.2 12.2 12.2 12.1 12.1 | 9.55555555555599.4444444444444444444444 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 112<br>113<br>113<br>113<br>113<br>113<br>113<br>113 | 1.0<br>1.2<br>1.1<br>1.0<br>1.1<br>1.2<br>1.3 | -<br>50<br>- | | Surf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | 17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.3<br>8.3<br>8.3<br>8.2<br>8.2<br>8.2<br>8.3<br>-<br>8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>6.3 | 7.5 7.6 7.5 7.4 7.2 7.1 7.2 | 112 112 113 115 121 126 126 | 1.0<br>0.9<br>0.8<br>0.9<br>0.8<br>0.9 | -<br>49<br>-<br>-<br>55 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.2<br>12.2<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.5555555555555555555555555555555555555 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 112<br>113<br>113<br>113<br>113<br>113<br>113 | 1.0<br>1.2<br>1.1<br>1.0<br>1.1<br>1.2<br>1.3 | -<br>50<br>- | | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>38<br>39<br>40<br>41<br>42<br>42<br>42<br>43<br>44<br>44<br>45<br>46<br>46<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47<br>47 | 17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.3<br>8.3<br>8.3<br>8.2<br>8.2<br>8.2<br>8.3<br>-<br>8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>6.3 | 7.5 7.6 7.5 7.4 7.2 7.1 7.2 | 112 112 113 115 121 126 126 | 1.0<br>0.9<br>0.8<br>0.9<br>0.8<br>0.9 | -<br>49<br>-<br>-<br>55 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.2<br>12.2<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.5555555559999999999999999999999999999 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 113 113 113 113 113 113 113 | 1.2 1.1 1.0 1.1 1.2 1.3 | - | | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43 | 17.6<br>17.6<br>17.6<br>17.5<br>17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.3<br>8.3<br>8.3<br>8.2<br>8.2<br>8.2<br>-<br>8.3<br>-<br>8.2<br>-<br>5.5<br>-<br>6.4<br>-<br>5.5 | 7.5 7.6 7.5 7.4 7.2 7.1 7.2 7.1 | 112 112 113 115 121 126 126 | 0.9<br>0.8<br>0.9<br>0.8<br>0.9 | -<br>49<br>-<br>-<br>55 | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.2<br>12.2<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1 | 9.55<br>9.55<br>9.55<br>9.55<br>9.44<br>9.44<br>9.44<br>9.44 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 113 113 113 113 113 113 113 | 1.2 1.1 1.0 1.1 1.2 1.3 | - | | 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.6<br>17.5<br>17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.3<br>8.3<br>8.2<br>8.2<br>8.2<br>-<br>8.2<br>-<br>8.2<br>-<br>5.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 7.5 7.6 7.5 7.4 7.2 7.1 7.2 7.1 | 112 112 113 115 121 126 126 | 0.9<br>0.8<br>0.9<br>0.8<br>0.9 | -<br>49<br>-<br>-<br>55 | 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 12.1<br>12.2<br>12.2<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.55<br>9.55<br>9.55<br>9.55<br>9.64<br>9.64<br>9.64<br>9.64<br>9.64<br>9.64<br>9.64<br>9.64 | 7.3 7.3 7.3 7.3 7.3 7.3 7.3 | 113 113 113 113 113 113 113 | 1.2 1.1 1.0 1.1 1.2 1.3 | - | | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>41<br>42<br>42<br>43<br>43<br>44<br>45<br>46<br>46<br>47<br>47<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48<br>48 | 17.6<br>17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.3<br>8.2<br>8.2<br>8.3<br>-<br>8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>6.3 | 7.5 7.6 7.5 7.4 7.2 7.1 7.2 7.1 | 112 112 113 115 121 126 126 | 0.9<br>0.8<br>0.9<br>0.8<br>0.9 | -<br>49<br>-<br>-<br>55 | 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.2<br>12.2<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.1 | 9.5555555999999999999999999999999999999 | 7.3 7.3 7.3 7.3 7.3 | 113<br>113<br>113<br>113<br>113 | 1.1<br>1.0<br>1.1<br>1.2<br>1.3 | - | | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.2<br>8.2<br>8.3<br>-<br>8.2<br>-<br>8.2<br>-<br>5.5<br>-<br>5.9<br>-<br>6.3 | 7.6 7.5 7.4 7.2 7.1 7.2 7.1 | 112 113 115 121 126 126 | 0.8<br>0.9<br>0.8<br>0.9<br>0.8 | -<br>-<br>55<br>- | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.2<br>12.1<br>12.1<br>12.2<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0 | 9.5555559999999999999999999999999999999 | 7.3 7.3 7.3 7.3 7.3 | 113<br>113<br>113<br>113<br>113 | 1.1<br>1.0<br>1.1<br>1.2<br>1.3 | - | | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.5<br>17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 8.2<br>8.3<br>-<br>8.2<br>-<br>8.2<br>-<br>5.5<br>-<br>-<br>6.4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 7.6 7.5 7.4 7.2 7.1 7.2 7.1 | 112 113 115 121 126 126 | 0.8<br>0.9<br>0.8<br>0.9<br>0.8 | -<br>-<br>55<br>- | 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.2<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0 | 9.555.544.444.444.444.444.444.444.444.44 | 7.3 7.3 7.3 7.3 7.3 | 113<br>113<br>113<br>113<br>113 | 1.1<br>1.0<br>1.1<br>1.2<br>1.3 | - | | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.5<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.2<br>-<br>8.2<br>-<br>8.2<br>-<br>5.5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 7.6 7.5 7.4 7.2 7.1 7.2 7.1 | 112 113 115 121 126 126 | 0.8<br>0.9<br>0.8<br>0.9<br>0.8 | -<br>-<br>55<br>- | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.2<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.0 | 9.55599.4444444444444444444444444444444 | 7.3<br>7.3<br>7.3<br>7.3 | 113<br>113<br>113<br>113 | 1.0<br>1.1<br>1.2<br>1.3 | - | | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6 | 8.3<br>-<br>8.2<br>-<br>8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>-<br>6.3 | 7.5 7.4 7.2 7.1 7.2 7.1 | 113<br>115<br>121<br>126<br>126 | 0.9<br>0.8<br>0.9<br>0.8 | -<br>-<br>55<br>- | 8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.2 12.1 12.1 12.1 12.1 12.0 12.0 12.1 12.1 | 9.5<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3<br>7.3 | 113<br>113<br>113<br>113 | 1.0<br>1.1<br>1.2<br>1.3 | - | | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 8.2<br>-<br>8.2<br>-<br>6.4<br>-<br>-<br>5.5<br>-<br>-<br>6.3 | 7.5 7.4 7.2 7.1 7.2 7.1 | 113<br>115<br>121<br>126<br>126 | 0.9<br>0.8<br>0.9<br>0.8 | -<br>-<br>55<br>- | 9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.1<br>12.1<br>12.1 | 9.5<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>4<br>9.4<br>9.4<br>9.4<br>9 | 7.3<br>7.3<br>7.3<br>7.3 | 113<br>113<br>113<br>113 | 1.0<br>1.1<br>1.2<br>1.3 | - | | 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 8.2<br>-<br>8.2<br>-<br>6.4<br>-<br>-<br>5.5<br>-<br>-<br>6.3 | 7.5 7.4 7.2 7.1 7.2 7.1 | 113<br>115<br>121<br>126<br>126 | 0.9<br>0.8<br>0.9<br>0.8 | -<br>-<br>55<br>- | 10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.0<br>12.0<br>12.1<br>12.1<br>12.1<br>12.1 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3 | 113<br>113<br>113 | 1.1<br>1.2<br>1.3 | -<br>53<br>- | | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | 17.6<br>17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.4<br>16.7<br>16.4<br>16.0<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 8.2<br>-<br>8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>-<br>6.3 | 7.4<br>7.2<br>7.1<br>7.2<br>7.1 | 115<br>121<br>126<br>126 | 0.8<br>0.9<br>0.8<br>0.7 | - | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.0<br>12.0<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3 | 113<br>113<br>113 | 1.1<br>1.2<br>1.3 | -<br>53<br>- | | 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.6<br>17.6<br>17.6<br>17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>5.9<br>-<br>6.3 | 7.4<br>7.2<br>7.1<br>7.2<br>7.1 | 115<br>121<br>126<br>126 | 0.8<br>0.9<br>0.8<br>0.7 | - | 12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.0<br>12.0<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3 | 113<br>113<br>113 | 1.1<br>1.2<br>1.3 | 53 | | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.6<br>17.6<br>17.5<br>17.4<br>17.0<br>16.4<br>16.1<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 8.2<br>-<br>6.4<br>-<br>5.5<br>-<br>5.9<br>-<br>6.3 | 7.4<br>7.2<br>7.1<br>7.2<br>7.1 | 115<br>121<br>126<br>126 | 0.8<br>0.9<br>0.8<br>0.7 | - | 13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3 | 113<br>113<br>113 | 1.3 | -<br>53<br>- | | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.0<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 6.4<br>-<br>5.5<br>-<br>5.9<br>-<br>6.3 | 7.2<br>7.1<br>7.2<br>7.1 | 121<br>126<br>126 | 0.9 | - | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.1<br>12.1<br>12.1<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3 | 113<br>113<br>113 | 1.3 | -<br>53<br>- | | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.6<br>17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.0<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 6.4<br>-<br>5.5<br>-<br>5.9<br>-<br>6.3 | 7.2<br>7.1<br>7.2<br>7.1 | 121<br>126<br>126 | 0.9 | - | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3<br>7.3<br>7.3 | 113<br>113<br>113 | 1.3 | 53 | | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.5<br>17.4<br>17.0<br>16.7<br>16.4<br>16.1<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4 | 6.4<br>-<br>5.5<br>-<br>5.9<br>-<br>6.3 | 7.2<br>7.1<br>7.2<br>7.1 | 121<br>126<br>126 | 0.9 | - | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.1<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3 | 113 | 1.3 | 53 | | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.4<br>17.0<br>16.7<br>16.4<br>16.1<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.5<br>5.9<br>-<br>6.3 | 7.1<br>7.2<br>7.1 | 126<br>126 | 0.8 | - | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.1<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3 | 113 | 1.3 | 53<br>-<br>- | | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 17.0<br>16.7<br>16.4<br>16.1<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.5<br>5.9<br>-<br>6.3 | 7.1<br>7.2<br>7.1 | 126<br>126 | 0.8 | - | 18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3 | 113 | 1.3 | - | | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | 16.7<br>16.4<br>16.1<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.5<br>5.9<br>-<br>6.3 | 7.1<br>7.2<br>7.1 | 126<br>126 | 0.8 | - | 19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3 | 113 | 1.3 | - | | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 16.4<br>16.1<br>16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.5<br>-<br>5.9<br>-<br>6.3 | 7.2 | 126 | 0.7 | -<br>-<br>58 | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3 | 113 | 1.3 | - | | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 16.1<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.5<br>-<br>5.9<br>-<br>6.3 | 7.2 | 126 | 0.7 | -<br>-<br>58 | 22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 7.3 | 113 | 1.3 | - | | 22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 16.0<br>16.0<br>15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.9<br>-<br>6.3 | 7.2 | 126 | 0.7 | -<br>58 | 22<br>23<br>24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4 | | | | - | | 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 16.0<br>15.9<br>15.8<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 5.9<br>-<br>6.3 | 7.1 | | | -<br>58 | 24<br>25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4<br>9.4 | | | | - | | 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.9<br>15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 6.3 | 7.1 | | | -<br>58 | 25<br>26<br>27<br>28 | 12.0<br>12.0<br>12.0 | 9.4<br>9.4<br>9.4 | | | | - | | 25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.8<br>15.6<br>15.5<br>15.4<br>15.2<br>15.2 | 6.3 | 7.1 | | | 58 | 26<br>27<br>28 | 12.0<br>12.0 | 9.4<br>9.4 | 7.3 | 112 | | | | 26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.8<br>15.6<br>15.5<br>15.4<br>15.2 | 6.3 | | 126 | 0.7 | 58 | 27<br>28 | 12.0 | 9.4 | 7.3 | 112 | | | | 27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.6<br>15.5<br>15.4<br>15.2<br>15.2 | 6.3 | | 126 | 0.7 | 58 | 28 | | | 7.3 | 112 | | EΛ | | 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.5<br>15.4<br>15.2<br>15.2 | - | | 120 | | _ | | 12.0 | QΛ | | | 1.4 | 50 | | 29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.4<br>15.2<br>15.2 | - | | | | | 29 | | | | | | | | 30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.2<br>15.2 | | | | | | | 12.0 | 9.4 | | | | | | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.2 | 0.4 | 7.1 | 125 | 0.9 | _ | 30 | 12.0 | 9.4 | 7.3 | 113 | 1.5 | _ | | 32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | | | , | 123 | ••• | | 31 | 12.0 | 9.4 | | | | | | 33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | | _ | | | | | 32 | 11.9 | 9.4 | | | | | | 34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | | _ | | | | | 33 | 11.9 | 9.4 | | | | | | 35<br>36<br>37<br>38<br>39<br>40<br>41<br>42 | 15.0<br>14.9 | _ | | | | | 34 | 11.9 | 9.5 | | | | _ | | 36<br>37<br>38<br>39<br>40<br>41<br>42 | 14.9 | 6.1 | 7 1 | 123 | 1.2 | _ | 35 | 11.5 | 9.7 | | 112 | 1.5 | - | | 37<br>38<br>39<br>40<br>41<br>42 | 14.8 | - | , | | | | 36 | 11.3 | 9.8 | | | | | | 38<br>39<br>40<br>41<br>42 | 14.6 | _ | | | | | 37 | 11.0 | 10.0 | | | | | | 39<br>40<br>41<br>42 | 14.4 | _ | | | | | 38 | 10.8 | 10.1 | | | | | | 40<br>41<br>42 | 14.4 | _ | | | | | 39 | 10.8 | 10.1 | | | 1 0 | 52 | | 41<br>42 | 14.3 | 6.9 | 7.1 | 123 | 1.4 | 58 | 40 | 10.8 | 10.1 | | 117 | 1.9 | ,,, | | 42 | 14.2 | - | | | | | 41 | 10.7 | 10.2 | | | | | | | 14.1 | _ | | | | | 42 | 10.7 | 10.2 | | | | | | 7.7 | 14.0 | - | | | | | 43 | 10.6 | 10.2 | | | | | | 44 | 13.8 | _ | | | | | 44 | 10.6 | 10.2 | | 113 | 2.5 | _ | | 45 | 13.6 | 7.4 | 7.2 | 128 | 1.3 | - | 45 | 10.5 | 10.3 | | , 113 | 4.,3 | • | | 46 | 13.5 | - | | | | | 46 | 10.4 | 10.3 | | | | | | 47 | 13.3 | _ | | | | | 47 | 10.3 | 10.4 | | | | | | 48 | 13.2 | - | | | | | 48 | 10.2 | 10.4 | | | | | | 49 | 13.2 | _ | | | | | 49 | 9.6 | 10.5 | | 114 | 11 | 52 | | 50 | 13.1 | 7.7 | 7.3 | 2 128 | 2.0 | 60 | 50 | 9.3 | 10.6 | , , , | 2 116 | •• | | | 51 | 13.1 | _ | | | | | 51 | 8.9 | | | | | | | 52 | 13.0 | _ | | | | | 52 | 8.8 | _ | | | | | | 53 | 12.9 | | | | | | 53 | 8.7 | 10. | , , | 2 121 | 4.9 | _ | | 54 | 12.9 | _ | | | | | 54 | 8.6 | 10. | , ,. | 4 141 | 7.7 | | | 55 | 12.8 | 6.7 | 7.7. | 1 126 | 2.3 | - | 55 | 8.6 | _ | | | | | | 56 | 12.9 | - | | | | | 56 | 8.5 | - | | | | | | 57 | 12.8 | _ | | | | | 57 | 8.5 | 10 | | 2 117 | 6.3 | 53 | | 58 | 12.7 | _ | | | | | 58 | 8.5 | | о /. | Z 11/ | 0.5 | | | 59 | | - | | | | | 59 | 8.4 | | | | | | | 60 | 12.7 | | 4 6 | 9 124 | 4.2 | 58 | 60 | 8.4 | | <b>D</b> - | t t am | | | | 61 | 12.7<br>12.6 | 5.4 | · · | | | | 60. <b>9</b> | - | - | рО | ttom | | | | 61.8 | 12.7<br>12.6<br>12.6 | >.4<br>- | | | | | | | | | | | | Sta. A2L 046.4 212.9 Squaw Creek Arm January 23, 1984 @ 1300 Hrs. Secchi 5.3m Depth(m) Temp.(°C) D.O. pH E.C. Turb. Alk. Depth(m) Temp.(°C) D.O. pH E.C. Turb. 10.7 7.3 103 1.1 48 66 9.6 3urf. 9.6 67 6.8 10.6 1 2 68 6.8 9.5 10.6 9.5 7.3 102 1.1 69 6.8 10.6 3 4 5 6 7 7.7 56 7.2 116 9.5 10.6 70 6.8 12.3 9.5 6.8 10.6 72 9.4 10.6 7.3 107 1.1 6.8 6.8 9.4 10.6 73 12.0 Bottom 8 9.4 10.6 74 6.9 9.4 10.6 7.3 104 1.1 49 10 9.4 10.6 11 9.4 10.6 12 9.3 10.6 7.3 104 1.0 13 9.3 10.6 14 9.3 10.5 10.5 7.3 102 15 9.3 1.1 16 17 9.3 10.5 9.3 10.5 49 18 10.5 7.3 102 1.2 9.3 9.3 19 10.5 20 10.5 9.3 9.3 9.3 7.3 102 1.2 21 22 23 24 25 10.5 10.5 10.5 10.5 7.3 104 1.1 9.3 10.5 26 9.3 10.5 27 9.3 10.5 7.3 103 1.2 49 28 9.3 10.5 29 9.3 10.5 30 9.3 10.5 7.3 103 1.2 31 9.3 10.5 32 9.2 10.5 33 9.2 10.5 34 9.1 10.5 35 9.1 10.5 7.3 104 1.1 36 37 38 39 40 41 43 44 44 45 47 48 50 51 55 55 56 56 61 62 63 9.1 10.5 10.5 9.1 9.1 9.1 10.5 10.5 10.5 7.3 105 9.0 1.1 50 10.6 8.9 8.7 10.6 10.6 8.5 10,7 8.4 10.7 7.3 110 1.5 8.2 10.7 8.1 10.8 8.1 10.8 8.0 10.9 7.3 113 2.2 8.2 7.6 7.1 7.0 7.5 53 11.9 7.2 110 6.9 6.9 6.9 6.9 6.9 7.2 115 8.0 11.9 7.2 115 6.8 6.8 6.8 6.8 6.8 64 65 Sta. A2L 046.4 212.9 Squaw Creek Arm February 27, 1984 @ 1000 Hrs. Secchi 3.3m | | Sta. A2L | 046.4 | 212.9 | Squaw | Creek | Arm Fel | oruary 2/, | 1984 @ 10 | OU Hrs | . Secc | n1 3.3m | | |----------|-----------|-------|-------|-------|-------|---------|------------|-----------|--------|--------|-----------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pH E | .C. Turb. | Alk. | | | • | | | | | | | | | | | | | Surf. | 9.2 | 11.4 | 7.6 | 108 | 1.2 | 45 | 66 | 6.9 | 11.9 | | | | | 1 | 9.2 | 11.4 | | | | | 67 | 6.9 | 11.9 | | | | | 2 | 9.0 | 11.4 | | | | | 68 | 6.8 | 11.8 | | | | | 3 | 9.0 | 11.4 | 7.6 | 108 | 0.8 | - | 68.1 | - | _ | Bottom | | | | | | | 7.0 | 100 | 0.6 | - | 00.1 | | | DOCCOM | _ | | | 4 | 9.0 | 11.4 | | | | | | | | | • | | | 5 | 9.0 | 11.4 | | | | _ | | | | | | | | 6 | 9.0 | 11.4 | 7.6 | 107 | 0.9 | 46 | | | | | | | | 7 | 8.9 | 11.2 | | | | | | | | | | | | 8 | 8.9 | 11.2 | | | | | | | | | | | | 9 | 8.8 | | 7.5 | 107 | 0.9 | 46 | | | | | | | | 10 | 8.8 | 11.0 | | | | | | | | | | | | 11 | 8.8 | 11.0 | | | | | | | | | | | | | | | 7 5 | 107 | 1.0 | _ | | | | | | | | 12 | 8.8 | | 7.5 | 107 | 1.0 | _ | | | | | | | | 13 | 8.8 | 11.0 | | | | | | | | | | | | 14 | 8.8 | 11.0 | | | | | | | | | | | | 15 | 8.8 | 11.0 | 7.4 | 107 | 1.0 | - | | | | | | | | 16 | 8,.8 | 11.0 | | | | | | | | | | | | 17 | 8.8 | 11.0 | | | | | | | | | | | | 18 | 8.8 | 11.0 | 7.4 | 108 | 0.8 | 48 | | | | | • | | | 1.9 | 8.8 | 11.0 | | | | | | | | | | | | 20 | 8.8 | 11.0 | | | | | | | | | | | | | | | 7 4 | 107 | 1.0 | _ | | | | | | | | 21 | 8.8 | 11.0 | 7.4 | 107 | 1.0 | _ | | | | | | | | 22 | 8.8 | 10.9 | | | | | | | | | | | | 23 | 8.8 | 10.9 | _ | | | | | | | | | | | 24 | 8.8 | 10.9 | 7.3 | 107 | 0.9 | - | | | | | | | | 25 | 8.8 | 10.9 | | | | | | | | | | | | 26 | 8.8 | 10.9 | | | | | | | | | | | | 27 | 8.8 | 10.9 | 7.3 | 108 | 0.9 | 48 | | | | | | | | 28 | 8.8 | 10.9 | | | | | | | | | | | | 29 | 8.8 | 11.0 | | | | | | | | | | | | | | | 7.3 | 100 | 1.1 | _ | | | | | | | | 30 | 8.8 | 11.0 | 1.3 | 109 | 1.1 | _ | | | | | | | | 31 | 8.8 | 11.0 | | | | | • | | | | | | | 32 | 8.6 | 10.9 | | | | | | | | | | | | 33 | 8.4 | 10.8 | | | | | | | | | | | | 34 | 8.2 | 10.8 | | | | | | | | | | | | 35 | 8.2 | 10.8 | 7.3 | 117 | 1.1 | - | | | | | | | | 36 | 8.0 | 10.8 | | | | | | | | | | | | 37 | 7.9 | 10.9 | | | | | | | | | | | | 38 | 7.8 | 11.0 | | | | | | | | | | | | 39 | 7.8 | 11.0 | | | | | | | | | | | | 40 | | | 7.3 | 172 | 1.5 | 55 | | | | | | | | | 7.7 | 11.0 | 1.3 | 123 | 1.5 | ,, | | | | | | | | 41 | 7.7 | 11.0 | | | | | | | | | | | | 42 | 7.6 | 11.0 | | | | | | | | | | | | 43 | 7.5 | 11.1 | | | | | | | | | | | | 44 | 7.3 | 11.2 | | | | | | | | | | | | 45 | 7.2 | 11.3 | 7.3 | 128 | 2.6 | - | | | | | | | | 46 | 7.2 | 11.3 | | | | | | | | | | | | 47 | 7.1 | 11.3 | | | | | | | | | | | | 46 | 7.0 | 11.3 | | | | | | | | | | | | 49 | 7.0 | 11.5 | | | | | | | | | | | | 50 | 7.0 | 11.6 | 7.3 | 126 | 3.6 | _ | | | | | | | | | | | , | 120 | 3.0 | | | | | | | | | 51 | 7.0 | 11.6 | | | | | | | | | | | | 52 | 7.0 | 11.7 | | Ł | | | | | | | | | | 53 | 7.0 | 11.7 | | | | | | | | | | | | 54 | 7.0 | 11.7 | | 4. | | | | | | | | | | 55 | 7.0 | 11.8 | 7.3 | 126 | 4.5 | 58 | | | | | | | | 56 | 7.0 | 11.8 | | | | | | | | | | | | 57 | 6.9 | 11.8 | | | | | | | | | | | | 58 | 6.9 | 11.9 | | | | | | | | | | | | 59 | 6.9 | 11.9 | | | | | | | | | | | | 60 | | 11.9 | 7 2 | 129 | 13 | _ | | | | | | | | | 6.9 | | 1.3 | 110 | 13 | | | | | | | | | 61 | 6.9 | 11.9 | | | | | | | | | | | | 62 | 6.9 | 11.9 | | | | | | | | | | | | 63 | 6.9 | 11.9 | | | | | | | | | | | | 64 | 6.9 | 11.9 | | | | | | | | | | | | 65 | 6.9 | 11.9 | 7.3 | 126 | 13 | 58 | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A21 | r. 046 | 4 212 | .9 Sau | w Cree | k Arm | April 2, 1 | 984 @ 1300 | Hrs. | Secc | hi 5.8 | m | | |------------------|----------------------|----------------------|-------|--------|--------|-------|------------|------------|------|------|----------|---|------| | Depth(m) | Temp.(°C) | | | | | | | Temp.(°C) | D.O. | | E.C. | | Alk. | | Surf. | 12.8 | 10.7 | 7.6 | 106 | 0.9 | 45 | 66<br>66.5 | 7.4 | 9.8 | Bott | OΨ | | | | 1<br>2<br>3 | 12.7<br>12.4<br>12.2 | 10.7<br>10.7<br>10.6 | 7.6 | 106 | 1.0 | 44 | 00.5 | | | poet | <b>~</b> | | | | 4<br>5 | 12.0<br>11.6<br>11.6 | 10.6<br>10.2<br>10.7 | 7 6 | 106 | 1.2 | 44 | | | | | | | | | 6<br>7<br>8 | 11.5<br>11.4 | 10.7 | | | | | | | | | | | | | 9<br>10<br>11 | 11.3<br>11.2<br>11.0 | 10.6<br>10.6<br>10.5 | 7.5 | 106 | 1.2 | 44 | | | | | | | | | 12<br>13 | 10.8<br>10.2 | 10.5<br>10.4 | 7.4 | 106 | 1.4 | 44 | | | | | | | | | 14<br>15<br>16 | 10.0<br>9.9<br>9.8 | 10.4<br>10.4<br>10.4 | 7.3 | 107 | 1.7 | 45 | | | | | | | | | 17<br>1 <b>8</b> | 9.6<br>9.4 | 10.4 | 7.3 | 108 | 1.9 | 45 | | | | | | | | | 19<br>20<br>21 | 9.2<br>9.0<br>9.0 | 10.5<br>10.5<br>10.6 | 7.3 | 110 | 2.3 | 46 | | | | | | | | | 22<br>23<br>24 | 9.0<br>9.0<br>8.9 | 10.6<br>10.6<br>10.7 | 7.3 | 112 | 2.6 | 47 | | | | | | | | | 25<br>26 | 8.9<br>8.8 | 10.7<br>10.8 | | | | | | | | | | | | | 27<br>28<br>29 | 8.8<br>8.8<br>8.7 | 10.8<br>10.8<br>10.8 | 7.3 | 113 | 3.1 | 48 | | | | | | | | | 30<br>31 | 8.7<br>8.7 | 10.7<br>10.7 | 7.3 | 114 | 2.8 | 48 | | | | | | | | | 32<br>33<br>34 | 8.6<br>8.6<br>8.6 | 10.6<br>10.6<br>10.6 | | | | | | | | | | | | | 35<br>36<br>37 | 8.6<br>8.5<br>8.5 | 10.6<br>10.6<br>10.6 | 7.3 | 116 | 3.0 | 50 | | | | | | | | | 38<br>39 | 8.5<br>8.5 | 10.6<br>10.6 | | | | | | | | | | | | | 40<br>41<br>42 | 8.5<br>8.5<br>8.4 | 10.6<br>10.6<br>10.6 | 7.3 | 119 | 3.4 | 52 | | | | | | | | | 43<br>44 | 8.4<br>8.4 | 10.6<br>10.7 | | | | 50 | | | | | | | | | 45<br>46<br>47 | 8.4<br>8.4<br>8.4 | 10.7<br>10.7<br>10.7 | 7.3 | 120 | 2.7 | 52 | | | | | | | | | 48<br>49<br>50 | 8.4<br>8.4<br>8.3 | 10.6<br>10.6<br>10.6 | 7.3 | 122 | 2.7 | 54 | | | | | | | | | 51<br>52 | 8.3<br>8.2 | 10.6<br>10.6 | ,,, | | , | ٠, | | | | | | | | | 53<br>54<br>55 | 8.1<br>8.0<br>7.9 | 10.5<br>10.5<br>10.4 | 7.3 | 125 | 2.7 | 55 | | | | | | | | | 56<br>57 | 7.9<br>7.8 | 10.4<br>10.3<br>10.3 | | | | | | | | | | | | | 58<br>59<br>60 | 7.8<br>7.7<br>7.6 | 10.3<br>10.2 | 7.3 | 129 | 3.6 | 56 | | | | | | | | | 61<br>62<br>63 | 7.6<br>7.5<br>7.5 | 10.2<br>10.2<br>10.2 | | | | | | | | | | | | | 64<br>65 | 7.4 | 10.2 | 7.3 | 129 | 3.9 | 58 | | | | | | | | 1 | | Sta. A2 | L 046. | 4 212 | .9 Squ | iaw Cree | k Arm | May 7, 198 | 84 @ 1100 H | lrs. | Secch | 1 5.0m | <u>!</u> | | |----------------|--------------|--------------|-------|--------|----------|-------|------------------|--------------------|------------|-------|--------|----------|------| | Depth(m | ) Temp. (°C) | | | | Turb. | | | Temp.(°C) | | | | Turb. | Alk. | | | | | | | 0.7 | 45 | 66 | 8.0 | 9.4 | | | | | | Surf.<br>1 | 15.0<br>15.0 | 10.0<br>10.0 | 7.6 | 100 | 0.7 | 43 | 67 | 8.0 | 9.3 | | | | | | 2 | 14.6 | 10.0 | | | | | 68 | 8.0 | 9.4 | | | | | | 3<br>4 | 14.5<br>14.4 | 10.0<br>10.0 | 7.6 | 102 | 0.9 | - | 6 <b>9</b><br>70 | 7.9<br>7. <b>9</b> | 8.8<br>8.8 | 7.3 | 122 | 2.3 | 57 | | 5 | 14.4 | 10.0 | | | | | 71 | 7.9 | 8.6 | , | | | | | 6 | 14.4 | 10.0 | 7.5 | 102 | 1.0 | - | 72 | 7.9 | 8.5 | | | | | | 7<br>8 | 14.3<br>14.1 | 10.0<br>10.0 | | | | | 73 | - | - | Bott | om | | | | 9 | 14.0 | 10.0 | 7.5 | 103 | 1.1 | 48 | | | | | | | | | 10 | 13.4 | 10.0 | | | | | | | | | | | | | 11<br>12 | 13.2<br>12.8 | 10.0<br>10.0 | 7,4 | 107 | 1.2 | _ | | | | | | | | | 13 | 12.5 | 10.1 | , , 4 | 107 | 1.2 | | | | | | | | | | 14 | 12.0 | 10.2 | | | | | | | | | | | | | 15 | 11.8<br>11.5 | 10.2<br>10.2 | 7.4 | 116 | 2.2 | - | | | | | | | | | 16<br>17 | 11.3 | 10.2 | | | | | | | | | | | | | 18 | 11.2 | 10.2 | 7.4 | 119 | 2.9 | 58 | | | | | | | | | 19<br>20 | 11.2<br>11.1 | 10.2<br>10.1 | | | | | | | | | | | | | 21 | 11.0 | 10.1 | 7.4 | 118 | 2.7 | _ | | | | | | | | | 22 | 11.0 | 10.1 | | | | | | | | | | | | | 23<br>24 | 10.9<br>10.8 | 10.1<br>10.0 | 7 3 | 118 | 2.6 | _ | | | | | | | | | 25 | 10.5 | 10.0 | 7.3 | 110 | 2.0 | | | | | | | | | | 26 | 10.5 | 10.0 | | | | | | | | | | | | | 27<br>28 | 10.4<br>10.2 | 9.9<br>9.8 | 7.3 | 116 | 2.8 | 56 | | | | | | | | | 29 | 10.2 | 9.9 | | | | | | | | | | | | | 30 | 10.0 | 9.9 | 7.3 | 119 | 1.9 | - | | | | | | | | | 31<br>32 | 9.8<br>9.6 | 9.8<br>9.8 | | | | | | | | | | | | | 33 | 9.5 | 9.9 | | | | | | | | | | | | | 34 | 9.4 | 9.9 | | | | | | | | | | | | | 35<br>36 | 9.4<br>9.3 | 9.9<br>9.8 | 7,3 | 119 | 1.6 | - | | | | | | | | | 37 | 9.2 | 9.9 | | | | | | | | | | | | | 38 | 9.1 | 9.9 | | 144 | | | | | | | | | | | 39<br>40 | 9.1<br>9.1 | 9.9 | 7.3 | 119 | 1.5 | 56 | | | | | | | | | 41 | 9.0 | 9.9 | , | *** | 1.,, | 30 | | | | | | | | | 42 | 9.0 | 9.9 | | | | | | | | | | | | | 43<br>44 | 8.9<br>8.9 | 9.9<br>9.9 | | | | | | | | | | | | | 45 | 8.9 | 9.9 | 7.3 | 118 | 1.8 | - | | | | | | | | | 46 | 8.8 | 9.8 | | | | | | | | | | | | | 47<br>48 | 8.8<br>8.8 | 9.7<br>9.7 | | | | | | | | | | | | | 49 | 8.8 | 9.6 | | | | | | | | | | | | | 50 | 8.8 | 9.6 | 7.3 | 118 | 1.4 | - | | | | | | | | | 51<br>52 | 8.8<br>8.7 | 9.6<br>9.6 | | | | | | | | | | | | | 53 | 8.7 | 9.6 | | | | | | | | | | | | | 54<br>55 | 8.7 | 9.6 | 7 3 | 120 | 1.8 | 57 | | | | | | | | | 5 <del>6</del> | 8.6<br>8.5 | 9.5 | 7.3 | 120 | 1.0 | ٠, | | | | | | | | | 57 | 8.5 | 9.5 | | | | | | | | | | | | | 58<br>59 | 8.4<br>8.3 | 9.5<br>9.5 | | | | | | | | | | | | | 60 | 8.3 | | 7.3 | 120 | 1.7 | - | | | | | | | | | 61. | 8.2 | 9.5 | | | | | | | | | | | | | 62<br>63 | 8.2<br>8.2 | 9.4<br>9.4 | | | | | | | | | | | | | 64 | 8.1 | 9.4 | | | | | | | | | | | | | 65 | 8.1 | | 7.3 | 119 | 2.1 | - | | | | | | | | | | Sta A2 | T. 046 | .4 21 | 2.9 Sa | uaw Cre | ek Arm | June 5, 1 | 984 @ 0930 | Hrs. | Secc | hi 6.3 | <u>m</u> | | |----------------|--------------|------------|-------|--------|---------|--------|-----------|------------|------|------|--------|----------|------| | Depth(m) | Temp.(°C) | | | | Turb. | | Depth(m) | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | | | | | | | | | 66 | 8.2 | 8.5 | | | | | | Surf. | 20.2<br>20.0 | 8.7<br>8.7 | 7.7 | 105 | 1.5 | 47 | 67 | 8.2 | 8.5 | 7.2 | 125 | 2.7 | 55 | | 2 | 19.9 | 8.7 | | | | | 68 | 8.2 | 8.5 | | | | | | 3 | 19.8 | 8.7 | 7.7 | 107 | 1.5 | - | 69 | 8.2 | 8.4 | Bott | OŒ. | | | | 4 | 19.8<br>19.7 | 8.7<br>8.7 | | | | | | | | | | | | | 5<br>6 | 19.7 | 8.7 | 7.7 | 107 | 1,2 | - | | | | | | | | | 7 | 19.6 | 8.7 | | | | | | | | | | | | | 8<br>9 | 19.4<br>17.2 | 8.7<br>9.1 | 7.6 | 115 | 1.3 | 52 | | | | | | | | | 10 | 16.3 | 9.0 | | | | | | | | | | | | | 11 | 15.8 | 9.0 | | | | | | | | | | | | | 12 | 15.6<br>14.8 | 9.0<br>9.0 | 7.5 | 121 | 1,6 | - | | | | | | | | | 13<br>14 | 14.4 | 9.0 | | | | | | | | | | | | | 15 | 14.0 | 8.9 | 7.5 | 124 | 1.8 | 57 | | | | | | | | | 16 | 13.8 | 8.9 | | | | | | | | | | | | | 17<br>18 | 13.5<br>12.9 | 8.8<br>8.8 | 7.3 | 122 | 1.8 | _ | | | | | | | | | 19 | 12.7 | 8.8 | | | | | | | | | | | | | 20 | 12.2 | 8.8 | 7 2 | 122 | 2 1 | _ | | | | | | | | | 21<br>22 | 11.8<br>11.3 | 8.7<br>8.8 | 7.3 | 122 | 2.1 | _ | | | | | | | | | 23 | 11.0 | 8.9 | | | | | | | | | | | | | 24 | 11.0 | 8.9 | 7.3 | 124 | 2.5 | - | | | | | | | | | 25<br>26 | 10.8<br>10.8 | 8.8<br>8.8 | | | | | | | | | | | | | 20<br>27 | 10.6 | 8.8 | 7.3 | 125 | 2.5 | 58 | | | | | | | | | 28 | 10.5 | 8.8 | | | | | | | | | | | | | 29 | 10.2<br>10.1 | 8.8<br>8.8 | 7.3 | 125 | 2.5 | - | | | | | | | | | 30<br>31 | 10.1 | 8.8 | , | 123 | 2.5 | | | | | | | | | | 32 | 10.0 | 8.8 | | | | | | | | | | | | | 33<br>34 | 9.9<br>9.8 | 8.8<br>8.8 | | | | | | | | | | | | | 35 | 9.8 | 8.8 | 7.3 | 124 | 2.5 | - | | | | | | | | | 36 | 9.7 | 8.9 | | | | | | | | | | | | | 37<br>38 | 9.5<br>9.3 | 9.0<br>9.0 | | | | | | | | | | | | | 3 <del>9</del> | 9.2 | 8.9 | | | | | | | | | | | | | 40 | 9.2 | 8.9 | 7.3 | 121 | 2.9 | 55 | | | | | | | | | 41<br>42 | 9.2<br>9.2 | 8.9<br>8.9 | | | | | | | | | | | | | 43 | 9.1 | 8.9 | | | | | | | | | | | | | 44 | 9.1 | 8.9 | | | | | | | | | | | | | 45<br>46 | 9.0<br>9.0 | 8.9<br>8.8 | 7.3 | 121 | 2.9 | - | | | | | | | | | 47 | 9.0 | 8.8 | | | | | | | | | | | | | 48 | 9.0 | 8.8 | | | | | | | | | | | | | 49<br>50 | 9.0<br>8.9 | 8.8<br>8.7 | 7.2 | 123 | 2.5 | | | | | | | | | | 51 | 8.9 | 8.7 | | | | | | | | | | | | | 52 | 8.8 | 8.8 | | | | | | | | | | | | | 53<br>54 | 8.8<br>8.8 | 8.8<br>8.7 | | | | | | | | | | | | | 55 | 8.8 | 8.7 | | 122 | 2.5 | 55 | | | | | | | | | 56 | 8.8 | 8.7 | | | | | | | | | | | | | 57<br>58 | 8.7<br>8.7 | 8.8<br>8.7 | | | | | | | | | | | | | 59 | 8.7 | 8.7 | | | | | | | | | | | | | 60 | 8.6 | 8.7 | | 123 | 2.4 | - | | | | | | | | | 61<br>62 | 8.5<br>8.5 | 8.7<br>8.6 | | | | | | | | | | | | | 63 | 8.4 | 8.6 | | | | | | | | | | | | | 64 | 8.3 | 8.6 | | 125 | 2.5 | _ | | | | | | | | | 65 | 8.3 | 8.6 | 7.2 | 125 | 2.3 | _ | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L | 046. | 4 212 | .9 Squ | aw Cree | k Arm | July 10, 1984 @ 1130 Hrs. Secchi 4.5m | |----------|--------------|------------|------------------|--------|---------|-------|---------------------------------------| | Depth(m) | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | | | Surf. | 27.0 | 8.0 | 7.6 | 109 | 0.6 | 50 | 67 13.9 8.7 7.2 120 2.0 55 | | 1 | 27.0 | 8.0 | | | | | 69 Bottom | | 2 | 26.8 | 8.0 | | | | | | | 3 | 26.6 | 8.0 | 7.6 | 110 | 0.7 | - | | | 4 | 26.0 | 8.0 | | | | | | | 5 | 25.0 | 8.5 | | 100 | | | | | 6<br>7 | 24.9<br>24.2 | 8.5 | 7.6 | 109 | 0.6 | - | | | 8 | 23.1 | 8.4<br>8.0 | | | | | | | 9 | 22.4 | 7.9 | 7.5 | 112 | 0.9 | 51 | | | 10 | 20.3 | 7.9 | | | | | | | 11 | 19.2 | 8.0 | | | | | | | 12 | 18.8 | 8.2 | 7.4 | 125 | 1.0 | _ | | | 13 | 18.2 | 8.4 | | | | | | | 14 | 18.0 | 8.4 | | | | | | | 15 | 18.0 | 8.4 | 7.4 | 130 | 1.1 | - | | | 16<br>17 | 17.9<br>17.3 | 8.4 | | | | | | | 18 | 16.5 | 8.0<br>7.8 | 7 4 | 126 | 1.5 | 61 | | | 19 | 16.0 | 7.8 | , . <del>-</del> | 120 | | 0. | | | 20 | 15.6 | 7.8 | | | | | | | 21 | 15.2 | 7.9 | 7.3 | 124 | 1.1 | - | | | 22 | 14.8 | 8.0 | | | | | • | | 23 | 14.8 | 8.0 | | | | | | | 24 | 14.3 | 8.0 | 7.3 | 123 | 1.9 | - | | | 25 | 14.0 | 8.1 | | | | | | | 26<br>27 | 13.6 | 8.2 | 7 2 | 120 | 1.4 | 58 | | | 28 | 13.1<br>12.9 | 8.4<br>8.6 | 7.3 | 120 | 1.4 | 20 | | | 29 | 12.7 | 8.5 | | | | | | | 30 | 12.3 | 8.5 | 7.3 | 118 | 1.5 | _ | | | 31 | 12.1 | 8.6 | | | | | | | 32 | 12.0 | 8.6 | | | | | | | 33 | 11.8 | 8.6 | | | | | | | 34 | 11.4 | 8.5 | | | | | | | 35<br>36 | 11.3<br>11.2 | 8.5 | 1.5 | 122 | 1.7 | - | | | 37 | 11.1 | 8.5<br>8.6 | | | | | | | 38 | 11.0 | 8.6 | | | | | | | 39 | 10.9 | 8.6 | | | | | | | 40 | 10.7 | 8.5 | 7.3 | 122 | 1.8 | 58 | | | 41 | 10.6 | 8.5 | | | | | | | 42 | 10.5 | 8.4 | | | | | | | 43 | 10.3 | 8.4 | | | | | | | 44<br>45 | 10.2<br>10.2 | 8.5<br>8.5 | 7 2 | 124 | 1.5 | _ | | | 46 | 10.2 | 8.5 | 1.2 | 124 | 1.5 | - | | | 47 | 10.1 | 8.4 | | | | | | | 48 | 10.0 | 8.4 | | | | | | | 49 | 10.0 | 8.3 | | | | | | | 50 | 10.0 | 8.3 | 7.2 | 124 | 1.4 | - | | | 55 | 12.0 | 8.6 | 7.2 | 127 | 0.9 | 60 | | | 60 | 12.2 | 8.6 | 7.2 | 123 | 1,4 | - | | | 65 | 11.4 | 8.7 | 7.2 | 123 | 1.6 | - | | SHASTA RESERVOIR LIMMOLOGIC DATA | Sta. A2L 046.4 | 212 0 6 | augu Crook As | -m August 13 | 1084 6 1 | 200 11-0 | Seacht 4 1m | |----------------|-----------|---------------|---------------|------------|-----------|-------------| | 318. AZL U40.4 | 1 414.9 3 | duaw creek ai | THE AUGUST 13 | . 1904 6 3 | LZUU RIB. | Seccur 4.1m | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m | ) Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | |------------|--------------|------------|------------|------|-------|------|----------|-------------|------|------|------|-------|------| | Surf. | 27.2 | 8.5 | 8.0 | 114 | 1.0 | 48 | 66 | 9.4 | 4.6 | | | | | | 1 | 26.5 | 8.7 | | | | | 67 | 9.3 | 4.5 | | | | | | 2 | 26.1 | 8.7 | | | | | 68 | 9.2 | 4.4 | | | | | | 3<br>4 | 26.1 | 8.6 | 8.0 | 114 | 0.5 | - | 69 | 9.1 | 4.3 | 7.1 | 133 | 30 | 58 | | 5 | 26.0<br>26.0 | 8.4<br>8.3 | | | | | 70<br>71 | 9.1<br>9.1 | 4.3 | Bott | OW. | | | | 6 | 26.0 | 8.3 | 8.0 | 115 | 0.9 | _ | , . | 7.1 | 4.3 | bott | | | | | 7 | 25.8 | 8,2 | | | | | | | | | | | | | 8 | 24.9 | 6.4 | | | | | | | | | | | | | 9 | 24.0 | 5.3 | 7.2 | 118 | 0.9 | 51 | | | | | | | | | 10 | 22.8 | 4.6 | | | | | | | | | | | | | 11<br>12 | 21.1<br>20.3 | 4.8<br>5.3 | 7.3 | 130 | 0.7 | 60 | | | | | | | | | 13 | 19.7 | 5.5 | | 130 | • | ••• | | | | | | | | | 14 | 19.4 | 5.7 | | | | | | | | | | | | | 15 | 19.1 | 5.8 | 7.3 | 132 | 0.9 | - | | | | | | | | | 16 | 19.0 | 6.1 | | | | | | | | | | | | | 17<br>18 | 18.8<br>18.5 | 6.4<br>6.6 | 7.3 | 134 | 0.9 | 61 | | | | | | | | | 19 | 18.3 | 6.6 | , | 234 | 0., | V-1 | | | | | • | | | | 20 | 18.2 | 6.6 | | | | | | | | | | | | | 21 | 18.1 | | 7.3 | 133 | 0.6 | - | | | | | | | | | 22 | 17.5 | 5.8 | | | | | | | | | | | | | 23<br>24 | 17.0<br>16.9 | 5.8<br>5.8 | 7.3 | 131 | 1.4 | _ | | | | | | | | | 25 | 16.4 | 5.9 | , | 131 | 1.7 | | | | | | | | | | 26 | 16.0 | 6.0 | | | | | | | | | | | | | 27 | 15.8 | | 7.3 | 130 | 1.3 | 59 | | | | | | | | | 28 | 15.6 | 6.0 | | | | | | | | | | | | | 29<br>30 | 15.1<br>14.9 | 6.0<br>6.0 | 7.2 | 129 | 1.5 | _ | | | | | | | | | 31 | 14.5 | 6.0 | 1.2 | 123 | 1.3 | | | | | | | | | | 32 | 14.1 | 5.8 | | | | | | | | | | | | | 33 | 13.9 | 5.9 | | | | | | | | | | | | | 34 | 13.8 | 5.9 | <b>.</b> . | | | | | | | | | | | | 35<br>36 | 13.5<br>13.2 | 5.9<br>6.0 | 7.2 | 127 | 1.5 | - | | | | | | | | | 37 | 13.0 | 6.0 | | | | | | | | | | | | | 36 | 12.8 | 6.0 | | | | | | | | | | | | | 39 | 12.7 | 5.9 | | | | | | | | | | | | | 40 | 12.5 | | 7.2 | 128 | 1.6 | 56 | | | | | | | | | 41 '<br>42 | 12.3<br>12.0 | 5.7<br>5.6 | | | | | | | | | | | | | 43 | 11.9 | 5.5 | | | | | | | | | | | | | 44 | 11.8 | 5.2 | | | | | | | | | | | | | 45 | 11.6 | | 7.1 | 134 | 1.6 | - | | | | | | | | | 46<br>47 | 11.4 | 4.7 | | | | | | | | | | | | | 46 | 11.2<br>11.1 | 4.8<br>4.8 | | | | | | | | | | | | | 49 | 11.0 | 4.8 | | | | | | | | | | | | | 50 | 10.9 | 4.9 | 7.1 | 135 | 1.6 | - | | | | | | | | | 51 | 10.8 | 4.9 | | | | | | | | | | | | | 52<br>53 | 10.7<br>10.6 | 4.9<br>4.9 | | | | | | | | | | | | | 54 | 10.5 | 4.9 | | | | | | | | | | | | | 55 | 10.4 | 5,0 | 7.1 | 135 | 1.2 | 58 | | | | | | | | | 56 | 10.4 | 5.0 | | | | | | | | | | | | | 57 | 10.3 | 5.0 | | | | | | | | | | | | | 58<br>59 | 10.2<br>10.1 | 5.0<br>5.0 | | | | | | | | | | | | | 60 | 10.1 | | 7.1 | 133 | 1.0 | _ | | | | | | | | | 61 | 9.9 | 4.9 | | -35 | | | | | | | | | | | 62 | 9.8 | 4.8 | | | | | | | | | | | | | 63 | 9.7 | 4.8 | | | | | | | | | | | | | 64<br>65 | 9.6 | 4.8 | 7 , | 124 | 1 2 | _ | | | | | | | | | 0.5 | 9.5 | 4.7 | 7.1 | 134 | 1.2 | _ | | | | | | | | Sta. A2L 046.4 212.9 Squaw Creek Arm September 11, 1984 @ 1045 Hrs. Secchi 4.5m | | 4.5m | ecchi | <u>. s</u> | 45 Hrs | 1984 6 10 | September 11, | Arm S | Creek | Squaw | 12.9 | 46.4 2 | Sta. A2L 0 | | |------|-------|-------------|------------|------------|------------|---------------|-------|-------|-------|------|------------|--------------|---------------------------------------| | Alk. | Turb. | E.C. | Hq | D.0. | Temp. (°C) | Depth(m) | Alk. | Turb. | E.C. | Hq | D.0. | Temp.(°C) | Depth(m) | | | | | | | | | - | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | 4.3 | 10.0 | 99 | 52 | 0.6 | 120 | 7.9 | 7.9 | 24.2 | Surf. | | | | | | 4.2<br>4.1 | 10.0 | 67 | | | | | 7.9 | 24.0 | 1 | | | | | | 3.7 | 9.8<br>9.7 | 69<br>89 | - | 6.0 | 119 | 7.9 | 7.8 | 23.9 | 2 | | 59 | 2.0 | 137 | 7.0 | | 9.5 | 70 | - | €.0 | 611 | ٠.١ | 7.7<br>7.7 | 23.9<br>23.9 | 3 | | | | | ••• | 3.1 | ē. ē | 71 | | | | | 7.4 | 23.8 | ž | | 09 | 2.7 | 136 | 7.0 | | 9.3 | 72 | _ | 0.6 | 119 | 7.8 | 7.1 | 23.6 | à | | | | | | 2.7 | 9.2 | 73 | | | | | 7.0 | 23.6 | 7 | | | | <b>5</b> 0: | Bott | 2.2 | 9.1 | 74.1 | | | | | 6.7 | 23.4 | 8 | | | | | | | | | 53 | 0.6 | 120 | 7.4 | | 23.2 | 6 | | | | | | | | | | | | | 5.6 | 23.1 | 10 | | | | | | | | | _ | 0.9 | 129 | 7.0 | 3.1<br>2.9 | 21.9 | 11 | | | | | | | | | | €.0 | 471 | 0.1 | 3.7 | 20.8<br>20.0 | 12<br>13 | | | | | | | | | | | | | 4.0 | 19.5 | 14 | | | | | | | | | _ | 0.6 | 132 | 7.1 | 4.6 | 19.2 | īs | | | | | | | | | | | | | 5.3 | 19.0 | 16 | | | | | | | | | | | | | 4.9 | 18.6 | 1.7 | | | | | | | | | 63 | 0.9 | 134 | 7.2 | | 18.4 | 91 | | | | | | | | | | | | | 5.6 | 18,2 | 61 | | | | | | | | | - | 0.9 | 135 | с г | 6.2 | 18.0 | 20 | | | | | | | | | _ | ₹.0 | 661 | 7.3 | 6.3 | 18.0<br>17.9 | 21<br>22 | | | | | | | | | | | | | 7.1 | 17.8 | 23 | | | | | | | | | _ | 8.0 | 135 | 7.4 | | 17.6 | 24 | | | | | | | | | | | | | 7.3 | 17.5 | 25 | | | | | | | | | | | | | 7.2 | 17.4 | 26 | | | | | | | | | 63 | 1.1 | 135 | 7.4 | 7.1 | 17.2 | 27 | | | | | | | | | | | | | 7.2 | 17.1 | 28 | | | | | | | | | _ | 1.0 | 135 | | 8.8 | 17.1 | 29 | | | | | | | | | _ | 0.1 | 661 | 7.3 | 6.9<br>5.8 | 16.9<br>16.5 | 30<br>31 | | | | | | | | | | | | | 5.4 | 16.0 | 32 | | | | | | | | | | | | | 5.4 | 15.7 | 33 | | | | | | | | | | | | | 5.5 | 15.4 | 34 | | | | | | | | | - | 1.6 | 132 | 7.1 | 5.7 | 15.2 | 35 | | | | | | | | | | | | | 5.8 | 15.0 | 36 | | | | | | | | | | | | | 5.7 | 14.7 | 37 | | | | | | | | | | | | | 5.7 | 14.3 | 38 | | | | | | | | | 59 | 1,6 | 130 | 7.1 | 5.7<br>5.7 | 14.1<br>13.9 | 39 '<br>40 | | | | | | | | | | 0,1 | 001 | 1., | 5.7 | 13.7 | 41 | | | | | | | | | | | | | 5.7 | 13.5 | 42 | | | | | | | | | | | | | 5.8 | 13.3 | 43 | | | | | | | | | | | | | 5.8 | 13.1 | 44 | | | | | | | | | - | 1.5 | 131 | 7.1 | 5.5 | 12.9 | 45 | | | | | | | | | | | | | 5.2 | 12.8 | 94 | | | | | | | | | | | | | 5.4 | 12.5 | 47 | | | | | | | | | | | | | 5.4<br>5.5 | 12.3<br>12.2 | 64<br>48 | | | | | | | | | _ | 1.5 | 132 | 7.0 | 5.4 | 12.1 | 30 | | | | | | | | | | | | | 5.3 | 12.0 | . 31 | | | | | | | | | | | | | 5.2 | 11.9 | 52 | | | | | | | | | | | | | 5.2 | 11.8 | 53 | | | | | | | | | • | | | | 5.0 | 11.5 | 54 | | | | | | | | | 09 | 1.5 | 135 | 7.0 | 5.0 | 11.2 | 35 | | | | | | | | | | | | | 5.1<br>5.0 | 11.2 | 56<br>57 | | | | | | | | | | | | | 5.0 | 11.1<br>11.0 | 57<br>58 | | | | | | | | | | | | | 5.0 | 10.9 | . 59 | | | | | | | | | - | 1.5 | 137 | 7.0 | 5.0 | 10.8 | 60 | | | | | | | | | | | | | 5.0 | 10.5 | 61 | | | | | | | | | | | | | 4.9 | 10.5 | 62 | | | | | | | | | | | | | 4.8 | 10.2 | 63 | | | | | | | | | _ | 1.6 | 135 | 7.0 | 4,5 | 10.2 | 64 | | | | | | | | | | 0.1 | | 7.0 | C.# | 10.1 | 65 | | | Sta A2T. | 046.4 | 212. | 9 Saua | w Creek | Arm | October 15, | 1984 @ 110 | 0 Hrs | . Secchi | 3.4m | | |-----------|--------------|------------|------|--------|---------|-----|-------------|------------|------------|----------|---------|------| | Denth(m) | Temp.(°C) | | | E.C. | | | Depth(m) | Temp.(°C) | D.O. | рн Е.С | . Turb. | Alk. | | peptit(m) | | | | | | | | 10.1 | 1.6 | | | | | Surf. | 17.7<br>17.7 | 7.8<br>7.8 | 7.3 | 131 | 1.0 | 57 | 66<br>67 | 10.1 | 1.5 | | | | | 1<br>2 | 17.7 | 7.8 | | | | | 68 | 9.7 | 1.2 | 6.8 14 | 4 3.0 | 60 | | 3 | 17.7 | 7.7 | 7.3 | 129 | 0.9 | - | 69<br>70 | 9.7<br>9.3 | 0.5<br>0.3 | 6.8 14 | 14 3.0 | 00 | | 4<br>5 | 17.7<br>17.7 | 7.7<br>7.7 | | | | | 70<br>71 | 9.3 | - | Bottom | | | | 6 | 17.8 | 7.7 | 7.3 | 129 | 0.7 | - | | | | | | | | 7 | 17.8 | 7.7 | | | | | | | | | | | | 8<br>9 | 17.8<br>17.8 | 7.7<br>7.6 | 7.3 | 130 | 0.9 | 57 | | | | | | | | 10 | 17.8 | 7.6 | | | *** | | | | | | | | | 11 | 17.8 | 7.6 | | | 0.0 | _ | | | | | | | | 12 | 17.8<br>17.8 | 7.5<br>7.5 | 7.3 | 130 | 0.8 | - | | | | | | | | 13<br>14 | 17.8 | 7.5 | | | | | | | | | | | | 15 | 17.8 | 7.5 | 7.3 | 130 | 0.6 | - | | | | • | | | | 16<br>17 | 17.8<br>17.8 | 7.5<br>7.5 | | | | | | | | | | | | 18 | 17.8 | 7.5 | 7.2 | 130 | 0.9 | 57 | | • | | | | | | 19 | 17.8 | 7.4 | | | | | | | | | | | | 20<br>21 | 17.7<br>17.3 | 6.3<br>5.5 | 7.2 | 135 | 0.7 | _ | | | | | | | | 22 | 17.3 | 5.5 | | | - • • | | | | | | | | | 23 | 17.2 | 5.9 | 7.0 | | 0.0 | | | | | | | | | 24<br>25 | 17.0<br>17.0 | 6.0<br>6.2 | 7.2 | 137 | 0.9 | - | | | | | | | | 26 | 16.8 | 6.2 | | | | | | | | | | | | 27 | 16.6 | 6.2 | 7.2 | 138 | 0.7 | 62 | | | | | | | | 28 | 16.5<br>16.3 | 6.4<br>6.1 | | | | | | | | | | | | 29<br>30 | 16.3 | 6.1 | 7.2 | 138 | 1.1 | - | | | | | | | | 31 | 16.1 | 6.1 | | | | | | | | | | | | 32<br>33 | 16.0<br>15.8 | 6.1 | | | | | | | | | | | | 34 | 15.5 | 5.5 | | | | | | | | | | | | 35 | 15.2 | 5.6 | 7.1 | 138 | 1.0 | - | | | | | | | | 36<br>37 | 15.0<br>14.8 | 5.2<br>5.1 | | | | | | | | | | | | 38 | 14.4 | 5.3 | | | | | | | | | | | | 39 | 14.2 | 5.9 | 7 2 | 139 | 1.0 | 63 | | | | | | | | 40<br>41 | 14.2<br>14.2 | 6.5<br>6.5 | 7.2 | 137 | 1.0 | 0.5 | | | | | | | | 42 | 14.0 | 6.8 | | | | | | | | | | | | 43 | 14.0 | 6.9 | | | | | | | | | | | | 44<br>45 | 14.0<br>13.9 | 6.9<br>6.8 | 7.2 | 140 | 1.1 | - | | | | | | | | 46 | 13.9 | 6.8 | | | | | | | | | | | | 47 | 13.8<br>13.8 | 5.6<br>6.4 | | | | | | | | | | | | 48<br>49 | 13.8 | 6.6 | | | | | | | | | | | | 50 | 13.7 | 6.6 | | 141 | 1.7 | - | | | | | | | | 51<br>52 | 13.7<br>13.4 | 4.9<br>3.4 | | | | | | | | | | | | 53 | 13.4 | 3.8 | | | | | | | | | | | | 54 | 13.2 | 2.5 | 7.0 | 142 | 1.5 | 62 | | | | | | | | 55<br>56 | 13.2<br>13.0 | 1.8 | 7,0 | 142 | 1.5 | 02 | | | | | | | | 57 | 12.7 | 0.8 | | | | | | | | | | | | 58 | 12.2 | 1.7 | | | | | | | | | | | | 59<br>60 | 11.8<br>11.5 | 1.8 | 6.8 | 144 | 1.5 | - | | | | | | | | 61 . | 11.2 | 1.7 | | | | | | | | | | | | 62 | 11.0 | 1.9 | | | | | | | | | | | | 63<br>64 | 10.8<br>10.7 | 1.9<br>1.9 | | | | | | | | | | | | 65 | 10.3 | | 6.9 | 143 | 1.5 | _ | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L | 048.4 | 217.6 | McC1 | oud Riv | er Arm | May 12, 19 | 83 @ 1015 H | rs. S | ecch | 1 2.6m | <u>.</u> | | |------------------|--------------------|--------------|------------|------|---------|--------|-----------------|-------------|--------------|------|--------|----------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 11.5 | 10.8 | 8.0 | 87 | 2.4 | 37 | 66 | 7.1 | 11.2 | | | | | | 1 | 11.2 | 10.8 | | | | | 67 | 7.1 | 11.2 | | 00 | | 20 | | 2 | 11.2<br>11.2 | 10.8 | 7 4 | 94 | 2 4 | | 68<br>69 | 7.1<br>7.1 | 11.2<br>11.2 | - | 89 | 4.6 | 39 | | 3<br>4 | 11.1 | 10.8 | 7.6 | 86 | 2.6 | - | 70 | - | - | | | | | | 5 | 11.1 | 10.8 | | | | | 72 | 7.1 | 11.2 | _ | 90 | 4.8 | _ | | 6 | 11.1 | 10.8 | 7.4 | 86 | 2.9 | 38 | 75 | 7.1 | 11.2 | - | 92 | 6.0 | 42 | | 7 | 11.0 | 10.8 | | | | | 78 | 7.1 | 11.2 | | | | | | 8 | 10.9 | 10.8 | - <i>,</i> | 0.7 | | | 81<br><b>84</b> | 7.0<br>7.0 | 11.2<br>11.2 | | | | | | 9<br>10 | 10.8<br>10.5 | 10.7<br>10.7 | 7.4 | 86 | 2.7 | - | 87 | 7.0 | 11.2 | | | | | | 11 . | 10.3 | 10.7 | | | | | 90 | 7.0 | 11.2 | | | | | | 12 | 10.1 | 10.7 | 7.4 | 90 | 3.4 | 38 | 93 | 7.0 | 11.0 | | | | | | 13 | 9.6 | 10.7 | | | | | 93.9 | 7.0 | 11.0 | Bot | tom | | | | 14 | 9.4 | 10.7 | | | | | | | | | | | | | 15<br>1 <b>6</b> | 9.2<br>9.1 | 10.7<br>10.7 | 7.3 | 103 | 3.4 | - | | | | | | | | | 17 | 9.0 | 10.7 | | | | | | | | | | | | | 18 | 9.0 | 10.7 | 7.3 | 108 | 3.7 | 48 | | | | | | | | | 19 | 9.0 | 10.7 | | | | | | | | | | | | | 20 | 9.0 | 10.7 | | | 2.6 | | | | | | | | | | 21<br>22 | 8.9<br>8.9 | 10.7<br>10.7 | 7.3 | 111 | 3.6 | - | | | | | | | | | 23 | 8.9 | 10.8 | | | | | | | | | | | | | 24 | 8.8 | 10.8 | 7.3 | 108 | 3.7 | 48 | | | | | | | | | <b>2</b> 5 | 8.7 | 10.8 | | | | | | | | | | | | | 26 | 8.7 | 10.8 | | | | | | | | | | | | | 27<br>28 | 8.7<br>8.6 | 10.9<br>10.9 | 7.3 | 110 | 3.6 | - | | | | | | | | | 29 | 8.6 | 10.9 | | | | | | | | | | | | | 30 | 816 | 10.9 | 7.3 | 112 | 3.5 | 52 | | | | | | | | | 31 | 8.4 | 10.9 | | | | | | | | | | | | | 32 | 8.2 | 10.9 | | | | | | | | | | | | | 33<br>34 | 8.1 | 10.9<br>10.9 | | | | | | | | | | | | | 35 | 8.1 | 10.9 | 7.2 | 101 | 3.4 | _ | | | | | | | | | 36 | 8.1 | 10.9 | | | | | | | | | | | | | 37 | 8.1 | 10.9 | | | | | | | | | | | | | 38<br>39 | 8.0<br>8.0 | 11.0<br>11.0 | | | | | | | | | | | | | 40 | 7.9 | 11.0 | 7.2 | 88 | 2.2 | 38 | | | | | | | | | 41 | 7.8 | 11.0 | | | | | | | | | | | | | 42 | 7.8 | 11.0 | | | | | | | | | | | | | 43 | 7.7 | 11.0 | | | | | | | | | | | | | 44<br>45 | 7. <b>6</b><br>7.5 | 11.0<br>11.0 | 7.2 | 88 | 2.4 | _ | | | | | | | | | 46 | 7.5 | 11.0 | | | | | | | | | | | | | 47 | 7.4 | 11.1 | | | | | | | | | | | | | 48 | 7.4 | 11.1 | | | | | | | | | | | | | <b>49</b><br>50 | 7.4<br>7.3 | 11.1 | 7.2 | 87 | 3.1 | 38 | | | | | | | | | 51 | 7.3 | 11.1 | , | ٠, | 3.1 | 30 | : | | | | | | | | 52 | 7.3 | 11.1 | | | | | | | | | | | | | 53 | 7.2 | 11.1 | | | | | | | | | | | | | 54<br>55 | 7.2<br>7.2 | 11.2 | 7 2 | 00 | 2 2 | | | | | | | | | | 56 | 7.2 | 11.2<br>11.2 | 7.2 | 88 | 3.3 | - | | | | | | | | | 57 | 7.2 | 11.2 | | | | | | | | | | | | | 58 | 7.2 | 11.2 | | | | | | | | | | | | | 59 | 7.2 | 11.2 | <b>~</b> ^ | | 2.0 | 22 | | | | | | | | | <b>60</b><br>61 | 7.2<br>7.2 | 11.2<br>11.2 | 7.2 | 86 | 3.2 | 37 | | | | | | | | | 62 | 7.2 | 11.2 | | | | | | | | | | | | | 63 | 7.2 | 11.2 | | | | | | | | | | | | | 64 | 7.2 | 11.2 | | | | | | | | | | | | | <b>6</b> 5 | 7.2 | 11.2 | 7.2 | 87 | 4.1 | - | | | | | | | | | | Sta. A2L 048.4 217.6 McCloud River Arm | | | June 22, 1983 @ 0930 Hrs. | | | Secchi 3.9m | | | | | | | |----------------|----------------------------------------|------------|-----|---------------------------|-------|------|-------------|--------------------|------------|------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | ρН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | | Surf. | 21.3 | 8.5 | 7.7 | 91 | 2.0 | 44 | 66 | 8.7 | 9.6 | | | | | | 1 | 21.1 | 8.5 | | | | | 67 | 8.7 | 9.6 | | | | | | 2 | 20.9 | 8.5 | | | | | 68 | 8.6 | 9.6 | | | | | | 3 | 20.9 | 8.5 | 7.8 | 93 | 2.2 | - | 69 | 8.5 | 9.6 | 7 2 | 0. | 2 2 | 41 | | 4 | 20.9 | 8.4 | | | | | 70 | 8.4<br>8.4 | 9.6<br>9.6 | 7.3 | 84 | 2.3 | 41 | | 5<br><b>6</b> | 20.8 | 8.4 | 7 7 | 0.2 | 2 2 | | 71<br>72 | 8.4 | 9.5 | | | | | | 7 | <b>20</b> .7<br><b>20</b> .5 | 8.4<br>8.4 | 7.7 | 93 | 2.3 | 45 | 73 | 8.4 | 9.5 | | | | | | 8 | 18.8 | 8.5 | | | | | 74 | 8.3 | 9.5 | | | | | | 9 | 17.5 | 8.5 | 7.5 | 105 | 2.1 | _ | 75 | 8.3 | 9.5 | 7.3 | 85 | 2.3 | - | | 10 | 16.7 | 8.5 | | | | | 76 | 8.3 | 9.5 | | | | | | 11 | 15.9 | 8.5 | | | | | 77 | 8.3 | 9.5 | | | | | | 12 | 15.4 | 8.5 | 7.4 | 105 | 1.8 | 49 | 78 | 8.2 | 9.6 | | | | | | 13 | 14.8 | 8.7 | | | | | 79 | 8.2 | 9.6 | 7.3 | 85 | 2.8 | 41 | | 14 | 14.7 | 8.8 | 7 2 | | | | 80<br>81 | 8.1<br><b>8.</b> 1 | 9.6<br>9.6 | /.3 | 9.5 | 2.0 | 41 | | 15<br>16 | 14.0<br>13.8 | 8.9<br>9.0 | 7.3 | 88 | 1.6 | - | 82 | 8.1 | 9.5 | | | | | | 17 | 13.5 | 9.0 | | | | | 83 | 6.1 | 9.5 | | | | | | 18 | 13.1 | 9.0 | 7.3 | 85 | 1.2 | 41 | 84 | 6.0 | 9.5 | | | | | | 19 | 12.9 | 9.1 | | | | | <b>₿</b> 5 | 8.0 | 9.4 | 7.3 | 85 | 3.9 | 41 | | 20 | 12.6 | 9.1 | | | | | 86 | 8.0 | 9.4 | | | | | | 21 | 12.2 | 9.2 | 7.3 | 87 | 1.5 | - | . 87 | 8.0 | 9.4 | | | | | | 22 | 12.0 | 9.2 | | | | | 88<br>89 | 8.0<br>8.0 | 9.4<br>9.3 | | | | | | 23 | 11.9 | 9.2 | 7 3 | 0.1 | 2.0 | 4.3 | 90 | 8.0 | 9.3 | | | | | | 24<br>25 | 11.8<br>11.6 | 9.3<br>9.3 | 7.3 | 91 | 2.0 | 42 | 90.3 | - | - | Bott | OTT | | | | 26 | 11.4 | 9.3 | | | | | ,,,, | | | | | | | | 27 | 11.0 | 9.4 | 7.3 | 91 | 2.4 | - | | | | | | | | | 28 | 10.9 | 9.4 | | | | | | | | | | | | | 29 | . 10.8 | 9.4 | | | | | | | | | | | | | 30 | 10.8 | 9.4 | 7.3 | 92 | 2.6 | 42 | | | | | | | | | 31 | 10.8 | 9.4 | | | | | | | | | | | | | 32 | 10.7 | 9.4 | | | | | | | | | | | | | 33<br>34 | 10.6<br>10.4 | 9.4<br>9.4 | | | | | | | | | | | | | <b>3</b> 5 | 10.3 | 9.4 | 7.3 | 94 | 2.6 | _ | | | | | | | | | 36 | 10.4 | 9.4 | | - , | | | | | | | | | | | 37 | 10.3 | 9.4 | | | | | | | | | | | | | 38 | 10.1 | 9.5 | | | | | | | | | | | | | 39 | 10.1 | 9.5 | | | | | | | | | | | | | 40 | 10.0 | 9.5 | 7.3 | 92 | 2.2 | 45 | | | | | | | | | 41<br>42 | 10.0<br>9.8 | 9.5<br>9.5 | | | | | | | | | | | | | 43 | 9.8 | 9.6 | | | | | | | | | | | | | 44 | 9.8 | 9.6 | | | | | | | | | | | | | 45 | 9.7 | 9.6 | 7.3 | 88 | 2.0 | - | | | | | | | | | 46 | 9.6 | 9.6 | | | | | | | | | | | | | 47 | 9.5 | 9.6 | | | | | | | | | | | | | 48<br>49 | 9.5 | 9.6 | | | | | | | | | | | | | 50 | 9.5<br>9.2 | 9.6<br>9.6 | 7.3 | 87 | 1.8 | 42 | | | | | | | | | 51 | 9.2 | 9.6 | ,., | ٠, | 1.0 | | | | | | | | | | 52 | 9.1 | 9.6 | | | | | | | | | | | | | 53 | 9.1 | 9.6 | | | | | | | | | | | | | 54 | 9.1 | 9.6 | | | | | | | | | | | | | 55 | 9.1 | 9.6 | 7.3 | 87 | 1.6 | - | | | | | | | | | 56<br>57 | 9.1 | 9.6 | | | | | | | | | | | | | 57<br>58 | 9.1<br>9.0 | 9.6<br>9.6 | | | | | | | | | | | | | 5 <del>9</del> | 9.0 | 9.6 | | | | | | | | | | | | | 60 | 9.0 | 9.6 | 7.3 | 84 | 1.6 | 41 | | | | | | | | | 61 | 9.0 | 9.6 | | | | | | | | | | | | | 62 | 8.9 | 9.6 | | | | | | | | | | | | | 63 | 8.9 | 9.6 | | | | | | | | | | | | | 64 | 8.8 | 9.6 | | <b>.</b> | | | | | | | | | | | 65 | 8.7 | 9.6 | 7.3 | 84 | 1.6 | - | | | | | | | | | | Sta. A2L | 048.4 | 217.6 | McC1 | oud Riv | er Arm | July 28, 1 | 983 @ 0930 | Hrs. | Seco | hi 2.8 | <u>San</u> | | |--------------------------|--------------|--------------------|-------|------|---------|--------|------------|------------|------|------|--------|------------|------| | pth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | ırf. | 23.9 | 8.8 | 8.0 | 98 | 1.6 | 46 | | | | | | | | | 1 | 23.9 | 8.8 | | | | | | | | | | | | | 2 | 23.8 | 8.8 | | | | | | | | | | | | | 3 | 23.5 | 8.8 | 8.0 | 96 | 1.9 | 45 | | | | | | | | | 4<br>5 | 23.5<br>23.2 | 8.8<br>8.7 | | | | | | | | | | | | | 6 | 22.8 | 8.6 | 7.8 | 96 | 1.6 | _ | | | | | | | | | 7 | 22.0 | 8.1 | | | | | | | | | | | | | 8 | 21.1 | 7.7 | | | | | | | | | | | | | 9 | 20.1<br>18.3 | 7.2<br><b>6.</b> 7 | 7.3 | 100 | 1.7 | - | | | | | | | | | .1 | 17.6 | 6.8 | | | | | | | | | | | | | .2 | 17.1 | 7.7 | 7.3 | 111 | 1.4 | 55 | | | | | | | | | .3 | 17.0 | 7.7 | | | | | | | | | | | | | .4 | 16.5 | 7.4 | ٠, | | | | | | | | | | | | .5<br>.6 | 16.5<br>16.2 | 7.4<br>7.4 | 7.4 | 112 | 1.7 | - | | | | | | | | | Ĭ | 16.1 | 7.5 | | | | | | | | | | | | | .8 | 15.8 | 7.4 | 7.3 | 105 | 1.9 | - | | | | | | | | | .9 | 15.5 | 7.6 | | | | | | | | | | | | | !0<br>!1 | 15.3 | 7.7 | 7 2 | 100 | 1.9 | 47 | | | | | | | | | 12 | 15.0<br>14.8 | 7.7<br>7 <b>.9</b> | /.3 | 100 | 1.7 | 47 | | | | | | | | | :3 | 14.5 | 8.0 | | | | | | | | | | | | | :4 | 14.2 | 8.1 | 7.3 | 100 | 2.2 | - | | | | | | | | | !5 | 13.9 | 8.2 | | | | | | | | | | | | | ! <b>6</b><br>!7 | 13.3<br>13.0 | 8.3<br>8.6 | 7.3 | 90 | 2.4 | _ | | | | | | | | | . <i>*</i><br>! <b>8</b> | 12.5 | 8.7 | ,., | ,,, | 2.4 | | | | | | | | | | ! <b>9</b> | 12.5 | 8.7 | | | | | | | | | | | | | Ю | 12.2 | 8.8 | 7.3 | 88 | 2.4 | 42 | | | | | | | | | 11<br>12 | 12.0 | 8.8<br>8.9 | | | | | | | | | | | | | 13 | 12.0<br>11.7 | 8.9 | | | | | | | | | | | | | 14 | 11.5 | 9.0 | | | | | | | | | | | | | 15 | 11.5 | 9.0 | 7.3 | 87 | 1.9 | - | | | | | | | | | 16 | 11.2 | 9.0 | | | | | | | | | | | | | 17<br>18 | 11.2<br>11.0 | 9.0<br>9.0 | | | | | | | | | | | | | 19 | 11.0 | 9.0 | | | | | | | | | | | | | Ð | 11.0 | 9.0 | 7.3 | 92 | 2.3 | 41 | | | | | | | | | 1 | 10.9 | 9.1 | | | | | | | | | | | | | 12<br>13 | 10.8<br>10.7 | 9.1<br>9.1 | | | | | | | | | | | | | 14 | 10.7 | 9.1 | | | | | | | | | | | | | 15 | 10.7 | 9.2 | 7.3 | 95 | 2.4 | | | | | | | | | | 17 | 10.7 | 9.1 | | | | | | | | | | | | | | 10.5<br>10.4 | 9.1<br>9.1 | | | | | | | | | | | | | 9 | 10.2 | 9.1 | | | | | | | | | | | | | iO | 10.2 | 9.1 | 7.3 | 94 | 2.1 | 41 | | | | | | | | | 11 | 10.2 | 9.1 | | | | | | | | | | | | | i2<br>i3 | 10.1<br>10.0 | 9.2<br>9.2 | | | | | | | | | | | | | i4 | 10.0 | 9.1 | | | | | | | | | | | | | i5 | 9.9 | 9.1 | 7.3 | 91 | 2.0 | - | | | | | | | | | i6 | 9.9 | 9.1 | | | | | | | | | | | | | i7<br>i8 | 9.8<br>9.7 | 8.9<br>8.9 | | | | | | | | | | | | | i9 | 9.7 | 8.9 | | | | | | | | | | | | | Ю | 9.5 | 8.4 | 7.3 | 90 | 2.0 | 41 | | | | | | | | | 0.2 | - | - | Bott | om | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | Depth(m) | | | | | | | August 24, | | | | | | A 3 1 | |----------------|--------------|------------|-----|------|-------|------|------------|------------|------------|-----|------|-------|-------| | Depin(m) | Temp.(°C) | υ.υ. | ЬĦ | E.C. | Turb. | Alk. | peptn(m) | Temp.(°C) | υ.υ. | рн | E.C. | Turb. | Al | | Surf. | 23.7 | 7.8 | 7.9 | 98 | 2.1 | 41 | 66 | 9.4 | 8.0 | | | | | | 1 | 23.7 | 7.8 | | | | | 67 | 9.3 | 7.9 | | | | | | 2 | 23.6 | 7.7 | | | | | 68 | 9.2 | 7.9 | | | | | | 3 | 23.6 | 7.8 | 8.0 | 98 | 2.2 | - | 69 | 9.2 | 7.9 | | | | | | 4 | 23.6 | 7.7 | | | | | 70 | 9.1 | 7.8 | 7.2 | 91 | 2.0 | 4 | | 5<br><b>6</b> | 23.6 | 7.7 | 7 0 | 0.0 | 2.0 | | 71 | 9.1 | 7.8 | | | | | | 7 | 23.6<br>23.6 | 7.7<br>7.6 | 7.8 | 98 | 2.0 | - | 72<br>73 | 9.0<br>9.0 | 7.9<br>7.9 | | | | | | 8 | 23.5 | 7.5 | | | | | 73<br>74 | 9.0 | 7.9 | | | | | | 9 | 20.8 | 5.1 | 7.0 | 104 | 1.6 | 46 | 75 | 8.9 | 7.9 | 7.1 | 90 | 2.0 | 4 | | 10 | 19.4 | 5.1 | 7.0 | 104 | | 70 | 76 | 8.8 | 7.9 | / | 30 | 2.0 | 4 | | ii | 18.1 | 5.9 | | | | | 77 | 8.7 | 7.9 | | | | | | 12 | 18.0 | 6.0 | 7.3 | 118 | 1.5 | - | 78 | 8.6 | 7.9 | | | | | | 13 | 17.5 | 7.1 | | | | | 79 | 8.5 | 7.8 | | | | | | 14 | 17.2 | 6.9 | | | | | 80 | 8.4 | 7.8 | 7.1 | 89 | 2.3 | - | | 1.5 | 17.1 | 7.0 | 7.4 | 120 | 1.7 | - | 81 | 8.4 | 7.8 | | | | | | 16 | 17.0 | 7.0 | | | | | 82 | 8.3 | 7.8 | | | | | | 17 | 16.9 | 6.9 | | | | | 83 | 8.3 | 7.8 | | | | | | 18 | 16.7 | 6.4 | 7.3 | 113 | 1.7 | 57 | 84 | 8.2 | 7.7 | | | | | | 19 | 16.4 | 5.9 | | | | | 85 | 8.1 | 7.6 | 7.1 | 90 | 1.8 | - | | 20 | 16.1 | 5.8 | | | | | 86 | 8.1 | 7.6 | | | | | | 21<br>22 | 15.9 | 5.8 | 7.2 | 111 | 2.0 | _ | 87 | 8.1 | 7.6 | | | | | | 22<br>23 | 15.8<br>15.5 | 6.0<br>6.1 | | | | | 88 | 8.0 | 7.5 | | | | | | 24 | 15.3 | 6.2 | 7 2 | 107 | 2.1 | _ | 89 | 8.0 | 7.3 | | | | | | 25 | 15.1 | 6.4 | 1.2 | 107 | 2.1 | - | 90<br>91 | 8.0<br>8.0 | 7.1<br>7.0 | | | | | | 26 | 14.8 | 6.6 | | | | | 92 | 8.0 | 6.8 | | | | | | 27 | 14.4 | 6.9 | 7.1 | 101 | 2.0 | 45 | 93 | 8.0 | 6.7 | | | | | | 28 | 14.2 | 7.1 | , | | | | 94 | 8.0 | 6.6 | | | | | | 29 | 14.0 | 7.2 | | | | | 94.6 | _ | _ | Bot | tom | | | | 30 | 13.8 | 7.4 | 7.1 | 95 | 2.3 | _ | | | | | | | | | 31 | 13.5 | 7.5 | | | | | | | | | | | | | 32 | 13.3 | 7.5 | | | | | | | | | | | | | 33 | 13.1 | 7.5 | | | | | | | | | | | | | 34 | 12.8 | 7.7 | | | | | | | | | | | | | 35 | 12.6 | 7.7 | 7.1 | 89 | 2.2 | - | | | | | | | | | 36<br>27 | 12.4 | 7.8 | | | | | | | | | | | | | 37<br>38 | 12.2 | 7.8 | | | | | | | | | | | | | 39 | 11.9<br>11.8 | 7.9<br>7.9 | | | | | | | | | | | | | 40 | 11.8 | 8.0 | 7.1 | 89 | 2.0 | 37 | | | | | | | | | 41 | 11.6 | 8.1 | , | ٠, | 2.0 | 3, | | | | | | | | | 42 | 11.3 | 82 | | | | | | | | | | | | | 43 | 11.2 | 8.2 | | | | | | | | | | | | | 44 | 11.1 | 8.3 | | | | | | | | | | | | | 45 | 11.1 | 8.2 | 7.1 | 90 | 2.4 | _ | | | | | | | | | 46 | 11.0 | 8.2 | | | | | | | | | | | | | 47 | 10.9 | 8.2 | | | | | | | | | | | | | 48 | 10.8 | 8.3 | | | | | | | | | | | | | 49 | 10.6 | 8.3 | | | | | | | | | | | | | 50 | 10.5 | 8.3 | 7.2 | 92 | 2.6 | - | | | | | | | | | 51 | 10.4 | 8.3 | | | | | | | | | | | | | 52<br>53 | 10.4 | 8.2 | | | | | | | | | | | | | 53<br>54 | 10.3<br>10.3 | 8.2<br>8.2 | | | | | | | | | | | | | 55 | 10.3 | 8.2 | 7.2 | 93 | 2.5 | 41 | | | | | | | | | 56 | 10.2 | 8.2 | , | ,, | 2., | 71 | | | | | | | | | 57 | 10.1 | 8.2 | | | | | | | | | | | | | 58 | 10.0 | 8.2 | | | | | | | | | | | | | 59 | 9.9 | 8.1 | | | | | | | | | | | | | 60 | 9.9 | 8.1 | 7.2 | 93 | 2.3 | - | | | | | | | | | 61 | 9.8 | 8.0 | | | _ | | | | | | | | | | 62 | 9.9 | 7.9 | | | | | | | | | | | | | | 9.8 | 7.9 | | | | | | | | | | | | | 63 | | | | | | | | | | | | | | | 63<br>64<br>65 | 9.7<br>9.5 | 8.0<br>8.0 | 7.2 | 92 | 2.2 | | | | | | | | | | | Sta. A2L 0 | 48.4 | 217.6 | McClo | ud Rive | r Arm | October 3, | 1983 @ 1100 | Hrs. | Seco | ch1 5. | 7 <u>m</u> | | |----------------------|--------------|------------|-------|-------|---------|-------|----------------------|-------------|------------|------|--------|------------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | | | 10.0 | . , | 7.6 | 107 | 0.4 | | 66 | 10.4 | 6.5 | | | | | | Surf. | 19.8<br>19.8 | 8.4<br>8.4 | / • 6 | 107 | 0.4 | 48 | 67 | 10.4 | 6.6 | | | | | | 2 | 19.8 | 8.4 | | | | | 68 | 10.2 | 6.7 | | | | | | 3 | 19.8 | 8.4 | 7.7 | 107 | 0.5 | - | 69 | 10.1 | 6.7 | | | | | | 4 | 19.8 | 8.4 | | | | | 70 | 10.0 | 6.7 | 7.0 | 97 | 1.5 | 42 | | 5 | 19.8 | 8.4 | | | | | 71 | 9.9 | 6.7 | | | | | | 6<br>7 | 19.8<br>19.8 | 8.4<br>8.4 | 7.9 | 108 | 0.4 | - | 72<br>73 | 9.8<br>9.6 | 6.7<br>6.6 | | | | | | 8 | 19.8 | 8.4 | | | | | 74 | 9.5 | 6.6 | | | | | | ğ | 19.8 | 8.4 | 7.8 | 108 | 0.5 | 46 | 75 | 9.3 | 6.7 | 7.0 | 97 | 1.3 | - | | 10 | 19.7 | 8.4 | | | | | 76 | 9.3 | 6.6 | | | | | | 11 | 19.7 | 8.3 | | | | | 77 | 9.1 | 6.6 | | | | | | 12 | 19.7 | 8.3 | 7.7 | 108 | 0.6 | - | 78<br>70 | 9.0 | 6.6 | | | | | | - 13<br>14 | 18.9<br>18.2 | 6.6<br>6.4 | | | | | 7 <del>9</del><br>80 | 8.9<br>8.9 | 6.5<br>6.4 | 7.0 | 97 | 4.5 | _ | | 15 | 17.6 | 5.8 | 7.2 | 113 | 0.6 | _ | 81 | 8.8 | 6.4 | | • | 71.5 | | | 16 | 17.3 | 5.7 | | | | | 82 | 8.7 | 6.3 | | | | | | 17 | 17.0 | 5.8 | | | | | 83 | 8.7 | 6.1 | | | | | | 18 | 16.8 | 5.8 | 7.3 | 124 | 0.5 | 56 | 84 | 8.6 | 6.0 | | | | | | 19<br>20 | 16.8 | 5.9 | | | | | 85<br>86 | 8.6<br>8.5 | 5.9<br>5.9 | 6.9 | 96 | 1.5 | 42 | | 21 | 16.5<br>16.4 | 5.6<br>5.6 | 7.9 | 118 | 0.6 | _ | 87 | 8.4 | 5.8 | | | | | | 22 | 16.2 | 5.6 | | | | | 87.2 | - | - | Boti | tom | | | | 23 | 16.0 | 5.6 | | | | | | | | | | | | | 24 | 15.8 | 5.7 | 7.2 | 116 | 0.9 | - | | | | | | | | | 25<br>2 <del>6</del> | 15.8<br>15.8 | 5.8<br>5.9 | | | | | | | | | | | | | 27 | 15.8 | 5.9 | 7.2 | 116 | 0.9 | 54 | | | | | | | | | 28 | 15.7 | 5.9 | | | | • | | | | | | | | | 29 | 15.5 | 5.9 | | | | | | | | | | | | | 30 | 15.4 | 6.1 | 7.2 | 116 | 0.9 | - | | | | | | | | | 31<br>32 | 15.4<br>15.2 | 6.1<br>6.0 | | | | | | | | | | | | | 33 | 15.2 | 6.3 | | | | | | | | | | | | | 34 | 15.1 | 6.5 | | | | | | | | | | | | | 35 | 14.9 | 6.3 | 7.1 | 114 | 1.1 | - | | | | | | | | | 36 | 14.8 | 6.2 | | | | | | | | | | | | | 37<br>38 | 14.6<br>14.4 | 6.3<br>6.3 | | | | | | | | | | | | | 39 | 14.3 | 6.4 | | | | | | | | | | | | | 40 | 14.2 | 6.5 | 7.1 | 103 | 1.3 | 45 | | | | | | | | | 41 | 14.0 | 6.6 | | | | | | | | | | | | | 42<br>43 | 13.8<br>13.6 | 6.7<br>6.8 | | | | | | | | | | | | | 44 | 13.4 | 6.8 | | | | | | | | | | | | | 45 | 13.3 | 7.0 | 7.1 | 97 | 1.5 | - | | | | | | | | | 46 | 13.1 | 7.0 | | | | | | | | | | | | | 47 | 12.9 | 7.1 | | | | | | | | | | | | | 48<br>49 | 12.7<br>12.4 | 7.0<br>7.1 | | | | | | | | | | | | | 50 | 12.3 | 7.1 | 7.1 | 95 | 1.5 | _ | | | | | | | | | 51 | 12.2 | 7.0 | | | | | | | | | | | | | 52 | 12.1 | 7.2 | | | | | | | | | | | | | 53<br>54 | 11.9<br>11.8 | 6.9<br>6.8 | | | | | | | | | | | | | 55 | 11.8 | 6.8 | 7.1 | 95 | 1.3 | 42 | | | | | | | | | 56 | 11.5 | 7.0 | | | | | | | | | | | | | 57 | 11.4 | 7.0 | | | | | | | | | | | | | 58 | 11.3 | 7.0 | | | | | | | | | | | | | 59<br><del>6</del> 0 | 11.2<br>11.1 | 7.0<br>7.1 | 7.1 | 95 | 1.4 | _ | | | | | | | | | 61 | 11.1 | 7.1 | 1.1 | 70 | 1.4 | | | | | | | | | | 62 | 10.9 | 7.0 | | | | | | | | | | | | | 63 | 10.8 | 7.0 | | | | | | | | | | | | | 64 | 10.7 | 6.9 | 7.0 | 0.4 | 1 2 | | | | | | | | | | <b>6</b> 5 | 10.6 | 6.8 | 7.0 | 96 | 1.2 | - | | | | | | | | | | Sta. A2L 04 | 8.4 21 | .7.6 M | cCloud | River | Arm ( | October 26, | 1983 @ 1045 | Hrs. | Seco | hi 4.7 | <u>*</u> | | |------------------|--------------|--------------------|--------|--------|-------|-------|-------------|--------------|------------|------|--------|----------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 17.5 | 8.4 | 7.5 | 109 | 0.7 | 50 | 66 | 11.2 | 6.0 | | | | | | 1 | 17.5 | 8.4 | | 107 | | | 67 | 11.1 | 5.8 | | | | | | 2 | 17.5 | 8.4 | | | | | 68 | 11.0 | 6.3 | | | | | | 3 | 17.5 | 8.4 | 7.5 | 109 | 0.6 | - | 69 | 10.9 | 6.0 | 7.0 | 95 | 1.5 | 42 | | 4 | 17.5 | 8.4 | | | | | 70<br>71 | 10.6<br>10.4 | 6.0<br>5.9 | 7.0 | 9.5 | 1.5 | 42 | | 5 | 17.4 | 8.3 | 7 6 | 109 | 0.6 | _ | 72 | 10.2 | 6.1 | | | | | | <b>6</b><br>7 | 17.4<br>17.3 | 8.3<br>8.2 | 7.5 | 109 | 0.0 | _ | 73 | 10.0 | 6.0 | | | | | | 8 | 17.3 | 8.2 | | | | | 74 | 9.9 | 6.0 | | | | | | 9 | 17.3 | 8.2 | 7.5 | 109 | 0.6 | 49 | 75 | 9.8 | 6.1 | 7.0 | 96 | 1.5 | - | | 19 | 17.3 | 8.2 | | | | | 76 | 9.6 | 6.1 | | | | | | 11 | 17.3 | 8.2 | | | | | 77 | 9.4<br>9.1 | 6.0<br>6.1 | | | | | | 12 | 17.2 | 8.2 | 7.5 | 109 | 0.5 | - | 78<br>79 | 9.1 | 6.0 | | | | | | 13 | 17.2<br>17.2 | 8.2<br>8.2 | | | | | 80 | 9.0 | 6.1 | 6.9 | 95 | 1.4 | 41 | | 14<br>15 | 17.2 | 8.2 | 7.5 | 110 | 0.5 | _ | 81 | 9.0 | 5.8 | | | | | | 16 | 17.2 | 8.1 | | | • • • | | 82 | 8.9 | 5.8 | | | | | | 17 | 17.2 | 8.1 | | | | | 83 | 8.8 | 5.8 | | | | | | 18 | 17.2 | 8.1 | 7.5 | 112 | 0.6 | 50 | 84 | 8.5 | 5.9 | 6.9 | 96 | 2.5 | _ | | 19 | 17.1 | 7.5 | | | | | 85<br>86 | 8.4<br>8.2 | 5.5<br>5.2 | 0.7 | 70 | 2.3 | - | | 20 | 16.8 | 5.4 | 7.2 | 121 | 0.5 | _ | 87 | 8.2 | 5.0 | | | | | | 21<br>22 | 16.2<br>16.1 | 5.5<br>5.5 | 1.2 | 121 | 0.5 | - | 88 | 8.2 | 4.9 | | | | | | 23 | 16.0 | 5.3 | | | | | 89 | 8.2 | 4.6 | | | | | | 24 | 15.8 | 5.4 | 7.0 | 114 | 0.8 | - | 90 | 8.1 | 4.2 | 6.9 | 102 | 7.3 | 44 | | 25 | 15.8 | 5.5 | | | | | 91 | 8.1 | 4.1 | | | | | | 26 | 15.6 | 5.5 | | | | 50 | 92<br>92.8 | 8.1 | 3.6 | Bot | r com | | | | 27 | 15.5 | 5.5 | 7.0 | 112 | 0.8 | 50 | 72.0 | - | _ | BOL | LOM | | | | 28<br>29 | 15.4<br>15.2 | 5.5<br>5.6 | | | | | | | | | | | | | 30 | 15.1 | 5.7 | 7.0 | 109 | 0.8 | _ | | | | | | | | | 31 | 15.0 | 5.7 | | | | | | | | | | | | | 32 | 15.0 | 5.7 | | | | | | | | | | | | | <b>3</b> 3 | 14.9 | 5.7 | | | | | | | | | | | | | 34 | 14.9 | 5.8 | 7.0 | 100 | | | | | | - | | | | | 35<br>36 | 14.8<br>14.7 | 6.2<br>6.2 | 7.0 | 109 | 1.0 | - | | | | | | | | | 37 | 14.5 | 6.1 | | | | | | | | | | | | | 38 | 14.4 | 6.3 | | | | | | | | | | | | | 39 | 14.4 | 6.3 | | | | | | | | | | | | | 40 | 14.4 | 6.5 | 7.0 | 111 | 1.1 | 54 | | | | | | | | | 41 | 14.2 | 6.7 | | | | | | | | | | | | | 42<br>43 | 14.1<br>14.1 | 6.8<br>6.7 | | | | | | | | | | | | | 44 | 14.0 | 6.5 | | | | | | | | | | | | | 45 | 14.0 | 6.5 | 7.0 | 108 | 1.1 | - | | | | | | | | | 46 | 14.0 | 6.4 | | | | | | | | | | | | | 47 | 14.0 | 6.9 | | | | | | | | | | | | | 4 <b>8</b><br>49 | 13.9<br>13.8 | 6. <b>8</b><br>7.3 | | | | | | | | | | | | | 50 | 13.6 | 7.2 | 7.0 | 114 | 1.3 | _ | | | | | | | | | 51 | 13.4 | 6.8 | | | | | | | | | | | | | 52 | 13.3 | 6.6 | | | | | | | | | | | | | 53 | 13.2 | 6.4 | | | | | | | | | | | | | 54 | 13.1 | 6.8 | 7.0 | 00 | 1.4 | 45 | | | | | | | | | 55<br><b>56</b> | 13.0<br>12.9 | 6.6<br>5.9 | 7.0 | 99 | 1.6 | 43 | | | | | | | | | 5 <del>0</del> | 12.9 | 5.9 | | | | | | | | | | | | | 58 | 12.7 | 6.0 | | | | | | | | | | | | | 59 | 12.5 | 5.9 | | | | | | | | | | | | | 60 | 12.2 | 5.8 | 7.0 | 96 | 1.5 | _ | | | | | | | | | 61 | 12.1 | 5.9 | | | | | | | | | | | | | 62<br>63 | 12.0<br>11.9 | 5.2<br>5.5 | | | | | | | | | | | | | 64 | 11.6 | 5.6 | | | | | | | | | | | | | 65 | 11.4 | 5.6 | 7.0 | 96 | 1.5 | - | | | | | | | | | | * | | • | | | | | | | | | | | Sta. A2L 048.4 217.6 McCloud River Arm December 20, 1983 @ 1130 Hrs. Secchi 5.1m | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | |------------------|--------------|--------------|-------|------|-------|------|----------|-----------|------|----|------|-------|------| | | | | | | | 48 | | | | | | | | | Surf. | 11.8<br>11.8 | 9.7<br>9.7 | /.3 | 110 | 1.0 | 40 | | | | | | | | | 2 | 11.8 | 9.7 | | | | | | | | | | | | | 3<br>4<br>5<br>6 | 11.8<br>11.8 | 9.7<br>9.7 | /.3 | 110 | 1.0 | - | | | | | | | | | 5 | 11.8 | 9.7 | | | | | | | | | | | | | | 11.8 | 9.7 | 7.3 | 110 | 1.1 | - | | | | | | | | | 7<br>8 | 11.8<br>11.8 | 9.7<br>9.7 | | | | | | | | | | | | | 9 | 11.8 | 9.7 | 7.3 | 110 | 1.2 | 49 | | | | | | | | | 10<br>11 | 11.8<br>11.8 | 9.7<br>9.7 | | | | | | | | | | | | | 12 | 11.8 | 9.7 | 7.2 | 110 | 1.3 | - | | | | | | | | | 13 | 11.8 | 9.7 | | | | | | | | | | | | | 14<br>15 | 11.8<br>11.8 | 9.7<br>9.7 | 7.2 | 110 | 1.3 | _ | | | | | | | | | 16 | 11.8 | 9.7 | | | | | | | | | | | | | 17 | 11.8<br>11.8 | 9.6<br>9.6 | 7.2 | 110 | 1.4 | 49 | | | | | | | | | 18<br>19 | 11.6 | 9.6 | , . 2 | 110 | 2.4 | 7, | | | | | | | | | 20 | 11.8 | 9.6 | - 0 | 110 | | | | | | | | | | | 21<br>22 | 11.8<br>11.8 | 9.6<br>9.6 | 7.2 | 110 | 1.3 | - | | | | | | | | | 23 | 11.8 | 9.6 | | | | | | | | | | | | | 24 | 11.8 | 9.6<br>9.6 | 7.2 | 110 | 1.2 | - | | | | | | | | | 25<br>26 | 11.8<br>11.8 | 9.6 | | | | | | | | | | | | | 27 | 11.8 | 9.6 | 7.2 | 110 | 1.4 | 48 | | | | | | | | | 28<br>29 | 11.8<br>11.8 | 9.6<br>9.6 | | | | | | | | | | | | | 30 | 11.8 | 9.6 | 7.2 | 110 | 1.6 | - | | | | | | | | | 31<br>32 | 11.8 | 9.6<br>9.6 | | | | | | | | | | | | | 33 | 11.8<br>11.8 | 9.6 | | | | | | | | | | | | | 34 | 11.8 | 9.6 | - 0 | | | | | | | | | | | | 35<br>36 | 11.4<br>11.1 | 9.8<br>9.9 | 7.2 | 106 | 1.7 | _ | | | | | | | | | 37 | 10.9 | 10.0 | | | | | | | | | | | | | 38<br><b>39</b> | 10.8<br>10.5 | 10.0<br>10.2 | | | | | | | | | | | | | 40 | 10.4 | 10.2 | 7.2 | 100 | 2.1 | 51 | | | | | | | | | 41 | 10.3 | 10.3 | | | | | | | | | | | | | 42<br>43 | 10.2<br>10.1 | 10.3<br>10.4 | | | | | | | | | | | | | 44 | 10.1 | 10.4 | | | | | | | | | | | | | 45<br>46 | 10.0<br>10.0 | 10.4<br>10.4 | 7.2 | 96 | 3.4 | • | | | | | | | | | 47 | 9.9 | 10.5 | | | | | | | | | | | | | 48<br>49 | 9.9<br>9.8 | 10.5<br>10.6 | | | | | | : | | | | | | | 50 | 9.7 | 10.6 | 7.2 | 95 | 3.6 | 43 | | | | | | | | | 51 | 9.6 | - | | | | | | | | | | | | | 52<br>53 | 9.5<br>9.5 | - | | | | | | | | | | | | | 54 | 9.5 | - | | | | | | | | | | | | | 55<br>56 | 9.5 '<br>9.5 | 10.5 | 7.2 | 95 | 3.5 | - | | | | | | | | | 57 | 9.5 | _ | | | | | | | | | | | | | 58 | 9.4 | - | | | | | | | | | | | | | 59<br><b>6</b> 0 | 9.4<br>9.4 | | 7.2 | 98 | 4.0 | 44 | | | | | | | | | 61 | 9.4 | - | | | | | | | | | | | | | 62<br>63 | 9.4<br>9.3 | _ | | | | | | | | | | | | | 64 | 9.3 | _ | | | | | | | | | | | | | 64.3 | - | - | Bot | tom | | | | | | | | | | | | Sta. A2L | 048.4 2 | 217.6 | McCl ou | d River | Arm | January 24, | 1984 @ 0830 | Hrs. | Secc | hi 4.61 | <b>.</b> | | |-------------------------|------------|--------------|-------------|---------|---------|------|-------------|-------------|------|------|---------|----------|------| | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | | Temp.(°C) | D.O. | рH | E.C. | _ | Alk. | | Surf. | 9.1 | 10.8 | 7.3 | 101 | 1.0 | 46 | 66 | 7.6 | _ | | | | | | 1 | 9.1 | 10.7 | | | | | 67 | 7.6 | - | | | | | | 2<br>3 | 9.1<br>9.1 | 10.7<br>10.7 | 7.3 | 102 | 0.9 | _ | 68<br>69 | 7.6<br>7.6 | - | | | | | | 4 | 9.1 | 10.7 | | 101 | 0., | | 70 | 7.5 | 11.6 | 7.2 | 115 | 8.3 | 50 | | 5 | 9.1 | 10.7 | | | | | 71 | 7.5 | - | | | | | | 6<br>7 | 9.1<br>9.1 | 10.7<br>10.7 | 7.3 | 102 | 0.7 | - | 72 | - | - | Bott | om | | | | 8 | 9.1 | 10.7 | | | | | | | | | | | | | 9 | 9.1 | 10.7 | 7.3 | 103 | 0.9 | 47 | | | | | | | | | 10 | 9.1 | 10.7 | | | | | | | | | | | | | 11<br>12 | 9.1<br>9.1 | 10.7<br>10.7 | 7.3 | 102 | 0.7 | _ | | | | | | | | | 13 | 9.1 | 10.7 | | | *** | | | | | | | | | | 14 | 9.1 | 10.7 | | | | | | | | | | | | | 15<br>16 | 9.1<br>9.1 | 10.7<br>10.7 | 7.3 | 103 | 0.7 | - | | | | | | | | | 17 | 9.1 | 10.7 | | | | | | | | | | | | | 18 | 9.1 | 10.7 | 7.3 | 102 | 0.9 | 46 | | | | | | | | | 19<br>20 | 9.1<br>9.1 | 10.7<br>10.7 | | | | | | | | | | | | | 21 | 9.1 | 10.7 | 7.3 | 102 | 0.8 | - | | | | | | | | | 22 | 9.1 | 10.7 | | | ••• | | | | | | | | | | 23<br>24 | 9.1 | 10.7 | 7.0 | 100 | | | | | | | | | | | 25 | 9.1<br>9.1 | 10.7<br>10.7 | /.3 | 103 | 0.8 | - | | | | | | | | | 26 | 9.1 | 10.7 | | | | | | | | | | | | | 27 | 9.1 | 10.7 | 7.3 | 103 | 0.8 | 47 | | | | | | | | | 28<br>29 | 9.1<br>9.1 | 10.7<br>10.7 | | | | | | | | | | | | | 30 | 9.1 | 10.7 | 7 <b>.3</b> | 102 | 0.9 | | | | | | | | | | 31 | 9.1 | 10.7 | | | | | | | | | | | | | 32<br>33 | 9.1<br>9.1 | 10.7<br>10.7 | | | | | | | | | | | | | 34 | 9.1 | 10.7 | | | | | | | | | | | | | <b>3</b> 5 | 9.1 | 10.7 | 7.3 | 102 | 0.9 | - | | | | | | | | | <b>36</b><br><b>3</b> 7 | 9.1<br>9.1 | 10.7 | | | | | | | | | | | | | 38 | 9.1 | 10.7<br>10.7 | | | | | | | | | | | | | 39 | 9.1 | 10.7 | | | | | | | | | | | | | 40 | 9.1 | 10.7 | 7.3 | 102 | 1.0 | 46 | | | | | | | | | 41<br>42 | 9.1<br>9.1 | 10.7<br>10.7 | | | | | | | | | | | | | <b>45</b> | 9.0 | 10.7 | | | | | | | | | | | | | 64 | 8.6 | 10.7 | | | | | | | | | | | | | 45<br>45 | 8.7<br>8.5 | 10.7<br>10.7 | 7.3 | 103 | 1.3 | - | | | | | | | | | 47 | 8.3 | 10.7 | | • | | | | | | | | | | | 4#<br>49 | 8.2 | 10.8 | | | | | | | | | | | | | 50 | 8.4<br>8.4 | 11.0<br>11.0 | 7.3 | 104 | 1.3 | _ | | | | | | | | | 51 | 8.4 | - | | -04 | | | | | | | | | | | 52 | 8.4 | - | | | | | | | | | | | | | 53<br>54 | 8.4<br>8.4 | _ | | | | | | | | | | | | | 55 | 8.4 | 11.0 | 7.3 | 107 | 6.6 | 49 | | | | | | | | | 56 | 8.4 | - | | | | | | | | | | | | | 57<br>5 <b>8</b> | 8.4<br>8.3 | - | | | | | | | | | | | | | 59 | 8.3 | - | | | | | | | | | | | | | <b>60</b> | 8.1 | | 7.2 | 108 | 6.9 | - | | | | | | | | | 51<br>52 | 7.9<br>7.8 | - | | | | | | | | | | | | | 53 | 7.7 | - | | | | | | | | | | | | | 54 | 7.7 | | | | | | | | | | | | | | \$5 | 7.6 | 11.0 | 1.2 | 116 | 7.0 | - | | | | | | | | | | Sta. A2L 048.4 217.6 McCloud River Arm | | | rm February 28, 1984 @ 0930 Hrs. Secchi 3.8m | | | | | | | | | | |----------------------|----------------------------------------|--------------|-----|----------------------------------------------|-------|-------------|------------------|------------|--------------|------|------|-------|------| | epth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | | urf. | 8.2 | 11.0 | 7.3 | 103 | 1.1 | 45 | 66 | 7.0 | 11.3 | | | | | | 1 | 8.6 | 11.0 | | | | | 67 | 7.0 | 11.3 | | | | | | 2 | 8.6 | 11.0 | 7 2 | 100 | 1.1 | _ | 68<br>69 | 7.0<br>7.0 | 11.3<br>11.2 | | | | | | 3<br>4 | 8.6<br>8.6 | 11.0<br>11.0 | 7.3 | 100 | 1.1 | _ | 70 | 7.0 | 11.2 | 7.2 | 119 | 4.0 | 57 | | 5 | 8.7 | 11.0 | | | | | 71 | 6.9 | 11.2 | | | | | | 6 | 8.6 | 10.9 | 7.2 | 100 | 1.1 | - | 72<br>73 | 6.9<br>6.8 | 11.2<br>11.1 | | | | | | 7<br><b>8</b> | 8.7<br>8.7 | 10.9<br>10.9 | | | | | 73<br>74 | 6.7 | 11.1 | | | | | | 9 | 8.7 | 10.9 | 7.2 | 100 | 0.9 | 46 | 75 | 6.7 | 11.1 | 7.2 | 121 | 4.1 | - | | 10 | 8.7 | 10.9 | | | | | 76 | 6.7 | 11.1 | | | | | | 11<br>12 | 8.7<br>8.7 | 10.9<br>10.9 | 7 2 | 102 | 1.2 | _ | 77<br>7 <b>8</b> | 6.7<br>6.7 | 11.1<br>11.1 | | | | | | 13 | 8.8 | 10.9 | 1.2 | 102 | 1.2 | | 79 | 6.7 | 11.1 | | | | | | 14 | 8.7 | 10.9 | | | | | 80 | 6.7 | 11.1 | 7.2 | 121 | 5.0 | - | | 15 | 8.5 | 10.9 | 7.2 | 101 | 1.2 | - | 81<br>82 | 6.7<br>6.6 | 11.1 | | | | | | 16<br>17 | <b>8.</b> 5<br><b>8.</b> 6 | 10.9<br>10.9 | | | | | 83 | 6.6 | 11.1 | | | | | | 18 | 8.6 | 10.9 | 7.2 | 102 | 1.0 | 47 | 84 | 6.5 | 11.0 | | | | | | 19 | 8.6 | 10.8 | | | | | 85 | 6.4 | 11.0 | 7.2 | 120 | 6.1 | 56 | | 20<br>21 | 8.5<br>8.5 | 10.8<br>10.8 | 7.2 | 102 | 1.1 | _ | <b>8</b> 6<br>87 | 6.4<br>6.3 | 10.9<br>10.9 | | | | | | 22 | 8.5 | 10.8 | | *** | | | 88 | 6.3 | 10.8 | | | | | | 23 | 8.5 | 10.8 | | | | | 89 | 6.3 | 10.8 | 7 2 | 110 | 12.0 | | | 24<br>25 | 8.5<br>8.5 | 10.8 | 7.2 | 100 | 0.9 | - | 90<br>91 | 6.2<br>6.2 | 10.8<br>10.7 | 7.2 | 118 | 13.0 | - | | 26 | 8.5 | 10.8 | | | | | 92 | 6.2 | 10.6 | | | | | | 27 | 8.5 | 10.8 | 7.2 | 101 | 1.1 | 48 | 93 | 6.2 | 10.6 | | | | | | 28<br>29 | 8.5<br>8.4 | 10.8<br>10.8 | | | | | 94<br>95 | 6.2<br>6.3 | 10.8<br>10.5 | 7.2 | 121 | 8.1 | 56 | | 30 | 8.3 | 10.8 | 7.2 | 102 | 1.2 | - | 96 | 6.3 | 10.5 | | ••• | | 3.0 | | 31 | 8.2 | 10.7 | | | | | 97 | 6.3 | 10.5 | | | | | | 32<br>33 | 8.2<br>8.2 | 10.7 | | | | | 97.2 | - | - | Bott | OM | | | | 33<br>34 | 8.1 | 10.7<br>10.7 | | | | | | | | | | | | | 35 | 8.1 | 10.7 | 7.2 | 102 | 1.2 | - | | | | | | | | | 36<br>37 | 8.0<br>6.0 | 10.7<br>10.7 | | | | | | | | | | | | | 37<br>38 | 7.9 | 10.7 | | | | | | | | | | | | | 39 | 7.8 | 10.7 | | | | | | | | | | | | | 40<br>41 | 7.7<br>7.6 | 10.7<br>10.8 | 7.2 | 104 | 1.6 | 48 | | | | | | | | | 42 | 7.7 | 10.7 | | | | | | | | | | | | | 43 | 7.4 | 10.8 | | | | | | | | | | | | | 44<br>45 | 7.2<br>7.2 | 10.8<br>10.8 | 7 2 | 106 | 2.5 | _ | | | | | | | | | 46 | 7.2 | 10.9 | 1.2 | 100 | 4.3 | <del></del> | | | | | | | | | 47 | 7.2 | 10.9 | | | | | | | | | | | | | 4 <b>6</b><br>49 | 7.2<br>7.2 | 10.9 | | | | | | | | | | | | | 50 | 7.1 | 10.9<br>10.9 | 7.2 | 112 | 2.7 | _ | | | | | | | | | 51 | 7.1 | 11.0 | | | | | | | | | | | | | 52 | 7.1 | 11.0 | | | | | | | | | | | | | 53<br>54 | 7.1<br>7.1 | 11.1 | | | | | | | | | | | | | 55 | 7.1 | 11.2 | 7.2 | 121 | 3.3 | 60 | | | | | | | | | 56<br>57 | 7.1 | 11.2 | | | | | | | | | | | | | 57<br>5 <del>8</del> | 7.0<br>7.0 | 11.2 | | | | | | | | | | | | | 59 | 7.0 | 11.2 | | | | | | | | | | | | | <del>6</del> 0 | 7.0 | | 7.2 | 121 | 3.6 | - | | | | | | | | | 61<br>62 | 7.0<br>7.0 | 11.2 | | | | | | | | | | | | | 63 | 7.0 | 11.3 | | | | | | | | | | | | | 64<br>65 | 7.0 | 11.3 | 7 2 | 122 | 3 5 | _ | | | | | | | | | 9.7 | 7.0 | 11.3 | 1.2 | 122 | 3.5 | - | | | | | | | | | | Sta A2L | 048.4 | 217.6 | McC1c | ud Rive | r Arm | April 3, 19 | 84 <b>@ 0930</b> H | rs. S | ecchi | 6.1m | | | |------------|--------------|--------------|-------|-------|---------|-------|-------------|--------------------|--------------|-------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 12.1 | 10.6 | 7.6 | 103 | 1.2 | 46 | 66 | 7.1 | 10.7 | | | | | | 1 | 12.0 | 10.6 | | | | | 67 | 7.0 | 10.8 | | | | | | 2 | 11.8 | 10.6 | | | | | 68 | 7.0 | 10.8 | | | | | | 3<br>4 | 11.7 | 10.6 | 7.6 | 103 | 1.7 | - | 69 | 7.0 | 10.8 | | 100 | | | | 5 | 11.7<br>11.6 | 10.6<br>10.6 | | | | | 70<br>71 | 7.0<br>7.0 | 10.8 | 7.3 | 126 | 5.1 | - | | 6 | 11.6 | 10.7 | 7.6 | 103 | 1.4 | _ | 72 | 6.9 | 10.8 | | | | | | 7 | 11.5 | 10.7 | | | | | 73 | 6.9 | 10.8 | | | | | | 8 | 11.4 | 10.7 | | | | | 74 | 6.9 | 10.8 | | | | | | 9 | 11.2 | 10.7 | 7.5 | 103 | 1.5 | 45 | 75 | 6.9 | 10.8 | 7.3 | 128 | 5.5 | - | | 10 | 11.1 | 10.7 | | | | | 76 | 6.9 | 10.8 | | | | | | 11 | 11.0 | 10.7 | 7 6 | 102 | | | 77 | 6.9 | 10.8 | | | | | | 12<br>13 | 10.8<br>10.7 | 10.6<br>10.6 | 7.5 | 103 | 1.2 | - | 78<br>79 | 6.9<br>6.8 | 10.8 | | | | | | 14 | 10.5 | 10.6 | | | | | 80 | 6.8 | 10.8 | 7.3 | 130 | 6.8 | 56 | | 15 | 10.2 | 10.6 | 7.4 | 104 | 1.5 | _ | 81 | 6.8 | 10.8 | | | ••• | - | | 16 | 10.0 | 10.6 | | | | | 82 | 6.8 | 10.8 | | | | | | 17 | 9.6 | 10.5 | | | | | 83 | 6.8 | 10.8 | | | | | | 18 | 9.4 | 10.5 | 7.3 | 106 | 2.0 | 46 | 84 | 6.8 | 10.8 | | | | | | 19<br>20 | 9.2<br>9.2 | 10.5 | | | | | 85 | 6.8 | 10.8 | 7.3 | 132 | 9.0 | - | | 21 | 9.1 | 10.5<br>10.5 | 7.3 | 106 | 1.5 | _ | 86<br>87 | 6.8<br>6.8 | 10.8<br>10.8 | | | | | | 22 | 9.1 | 10.5 | | 100 | *•• | | 88 | 6.8 | 10.7 | | | | | | 23 | 9.1 | 10.5 | | | | | 89 | 6.8 | 10.7 | | | | | | 24 | 9.0 | 10.6 | 7.3 | 106 | 1.8 | - | 90 | 6.8 | 10.7 | 7.3 | 133 | 9.7 | 57 | | 25 | 9.0 | 10.6 | | | | | 91 | 6.8 | 10.7 | | | | | | 26<br>27 | 9.0<br>9.0 | 10.6<br>10.6 | 7.3 | 107 | 1.5 | 46 | 92<br>03 | 6.8 | 10.6 | | | | | | 28 | 8.9 | 10.6 | 7.3 | 107 | 1.5 | 40 | 93<br>94 | 6.8<br>6.8 | 10.6<br>10.6 | | | | | | 29 | 8.8 | 10.6 | | | | | 95 | 6.8 | 10.6 | 7.3 | 134 | 11 | _ | | 30 | 8.8 | 10.6 | 7.3 | 107 | 1.8 | - | 96 | 6.8 | 10.6 | | | | | | 31 | 8.8 | 10.6 | | | | | 97 | 6.8 | 10.6 | | | | | | 32<br>33 | 8.8<br>8.8 | 10.6<br>10.6 | | | | | 98 | 6.8 | 10.6 | | | | | | 34 | 8.8 | 10.6 | | | | | 99<br>100 | 6.8<br>6.8 | 10.6<br>10.6 | | | | | | <b>3</b> 5 | 8.8 | 10.6 | 7.3 | 118 | 4.0 | 52 | 101 | 6.8 | 10.6 | 7.3 | 134 | 13 | 58 | | 36 | 8.7 | 10.7 | | | | | 102 | 6.8 | 10.6 | | | | | | <b>3</b> 7 | 8.7 | 10.7 | | | | | 103 | 6.8 | 10.6 | | | | | | 38<br>39 | 8.6<br>8.6 | 10.7<br>10.7 | | | | | 105 | - | - | Bott | OR | | | | 40 | 8.6 | 10.7 | 7.3 | 120 | 4.7 | _ | | | | | | | | | 41 | 8.5 | 10.7 | | | | | | | | | | | | | 42 | 8.5 | 10.7 | | | | | | | | | | | | | 43 | 8.4 | 10.7 | | | | | | | | | | | | | 44<br>45 | 8.4<br>8.3 | 10.7<br>10.7 | 7.3 | . 119 | 4.3 | 54 | | | | | | | | | 46 | 8.2 | 10.6 | 7.3 | . 113 | 4.3 | 34 | | | | | | | | | 47 | 8.1 | 10.6 | | | | | | | | | | | | | 48 | 8.1 | 10.6 | | | | | | | | | | | | | 49 | 8.1 | 10.6 | | | | | | | | | | | | | 50<br>51 | 8.0<br>8.0 | 10.6 | 7.3 | 114 | 1.8 | ~ | | | | | | | | | 52 | 7.9 | 10.6<br>10.6 | | | | | | | | | | | | | 53 | 7.8 | 10.6 | | | | | | | | | | | | | 54 | 7.8 | 10.6 | | | | | | | | | | | | | 55 | 7.6 | 10.6 | 7.3 | 115 | 1.6 | 52 | | | | | | | | | 56<br>57 | 7.5 | 10.7 | | | | | | | | | | | | | 57<br>58 | 7.5<br>7.4 | 10.7 | | | | | | | | | | | | | 59 | 7.4 | 10.7<br>10.7 | | | | | | | | | | | | | 60 | 7.2 | 10.7 | 7.3 | 118 | 2.5 | _ | | | | | | | | | 61 | 7.2 | 10.7 | | | = | | | | | | | | | | 62 | 7.2 | 10.7 | | | | | | | | | | | | | 63<br>64 | 7.1 | 10.7 | | | | | | | | | | | | | 65 | 7.1<br>7.1 | 10.7<br>10.7 | 7 2 | 124 | 3.7 | 54 | | | | | | | | | • 5 | | 10.7 | ,., | 124 | 3.1 | J+ | | | | | | | | SHASTA RESERVOIR LINGGLOGIC DATA | Sta. A2L 048.4 | 217.6 Mc | Cloud River | Arm M | av 8. | 1984 | 0900 Hrs. | Secchi 6.7m | |----------------|----------|-------------|-------|-------|------|-----------|-------------| | | | | | | | | | | :pth(m) | Temp.(°C) | D.O. | pH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рН | E.C. | Turb. | Alk. | |----------------------|--------------|--------------|-----|------|-------|------|-----------------|--------------------|--------------|------|------|-------|------| | | | | | | | | | 8.1 | 10.2 | | | | | | ırf.<br>1 | 14.6<br>14.5 | 10.1<br>10.0 | 7.7 | 98 | 0.9 | 46 | 66<br>67 | 8.0 | 10.2 | | | | | | 2 | 14.4 | 10.0 | | | | | 68 | 8.0 | 10.2 | | | | | | 3 | 14.3 | 10.1 | 7.7 | 99 | 1.0 | - | 69 | 8.0 | 10.2 | | 106 | | | | 4<br>5<br><b>6</b> | 14.3 | 10.1 | | | | | 70 | 7. <b>9</b><br>7.9 | 10.2<br>10.2 | 7.3 | 106 | 2.0 | 52 | | 5 | 14.2<br>14.2 | 10.1<br>10.1 | 7.7 | 100 | 1.0 | _ | 71<br>72 | 7 <b>.9</b> | 10.2 | | | | | | 7 | 14.2 | 10.1 | ,., | 100 | 1.0 | | 73 | 7.8 | 10.2 | | | | | | 8 | 14.2 | 10.1 | | | | | 74 | 7.7 | 10.2 | | | | | | 9 | 14.1 | 10.1 | 7.6 | 100 | 1.0 | 47 | 75 | 7.5 | 10.1 | 7.3 | 111 | 2.7 | - | | 10 | 14.0 | 10.1 | | | | | 76<br>77 | 7.5<br>7.4 | 10.1<br>10.1 | | | | | | 2 | 13.8<br>13.5 | 10.0<br>10.0 | 7.5 | 100 | 1.0 | _ | 78 | 7.3 | 10.1 | | | | | | L3 | 13.3 | 10.0 | | 100 | * | | 79 | 7.2 | 10.1 | | | | | | 14 | 12.2 | 9.9 | | | | | 80 | 7.2 | 10.1 | 7.2 | 113 | 3.2 | . 55 | | 15 | 11.6 | 9.9 | 7.4 | 101 | 1.9 | - | 81 | 7.2 | 10.1 | | | | | | i6 · | 11.0 | 10.0 | | | | | 82<br>83 | 7.2<br>7.2 | 10.1<br>10.1 | | | | | | L7<br>I <b>8</b> | 10.9<br>10.8 | 10.0<br>10.0 | 7.3 | 114 | 3.1 | 55 | 84 | 7.1 | 10.0 | | | | | | 6 | 10.5 | 10.0 | | | | | 85 | 7.1 | 10.0 | 7.2 | 117 | 4.3 | - | | 10 | 10.4 | 10.0 | | | | | 86 | 7.1 | 10.0 | | | | | | 11 | 10.2 | 10.0 | 7.3 | 116 | 3.3 | - | 87 | 7.0 | 9.9 | | | | | | !2<br>!3 | 10.1<br>10.0 | 10.1 | | | | | <b>88</b><br>89 | 7.0<br>7.0 | 9.9<br>9.9 | 7.2 | 117 | 4.9 | 55 | | 14 | 9.9 | 10.1 | 7.3 | 112 | 3.1 | _ | 90 | 7.0 | 9.9 | , | | | | | 15 | 9.9 | 10.1 | | | | | 91 | - | - | Bott | Om | | | | !6 | 9.9 | 10.1 | | | | ** | | | | | | | | | 17<br>18 | 9.8<br>9.8 | 10.1 | 7.3 | 113 | 3.3 | 56 | | | | | | | | | 19 | 9.8 | 10.2 | | | | | | | | | | | | | 30 | 9.7 | 10.2 | 7.3 | 113 | 3.2 | - | | | | | | | | | 31 | 9.7 | 10.2 | | | | | | | | | | | | | 32 | 9.6 | 10.2 | | | | | | | | | | | | | 13<br>34 | 9.4<br>9.3 | 10.2<br>10.2 | | | | | | | | | | | | | 35 | 9.2 | 10.2 | 7.3 | 103 | 1.9 | - | | | | | | | | | 16 | 9.2 | 10.2 | | | | | | | | | | | | | 37<br>38 | 9.1 | 10.2 | | | | | | | | | | | | | ) <del>9</del> | 9.0<br>9.0 | 10.2<br>10.2 | | | | | | | | | | | | | 10 | 8.9 | 10.2 | 7.3 | 101 | 1.7 | 47 | | | | | | | | | 10<br>12<br>13<br>14 | 8.9 | 10.2 | | | | | | | | | | | | | 12 | 8.9 | 10.2 | | | | | | | | | | | | | ia<br>ia | 8.8<br>8.8 | 10.2<br>10.3 | | | | | | | | | | | | | is | 8.8 | 10.3 | 7.3 | 103 | 2.2 | ••• | | | | | | | | | 16 | 8.8 | 10.3 | | | | | | | | | | | | | 17 | 8.8 | 10.3 | | | | | | | | | | | | | 18<br>19 | 8.6<br>6.8 | 10.3 | | | | | | | | | | | | | 50 | 8.8 | 10.3 | 7.3 | 103 | 2.5 | _ | | | | | | | | | 51 | 8.7 | 10.3 | | | | | | | | | | | | | 52 | 8.7 | 10.3 | | | | | | | | | | | | | 53<br>54 | 8.7 | 10.3 | | | | | | | | | | | | | 55 | 8.6<br>8.6 | 10.3 | 7.3 | 105 | 2.4 | 49 | | | | | | | | | 56 | 8.6 | 10.3 | | | | = | | | | | | | | | 57 | 8.5 | 10.3 | | | | | | | | | | | | | 58<br>59 | 8.5 | 10.3 | | | | | | | | | | | | | 50 | 8.4<br>8.4 | 10.3 | 7.3 | 104 | 1.7 | _ | | | | | | | | | 51 | 8.3 | 10.3 | | • | | | | | | | | | | | 52 | 8.3 | 10.3 | | | | | | | | | | | | | 63<br>54 | 8.2 | 10.3<br>10.3 | | | | | | | | | | | | | 55 | 8.2<br>8.2 | | 7.3 | 104 | 1.9 | ~ | | | | | | | | | | | | | • | • | | | | | | | | | A Comment SMASTA RESERVOIR LIMMOLOGIC DATA | | Sta. A2L | 048.4 | 217. | 6 McCl | oud Riv | ver Arm | June 7, 19 | 84 @ 0830 H | rs. | Secchi | 6.2m | | | |-----------------|--------------|------------|------|--------|---------|---------|------------------|-------------|------------|--------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | | рН | E.C. | Turb. | Alk. | | Surf. | 18.8 | 8.9 | 7.5 | 102 | 0.9 | 48 | 66 | 8.6 | 9.1 | | | | | | 1 | 18.6 | 8.9 | | | | | 67 | 8.6 | 9.1 | | | | | | 2<br>3 | 18.5<br>18.5 | 8.9<br>8.9 | 7.6 | 102 | 1.2 | _ | 68<br>69 | 8.5<br>8.4 | 9.1<br>9.1 | | | | | | 4 | 18.5 | 8.9 | 7.0 | 102 | 1.2 | | 70 | 8.3 | 9.1 | 7.2 | 106 | 2.0 | 47 | | 5 | 18.5 | 8.9 | | | | | 71 | 8.3 | 9.1 | | | | | | 6 | 18.4 | 8.9 | 7.5 | 103 | 1.2 | - | 72 | 8.3 | 9.1 | | | | | | 7 | 18.4 | 8.9 | | | | | 73<br>74 | 8.3<br>8.2 | 9.0<br>9.0 | | | | | | <b>8</b><br>9 | 18.4<br>18.4 | 8.9<br>8.9 | 7.5 | 103 | 1.0 | 48 | 75 | 8.2 | 9.0 | 7.2 | 110 | 2.0 | - | | 10 | 18.3 | 8.9 | | | | | 76 | 8.1 | 8.9 | | | | | | 11 | 18.2 | 9.0 | | | | | 77 | 8.1 | 8.9 | | | | | | 12 | 17.9 | 9.0 | 7.5 | 103 | 1.1 | - | 78 | 8.0 | 8.8 | | | | | | 13<br>14 | 16.8<br>16.0 | 9.1<br>9.2 | | | | | 79<br><b>8</b> 0 | 8.0<br>7.9 | 8.7<br>8.7 | 7.2 | 113 | 2.3 | _ | | 15 | 15.3 | 9.2 | 7.4 | 108 | 1.4 | - | 81 | 7.8 | 8.8 | , | *** | | | | 16 | 14.9 | 9.2 | | | | | 82 | 7.8 | 8.8 | | | | | | 17 | 14.1 | 9.2 | | | | | 83 | 7.7 | 8.7 | | | | | | 18 | 13.7 | 9.2 | 7.3 | 107 | 1.3 | 50 | 84 | 7.6 | 8.6 | 7.2 | 116 | 4.2 | _ | | 19<br>20 | 13.3<br>13.1 | 9.2<br>9.2 | | | | | 85<br>86 | 7.5<br>7.5 | 8.5<br>8.5 | 7.2 | 116 | 4.2 | - | | 21 | 12.8 | 9.2 | 7.3 | 111 | 1.6 | _ | 87 | 7.4 | 8.4 | | | | | | 22 | 12.4 | 9.2 | | | | | 88 | 7.3 | 8.4 | | | | | | 23 | 12.0 | 9.3 | | | | | 89 | 7.3 | 8.4 | Bott | om | | | | 24 | 11.8 | 9.3 | 7.3 | 113 | 2.0 | - | | | | | | | | | 25<br>26 | 11.5<br>11.3 | 9.3<br>9.3 | | | | | | | | | | | | | 27 | 11.2 | 9.3 | 7.3 | 117 | 2.3 | 55 | | | | | | | | | 28 | 11.1 | 9.3 | | | | | | | | | | | | | 29 | 11.0 | 9.3 | | | | | | | | | | | | | 30 | 10.9 | 9.3 | 7.3 | 116 | 2.5 | - | | | | | | | | | 31<br>32 | 10.8<br>10.7 | 9.3<br>9.3 | | | | | | | | | | | | | 33 | 10.5 | 9.3 | | | | | | | | | | | | | 34 | 10.3 | 9.3 | | | | | | | | | | | | | 35 | 10.2 | 9.3 | 7.3 | 114 | 2.2 | - | | | | | | | | | <b>36</b><br>37 | 10.1<br>10.1 | 9.3<br>9.3 | | | | | | | | | | | | | \$6 | 10.0 | 9.3 | | | | | | | | | | | | | 39 | 9.9 | 9.3 | | | | | | | | | | | | | <b>6</b> 0 | 9.8 | 9.3 | 7.3 | 111 | 2.3 | 51 | | | | | | | | | 41 | 9.7<br>9.6 | 9.3<br>9.3 | | | | | | | | | | | | | 43 | 9.5 | 9.3 | | | | | | | | | | | | | 44 | 9.4 | 9.3 | | | | | | | | | | | | | *5 | 9.3 | 9.3 | 7.3 | 107 | 2.0 | - | | | | | | | | | 46<br>47 | 9.2<br>9.1 | 9.3<br>9.3 | | | | | | | | | | | | | 48 | 9.1 | 9.3 | | | | | | | | | | | | | 49 | 9.1 | 9.3 | | | | | | | | | | | | | 50 | 9.1 | 9.3 | 7.3 | 107 | 2.2 | | | | | | | | | | 51 | 9.0 | 9.2 | | | | | | | | | | | | | 52<br>53 | 9.0<br>9.0 | 9.2<br>9.2 | | | | | | | | | | | | | 54 | 8.9 | 9.2 | | | | | | | | | | | | | 55 | 8.9 | 9.2 | 7.2 | 105 | 1.5 | 47 | | | | | | | | | 56 | 8.9 | 9.2 | | | | | | | | | | | | | 57<br>58 | 8.9<br>8.8 | 9.2<br>9.2 | | | | | | | | | | | | | 59 | 8.8 | 9.2 | | | | | | | | | | | | | 60 | 8.8 | 9.2 | 7.2 | 104 | 1.5 | - | | | | | | | | | 61 | 8.8 | 9.2 | | | | | | | | | | | | | 62 | 8.7 | 9.2 | | | | | | | | | | | | | 63<br>64 | 8.7<br>8.7 | 9.2<br>9.2 | | | | | | | | | | | | | 65 | 8.7 | 9.2 | 7.2 | 105 | 1.8 | - | | | | | | | | | | Sta. A2L | 048.4 | 217.6 | McClo | oud Rive | er Arm | August 14, | 1984 @ 0920 | Hrs. | Secc | hi 4.0 | 5ax | | |---------------|--------------|------------|-------|-------|----------|--------|------------------|-------------|--------------------|------|--------|-------|------| | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | | Turb. | Alk. | | | | | | | | | | | | | | | | | Surf. | 25.0 | 7.8<br>7.8 | 7.6 | 116 | 1.6 | 47 | 66<br>67 | 9.1<br>9.0 | 6.3<br>6.4 | | | | | | 1<br>2 | 25.0<br>25.0 | 7.8 | | | | | 68 | 9.0 | 6.4 | | | | | | 3 | 25.0 | 7.8 | 7.6 | 113 | 0.7 | - | 69 | 9.0 | 6.5 | | | | | | 4 | 25.0 | 7.9 | | | | | 70 | 8.9 | 6.5 | 7.2 | 112 | 1.7 | - | | 5 | 25.0 | 7.8 | | | | | 71<br>7 <b>2</b> | 8.8<br>8.8 | 6.5<br>6.5 | | | | | | 6 | 25.0<br>25.0 | 7.8<br>7.7 | 7.6 | 113 | 0.9 | - | 73 | 8.7 | 6.6 | | | | | | 7<br><b>8</b> | 25.0<br>25.0 | 7.7 | | | | | 74 | 8.6 | 6.6 | | | | | | 9 | 24.9 | 7.5 | 7.5 | 113 | 0.9 | 49 | 75 | 8.4 | 6.6 | 7.2 | 112 | 1.7 | 48 | | 10 | 22.2 | 6.1 | | | | | 76 | 8.2 | 6.5 | | | | | | 11 | 20.7 | 6.0 | | | | | 77<br>78 | 8.0<br>8.0 | 6.5<br><b>6.</b> 4 | | | | | | 12 | 19.0<br>18.8 | 5.9<br>5.9 | 7.2 | 115 | 0.6 | - | 79 | 8.0 | 6.2 | | | | | | . 13<br>14 | 19.1 | 6.0 | | | | | 80 | 8.0 | 6.1 | 7.2 | 115 | 2.0 | - | | 15 | 19.0 | 6.3 | 7.3 | 134 | 0.7 | 60 | 81 | 7.9 | 5.9 | | | | | | 16 | 18.9 | 6.3 | | | | | 82 | 7.8 | 5.8 | | | | | | 17 | 18.9 | 6.4 | | | | | 83<br>84 | 7.8<br>7.7 | 5.7<br>5.5 | | | | | | 18<br>19 | 18.5<br>18.3 | 6.3 | 7.3 | 134 | 0.9 | - | 85 | 7.5 | 5.1 | 7.1 | 119 | 2.9 | 52 | | 20 | 18.1 | 6.0 | | | | | 86 | 7.4 | 5.0 | | | | | | 21 | 17.9 | 6.0 | 7.3 | 128 | 0.8 | - | 87 | 7.4 | 4.9 | | | | | | 22 | 17.3 | 6.1 | | | | | 88 | 7.4 | 4.9 | | | | | | 23 | 17.0 | 6.1 | ~ ^ | 100 | 1.0 | | 89<br>90 | 7.3<br>7.3 | 4.9<br>4.6 | Bott | ~ | | | | 24<br>25 | 16.6<br>16.1 | 6.2 | 7.3 | 126 | 1.0 | 56 | 90 | 7.3 | 4.0 | вост | | | | | 26 | 15.8 | 6.3 | | | | | | | | | | | | | 27 | 15.5 | 6.3 | 7.3 | 124 | 0.8 | - | | | | | | | | | 28 | 15.1 | 6.4 | | | | | | | | | | | | | 29 | 15.0 | 6.5 | | | | | | | | | | | | | 30 | 14.8 | 6.5 | 7.3 | 122 | 1.6 | - | | • | | | | | | | 31<br>32 | 14.5<br>14.3 | 6.5<br>6.6 | | | | | | | | | | | | | 33 | 14.0 | 6.6 | | | | | | | | | | | | | 34 | 13.9 | 6.7 | | | | | | | | | | | | | 35 | 13.6 | 6.7 | 7.3 | 119 | 1.4 | 55 | | | | | | | | | 36<br>37 | 13.2<br>13.0 | 6.7<br>6.8 | | | | | | | | | | | | | 38 | 12.8 | 6.9 | | | | | | | | | | | | | 39 | 12.7 | 6.9 | | | | | | | | | | | | | 40 | 12.4 | 6.9 | 7.3 | 118 | 2.0 | - | | | | | | | | | 41 | 12.2 | 7.0 | | | | | | | | | | | | | 42<br>43 | 12.0<br>11.9 | 7.0<br>7.0 | | | | | | | | | | | | | 44 | 11.6 | 7.0 | | | | | | | | | | | | | 45 | 11.5 | 7.0 | 7.3 | 119 | 1.9 | - | | | | | | | | | 46 | 11.3 | 7.0 | | | | | | | | | | | | | 47<br>48 | 11.1<br>11.1 | 6.9<br>6.9 | | | | | | | | | | | | | 49 | 11.0 | 6.9 | | | | | | | | | | | | | 50 | 10.9 | 6.9 | 7.2 | 118 | 2.0 | 51 | | | | | | | | | 51 | 10.9 | 6.8 | | | | | | | | | | | | | 52 | 10.8 | 6.7 | | | | | | | | | | | | | 53<br>54 | 10.7<br>10.6 | 6.6<br>6.4 | | | | | | | | | | | | | 55 | 10.5 | 6.5 | 7.2 | 116 | 1.7 | _ | | | | | | | | | 56 | 10.3 | 6.5 | | | | | | | | | | | | | 57 | 10.1 | 6.5 | | | | | | | | | | | | | 58<br>59 | 10.0<br>9.9 | 6.4 | | | | | | | | | | | | | 60 | 9.9 | 6.4 | 7.2 | 115 | 1.6 | _ | | | | | | | | | 61 | 9.7 | 6.4 | | | | | | | | | | | | | 62 | 9.7 | 6.3 | | | | | | | | | | | | | 63 | 9.5 | 6.3 | | | | | | | | | | | | | 64<br>65 | 9.3<br>9.1 | 6.4 | 7.2 | 114 | 1.4 | 50 | | | | | | | | | 0,5 | 7.1 | 5.5 | 7.2 | 114 | 4.7 | 50 | | | | | | | | | Sta. A2L 048.4 217.6 McCloud River Arm July 11, 1984 @ 1000 Hrs. | |------------------------------------------------------------------| |------------------------------------------------------------------| | | Sta. AZL | | | O FICCI | | | | 704 6 1000 | | oecc. | | | | |----------------------------|--------------|------------|-----|---------|-------|------|----------|------------|------|-------|------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 26.0 | 7.9 | 7.6 | 106 | 1.1 | 50 | 70 | 9.7 | 9.5 | 7.2 | 105 | 1.5 | 44 | | 1 | 25.9 | 7.9 | | | | | 75 | 10.0 | 9.5 | 7.2 | | 1.7 | - | | 2 | 25.8 | 7.9 | | | | | 80 | 9.4 | 9.5 | 7.2 | | 1.9 | 50 | | 3 | 25.8 | 7.9 | 7.6 | 106 | 1.4 | - | 85 | 9.2 | 9.4 | 7.2 | | 2.5 | - | | 4 | 25.7 | 7.9 | | | | | 90 | 8.9 | 8.9 | 7.1 | 117 | 3.1 | 56 | | 5 | 25.5 | 7.9 | | | | | 93 | - | - | Bot | tom | | | | á | 25.4 | 7.9 | 7.6 | 105 | 1.3 | _ | | | | | | | | | 7 | 24.9 | 8.0 | | | | | | | | | | | | | 3<br>4<br>5<br>6<br>7<br>8 | 22.7 | 8.1 | | | | | | | | | | | | | 9 | 21.1 | 8.2 | 7.4 | 107 | 0.7 | 49 | | | | | | | | | 10 | 20.2 | 8.1 | | ••• | | | | | | | | | | | 11 | 19.3 | 8.1 | | | | | | | | | | | | | 12 | 18.8 | 8.0 | 7.3 | 115 | 1.0 | _ | | | | | | | | | .13 | 18.4 | 8.1 | | | | | | | | | | | | | 14 | 17.9 | 8.0 | | | | | | | | | | | | | 15 | 17.5 | 8.0 | 7.3 | 124 | 1.2 | - | | | | | | | | | 16 | 17.3 | 7.9 | | | | | | | | | | | | | 17 | 16.9 | 7.9 | | | | | | | | | | | | | 16 | 16.3 | 8.0 | 7.3 | 122 | 1.1 | 59 | | | | | | | | | 19 | 16.1 | 8.0 | | | | | | | | | | | | | 20 | 15.8 | 8.1 | | | | | | | | | | | | | 21 | 15.4 | 8.2 | 7.3 | 119 | 1.7 | _ | | | | | | | | | 22 | 15.1 | 8.2 | | | | | | | | | | | | | 23 | 14.8 | 8.3 | | | | | | | | | | | | | 24 | 14.3 | 8.4 | 7.3 | 115 | 1.1 | - | | | | | | | | | 25 | 13.9 | 8.5 | | | | | | | | | | | | | 26 | 13.6 | 8.6 | | | | | | | | | | | | | 27 | 13.2 | 8.7 | 7.3 | 112 | 1.0 | 54 | | | | | | | | | 28 | 13.0 | 8.8 | | | | | | | | | | | | | 29 | 12.5 | 8.9 | | | | | | | | | | | | | 30 | 12.2 | 8.9 | 7.3 | 113 | 1.4 | - | | | | | | | | | 31 | 12.1 | 9.0 | | | | | | | | | | | | | 32 | 11.9 | 9.0 | | | | | | | | | | | | | 33 | 11.8 | 9.0 | | | | | | | | | | | | | 34 | 11.5 | 9.1 | | | | | | | | | | | | | 35 | 11.3 | 9.1 | 7.3 | 115 | 2.2 | - | | | | | | | | | 36 | 11.2 | 9.1 | | | | | | | | | | | | | 37 | 11.1 | 9.1 | | | | | | | | | | | | | 38 | 11.1 | 9.1 | | | | | | | | | | | | | 39 | 11.0 | 9.1 | 7 0 | 117 | 2.0 | | | | | | | | | | 40 | 10.9 | 9.2 | 7.3 | 116 | 2.0 | 56 | | | | | | | | | 41 | 10.8 | 9.2 | | | | | | | | | | | | | 42 | 10.7<br>10.5 | 9.2 | | | | | | | | | | | | | 43 | | 9.2<br>9.2 | | | | | | | | | | | | | 44 | 10.3<br>10.2 | 9.2 | 7.3 | 112 | 2.0 | _ | | | | | | | | | 46 | 10.2 | 9.2 | 7.3 | 112 | 2.0 | _ | | | | | | | | | 47 | 10.2 | 9.2 | | | | | | | | | | | | | 48 | 10.0 | 9.2 | | | | | | | | | | | | | 49 | 9.9 | 9.2 | | | | | | | | | | | | | 50 | 9.9 | 9.2 | 7.3 | 110 | 1.8 | _ | | | | | | | | | 55 | 10.6 | 9.3 | 7.3 | 107 | 1.5 | 50 | | | | | | | | | 60 | 10.6 | 9.4 | 7.3 | 106 | 1.1 | - | | | | | | | | | 65 | 10.0 | 9.4 | 7.2 | 105 | 1.4 | _ | | | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 04 | 8.4 21 | 7.6 M | cCloud | River | Arm S | eptember 13, | 1984 @ 101 | 5 Hrs. | Sec | chi - | | | |--------------------|--------------|----------------------------|-------------|--------|-------|-------|------------------|------------|------------|------------|-------|-------|------| | epth(m) | | D.O. | рH | E.C. | Turb. | Alk. | Depth(m) | | D.O. | рĦ | E.C. | Turb. | Alk. | | urf. | 22.8 | 8.0 | 7.5 | 116 | 0.9 | 49 | 66 | 9.8 | 5.6 | | | | | | 1 | 22.8 | 7.9 | | | | | 67 | 9.6 | 5.6 | | | | | | 2 | 22.8<br>22.8 | 7.9<br>7.8 | 7.6 | 116 | 1.0 | - | 68<br><b>69</b> | 9.4<br>9.3 | 5.7<br>5.8 | | | | | | 3<br>4 | 22.7 | 7.8 | | | | | 70 | 9.2 | 5.8 | 7.1 | 117 | 1.5 | 50 | | 5<br><b>6</b><br>7 | 22.7<br>22.7 | 7.8 | 7.6 | 116 | 0.9 | _ | 71<br>72 | 9.1<br>9.0 | 5.8<br>5.9 | | | | | | 7 | 22.7 | 7.8<br>7.8 | / • ● | 110 | 0., | _ | 73 | 8.9 | 5.9 | | | | | | 8 | 22.7 | 7.8 | | | | | 74 | 8.7 | 6.0 | <b>,</b> , | 116 | 1.8 | | | 9<br>10 | 22.6<br>22.5 | 7 <b>.8</b><br>7 <b>.7</b> | 7 <b>.6</b> | 116 | 0.8 | 52 | 75<br>7 <b>6</b> | 8.6<br>8.5 | 6.0<br>6.0 | 7.1 | 116 | 1.0 | - | | 11 | 22.1 | 7.3 | | | | | 77 | 8.5 | 6.0 | | | | | | 12<br>13 | 20.3<br>19.8 | 5.0<br>5.1 | 7.1 | 120 | 0.6 | - | 78<br>79 | 8.3<br>8.2 | 6.0<br>5.8 | | | | | | 14 | 19.3 | 4.9 | | | | | 80 | 8.1 | 5.7 | 7.0 | 117 | 2.4 | 52 | | 15 | 19.0 | 5.0 | 7.2 | 125 | 0.7 | ~ | 81<br>82 | 8.0<br>7.9 | 5.5<br>5.3 | | | | | | 16<br>17 | 18.6<br>18.3 | 5.1<br>5.5 | | | | | 83 | 7.8 | 5.1 | | | | | | 18 | 18.2 | 5.7 | 7.2 | 133 | 0.9 | 61 | 84 | 7.7 | 4.9 | | | | | | 19<br>20 | 18.0<br>17.9 | 6.1<br>6.4 | | | | | <b>8</b> 5<br>86 | 7.6<br>7.5 | 4.7<br>4.5 | 7.0 | 124 | 4.0 | - | | 21 | 17.8 | 6.4 | 7.3 | 135 | 0.7. | - | 87 | 7.4 | 4.2 | | | | | | 22 | 17.7 | 6.5 | | | | | <b>86</b><br>89 | 7.3<br>7.2 | 4.0<br>4.0 | | | | | | 23<br>24 | 17.6<br>17.5 | 6.5<br>6.7 | 7.3 | 135 | 0.8 | | 90 | 7.2 | 4.0 | 7.0 | 131 | 5.6 | 59 | | 25 | 17.3 | 6.7 | | | | | 91 | 7.2 | 4.0 | | | | | | 26<br>27 | 17.2<br>17.0 | 6.7<br>6.6 | 7.3 | 135 | 0.9 | 62 | 91.5 | - | - | Bott | οm | | | | 28 | 16.9 | 6.4 | | | | | | | | | | | | | 29<br>30 | 16.8<br>16.3 | 6.1<br>6.0 | 7.3 | 129 | 1.1 | _ | | | | | | | | | 31 | 15.9 | 6.1 | 7.3 | 129 | 1.1 | _ | | | | | | | | | 32 | 15.6 | 6.2 | | | | | | | | | | | | | 33<br>34 | 15.4<br>15.1 | 6.3<br>6.3 | | | | | | | | | | | | | 35 | 15.0 | 6.4 | 7.2 | 124 | 1.3 | - | | | | | | | | | 36<br>37 | 14.7<br>14.5 | 6.5<br>6.5 | | | | | | | | | | | | | 38 | 14.3 | 6.6 | | | | | | | | | | | | | 39<br>40 | 14.1 | 6.6 | 7 3 | 122 | 1.2 | 56 | | | | | • | | | | 61 | 13.9<br>13.7 | 6.6<br>6.7 | 7.2 | 122 | 1.2 | 90 | | | | | | | | | 42 | 13.5 | 6.7 | | | | | | | | | | | | | 43<br>44 | 13.3<br>13.1 | 6.8<br>6.8 | | | | | | | | | | | | | 45 | 13.0 | 6.9 | 7.2 | 121 | 1.5 | - | | | | | | | | | 66<br>67 | 12.8<br>12.6 | 6.9<br>6.8 | | | | | | | | | | | | | 48 | 12.4 | 6.9 | | | | | | | | | | | | | 49<br>50 | 12.1<br>12.0 | 6.9<br>6.9 | 7.2 | 119 | 1.5 | _ | | | | | | | | | 51 | 11.9 | 6.8 | 1.2 | 117 | , 1.0 | ~ | | | | | | | | | 52 | 11.8 | 6.5 | | | | | | | | | | | | | 53<br>54 | 11.6<br>11.4 | 6.6<br>6.6 | | | | | | | | | | | | | 55 | 11.3 | 6.5 | 7.1 | 119 | 1.4 | 53 | | | | | | | | | 56<br>57 | 11.1<br>11.0 | 6.4<br>6.2 | | | | | | | | | | | | | 58 | 10.8 | 6.0 | | | | | | | | | | | | | 59<br>50 | 10.7 | 6.0 | 7 1 | 110 | 1 2 | | | | | | | | | | <b>60</b><br>61 | 10.5<br>10.3 | 5.8<br>5.6 | 7.1 | 119 | 1.3 | - | | | | | | | | | 62 | 10.2 | 5.5 | | | | | | | | | | | | | 63<br>64 | 10.1<br>10.0 | 5.5<br>5.8 | | | | | | | | | | | | | 65 | 9.9 | 5.8 | 7.1 | 117 | 1.4 | - | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Ca. A21 0 | | .17 6 | W-01 | ه د | | Ontoham 17 | 1084 0 0830 | Urc | Sacc | hi 6.4 | _ | | |------------|--------------|----------------------------|-------|------|-------|------|--------------------------|-------------|------------|------|--------|-------------------|------| | | | | | | | | October 17, | | | | | <u>≖</u><br>Turb. | Alk. | | Mepth(m) | Temp.(°C) | D.O. | p₩ | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | IGID. | ark. | | jurf. | 16.9 | 8.1 | 7.4 | 125 | 1.2 | 55 | 66 | 10.0 | 5.0 | | | | | | 1 | 16.8 | 8.0 | | | | | 67 | 9.9 | 5.0 | | | | | | 2<br>3 | 16.8<br>16.7 | 8.0<br>8.0 | 7.3 | 124 | 1.0 | _ | 68<br>69 | 9.6<br>9.2 | 5.0<br>5.0 | | | | | | 4 | 16.7 | 8.0 | , | | | | 70 | 8.9 | 5.1 | 7.0 | 120 | 1.6 | 52 | | 5 | 16.8 | 8.0 | | | | | 71 | 8.6 | 5.2 | • | | | | | 6<br>7 | 16.8<br>16.8 | 8.0<br>7.9 | 7.3 | 124 | 1.3 | - | 72<br>73 | 8.3<br>8.1 | 5.4<br>5.5 | | | | | | 8 | 16.8 | 7.9 | | | | | 74 | 7.8 | 5.6 | | | | | | • | 16.8 | 7.9 | 7.3 | 124 | 1.0 | 55 | 75 | 7.6 | 5.6 | 7.0 | 117 | 2.5 | - | | 10 | 16.8 | 7.9 | | | | | 76<br>77 | 7.5<br>7.4 | 5.5<br>5.4 | | | | | | 11<br>12 | 16.8<br>16.8 | 7.9<br>7.9 | 7.3 | 124 | 0.8 | _ | 78 | 7.2 | 5.2 | | | | | | 13 | 16.8 | 7.9 | | | | | 79 | 7.1 | 5.1 | | | | | | 14 | 16.8 | 7.9 | | | | | 80 | 6.9 | 4.9 | 7.0 | 122 | 3.7 | - | | 15<br>16 | 16.8<br>16.8 | 7.9<br>7.9 | 7.3 | 124 | 1.8 | - | <b>8</b> 1<br><b>8</b> 2 | 6.2<br>6.3 | 4.6<br>4.6 | | | | | | 17 | 16.8 | 7.9 | | | | | 83 | 6.7 | 4.2 | | | | | | 18 | 16.8 | 7. <b>9</b> | 7.3 | 124 | 0.8 | 55 | 84 | 6.2 | 4.2 | | | | | | 19 | 16.8 | 7.9 | | | | | <b>8</b> 5<br>86 | 6.1<br>6.1 | 4.0<br>4.0 | 7.0 | 132 | 6.0 | 58 | | 20<br>21 | 16.8<br>16.8 | 7 <b>.9</b><br>7 <b>.8</b> | 7.3 | 124 | 1.0 | _ | 87 | 6.0 | 3.8 | | | | | | 22 | 16.8 | 7.8 | | | | | 88 | 6.0 | 3.8 | | | | | | 23 | 16.8 | 7.8 | | 104 | | | 89 | 6.0 | 3.8 | | | | | | 24<br>25 | 16.8<br>16.8 | 7.8<br>7.8 | 7.3 | 124 | 1.3 | - | 90<br>91 | 6.0<br>6.0 | 3.7<br>3.7 | 7.0 | 136 | 6.8 | 60 | | 26 | 16.8 | 7.8 | | | | | 92 | 5.9 | 3.7 | | | * | | | 27 | 16.3 | 6.9 | 7.3 | 125 | 2.0 | 56 | 93 | - | - | Bott | OM | | | | 28<br>29 | 15.9<br>15.8 | 6.3<br>6.2 | | | | | | | | | | | | | 30 | 15.8 | 6.1 | 7.2 | 129 | 1.0 | _ | | | | | | | | | 31 | 15.6 | 6.2 | | | | | | | | | | | | | 32 | 15.4 | 6.3 | | | | | | | | | | | | | 33<br>34 | 15.2<br>15.0 | 6.4<br>6.3 | | | | | | | | | | | | | <b>3</b> 5 | 14.9 | 6.2 | 7.2 | 119 | 1.4 | - | | | | | | | | | 36 | 14.9 | 6.1 | | | | | | | | | | | | | 37<br>38 | 14.7<br>14.5 | 5.9<br>5.9 | | | | | | | | | | | | | 39 | 14.3 | 6.6 | | | | | | | | | | | | | 40 | 14.2 | 6.8 | 7.2 | 132 | 1.0 | 59 | | | | | | | | | 41<br>42 | 14.1<br>14.0 | 6.9<br>7.3 | | | | | | | | | | | | | 43 | 13.9 | 7.1 | | | | | | | | | | | | | 44 | 13.8 | 7.3 | | | | | | | | | | | | | 45<br>46 | 13.7<br>13.6 | 7.3<br>7.5 | 7.2 | 136 | 1.2 | - | | | | | | | | | 47 | 13.6 | 7.4 | | | | | | | | | | | | | 48 | 13.5 | 7.3 | | | | | | | | | | | | | 49<br>50 | 13.5<br>13.4 | 7.1<br>6.9 | 7.1 | 135 | 1.5 | _ | | | | | | | | | 51 | 13.4 | 6.7 | 7.1 | 133 | 1.5 | | | | | | | | | | 52 | 13.1 | 6.7 | | | | | | | | | | | | | 53 | 12.9 | 6.3 | | | | | | | | | | | | | 54<br>55 | 12.7<br>12.4 | 5.8<br>5.8 | 7.0 | 121 | 1.3 | 52 | | | | | | | | | 56 | 12.1 | 4.9 | | | | | | | | | | | | | 57<br>58 | 11.9 | 5.7 | | | | | | | | | | | | | 58<br>59 | 11.7<br>11.4 | 5.4<br>5.4 | | | | | | | | | | | | | 60 | 11.2 | 5.4 | 7.0 | 120 | 1.2 | - | | | | | | | | | 61 | 11.0 | 5.3 | | | | | | | | | | | | | 62<br>63 | 10.8<br>10.5 | 5.3<br>5.4 | | | | | | | | | | | | | 64 | 10.4 | 5.5 | | | | | | | | | | | | | <b>6</b> 5 | 10.2 | 5.3 | 7.0 | 120 | 1.5 | - | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMMOLOGIC DATA | epth(m) | | D.O. | | E.C. | Turb. | Alk. | m May 16,<br>Depth(m) | Temp.(°C) | D.O. | | chi 2<br>E.C. | | Alk | |-------------|--------------|--------------|-----|------|-------|--------|-----------------------|------------|--------------|-----|---------------|------|-----| | eptn(m/ | reap.( c) | υ.υ. | Pi. | 2.0. | 1410. | - 822. | | | | | | | | | urf. | 13.8 | 10.3 | 7.4 | 69 | 2.2 | 31 | 66 | 6.9 | 10.1 | | | | | | 1 | 13.5 | 10.3 | | | | | 67 | 6.9 | 10.1 | | | | | | 2 | 13.1 | 10.3 | ٠, | | | | 68 | 6.9 | 10.1 | | | | | | 3 | 13.0 | 10.3 | 7.4 | 70 | 1.8 | - | 69<br>70 | 6.9<br>6.9 | 10.1<br>10.1 | 7 2 | 69 | 2.9 | 32 | | 4 | 12.2<br>11.9 | 10.3<br>10.2 | | | | | 71 | 6.9 | 10.1 | 7.2 | 0, | 2.,, | 32 | | 6 | 11.2 | 10.1 | 7.4 | 72 | 2.4 | 32 | 72 | 6.9 | 10.1 | | | | | | 7 | 11.0 | 10.0 | , | , - | 4.4 | 32 | 73 | 6.9 | 10.1 | | | | | | 8 | 10.5 | 9.9 | | | | | 74 | 6.8 | 10.1 | | | | | | 9 | 10.3 | 9.8 | 7.4 | 76 | 3.4 | | 75 | 6.8 | 10.1 | 7.2 | 69 | 2.9 | - | | 10 | 10.3 | 9.8 | | | | | 76 | 6.8 | 10.1 | | | | | | 11 | 10.1 | 9.7 | | | | | 77 | 6.8 | 10.1 | | | | | | 12 | 9.8 | 9.7 | 7.3 | 79 | 2.6 | 36 | 76 | 6.8 | 10.1 | | | | | | 13 | 9.7 | 9.7 | | | | | 79 | 6.8 | 10.1 | | | | | | 14 | 9.6 | 9.7 | | | | | 80 | 6.8 | 10.1 | 7.2 | 73 | 5.2 | 35 | | 15 | 9.5 | 9.7 | 7.2 | 83 | 3.2 | - | 81 | 6.8 | 10.1 | | | | | | 16 | 9.3 | 9.7 | | | | | 82 | 6.8<br>6.8 | 10.1 | | | | | | 17 | 9.0 | 9.7 | 7 2 | 82 | 2 1 | 39 | 83<br>84 | 6.8 | 10.1 | | | | | | 18 | 9.0<br>8.9 | 9.6<br>9.7 | 1.2 | 83 | 3.1 | 37 | <b>8</b> 5 | 6.8 | 10.1 | 7.2 | 78 | 6.0 | _ | | 20 | 8.7 | 9.7 | | | | | 86 | 6.8 | 10.1 | | . • | | | | 21 | 8.7 | 9.7 | 7.2 | 82 | 2.8 | _ | 87 | 6.8 | 10.1 | | | | | | 22 | 8.6 | 9.8 | | | | | 88 | 6.8 | 10.1 | | | | | | 23 | 8.5 | 9.8 | | | | | 89 | 6.8 | 10.1 | | | | | | 24 | 8.3 | 9.8 | 7.2 | 80 | 2.9 | 36 | 90 | 6.8 | 10.1 | 7.2 | 82 | 9.6 | 39 | | 25 | 8.2 | 9.8 | | | | | 91 | 6.8 | 10.1 | | | | | | 26 | 8.1 | 9.8 | | | | | 92 | 6.8 | 10.0 | | | | | | 27 | 8.1 | 9.8 | 7.2 | 81 | 2.9 | - | 93 | 6.8 | 10.0 | | | | | | 28 | 8.0 | 9.8 | | | | | 94 | 6.8 | 10.0 | | 0.7 | 0.6 | | | 29 | 7.9 | 9.9 | 7.0 | 70 | | 2. | 95 | 6.8 | 10.0 | 7.2 | 87 | 8.5 | - | | 30 | 7.9 | 9.9 | 7.2 | 73 | 2.1 | 34 | <del>96</del><br>97 | 6.8<br>6.8 | 9.9<br>9.9 | | | | | | 31<br>32 | 7.9<br>7.8 | 10.0 | | | | | 98 | 6.8 | 9.8 | | | | | | 33 | 7.8 | 10.0 | | | | | 99 | 6.8 | 9.8 | | | | | | 34 | 7.8 | 10.0 | | | | | 100 | - | - | 7.2 | 85 | 8.2 | 41 | | 35 | 7.8 | 10.0 | 7.2 | 74 | 2.1 | _ | | | | | | | | | 36 | 7.8 | 10.0 | | | | | | | | | | | | | 37 | 7.8 | 10.0 | | | | | | | | | | | | | 38 | 7.8 | 10.0 | | | | | | | | | | | | | 39 | 7.7 | 10.0 | | | | | | | | | | | | | 40 | 7.5 | 10.0 | 7.2 | 70 | 2.4 | 34 | | | | | | | | | 41 | 7.3 | 10.0 | | | | | | | | | | | | | 43 | 7.2 | 10.0 | | | | | | | | | | | | | T. | 7.2<br>7.2 | 10.0 | | | | | | | | | | | | | 43 | 7.2 | 10.0 | 7.2 | 70 | 1.6 | _ | | | | | | | | | 46 | 7.2 | 10.0 | , | , , | *** | | | | | | | | | | 47 | 7.1 | 10.0 | | | | | | | | | | | | | 44 | 7.1 | 10.0 | | | | | | | | | | | | | 49 | 7.1 | 10.0 | | | | | | | | | | | | | 50 | 7.1 | 10.0 | 7.2 | 69 | 2.2 | 31 | | | | | | | | | 51 | 7.1 | 10.0 | | | | | | | | | | | | | ' <b>52</b> | 7.1 | 10.0 | | | | | | | | | | | | | 53<br>54 | 7.0 | 10.1 | | | | | | | | | | | | | 54<br>55 | 7.0<br>7.0 | 10.1 | 7 2 | 60 | 2.2 | _ | | | | | | | | | 56 | 7.0<br>7.0 | 10.1 | 7.2 | 40 | 2.2 | _ | | | | | | | | | 57 | 7.0 | 10.1 | | | | | | | | | | | | | 58 | 7.0 | 10.1 | | | | | | | | | | | | | 59 | 7.0 | 10.1 | | | | | | | | | | | | | 60 | 7.0 | 10.1 | 7.2 | 68 | 2.4 | 32 | | | | | | | | | 61 | 7.0 | 10.1 | | | | | | | | | | | | | 62 | 7.0 | 10.1 | | | | | | | | | | | | | 63 | 7.0 | 10.1 | | | | | | | | | | | | | 64<br>65 | 7.0 | 10.1 | | | | | | | | | | | | | | 6.9 | 10.1 | 7.2 | | 1.8 | | | | | | | | | | | Sta. A2L | 048.5 2 | 22.8 | Sacra | mento I | liver Arm | June 21, | 1983 @ 030 | Hrs. | Seco | chi 4. | 8m | | |-------------------------|--------------|------------|------|-------|---------|-----------|--------------------------|----------------|------------|------|--------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | | Burf. | 20.9 | 8.9 | 8.3 | 81 | 1.9 | 36 | 66 | 8.4 | 9.4 | | | | | | 1 | 20.8 | 8.8 | | | | | 67 | 8.4 | 9.4 | | | | | | 2 | 20.8 | 8.6 | - 0 | | | | 68 | 8.4<br>8.4 | 9.4<br>9.4 | | | | | | 3 | 20.7 | 8.6 | 7.8 | 82 | 1.9 | - | 69<br>70 | 8.3 | 9.4 | 7.2 | 68 | 2.1 | 31 | | 4 | 20.5<br>20.6 | 8.6<br>8.5 | | | | | 71 | 8.3 | 9.4 | | | | | | 5<br>6 | 20.6 | 8.5 | 7.6 | 82 | 1.7 | 39 | 72 | 8.3 | 9.4 | | | | | | 7 | 18.8 | 8.5 | | | | | 73 | 8.3 | 9.4 | | | | | | 8 | 17.4 | 8.6 | | | | | 74 | 8.2 | 9.4 | | | | | | 9 | 16.5 | 8.6 | 7.4 | 98 | 2.1 | - | 75 | 8.2 | 9.4 | 7.2 | 69 | 3.3 | - | | 10 | 15.8 | 8.5 | | | | | 76 | 8.2 | 9.4 | | | | | | 11 | 15.3 | 8.5 | | | | | 7 <b>7</b><br>7 <b>8</b> | 8.1<br>8.1 | 9.3<br>9.3 | | | | | | 12 | 14.9 | 8.6 | 7.3 | 100 | 2.1 | 48 | 7 <b>9</b> | 8.1 | 9.3 | | | | | | 13<br>14 | 14.6<br>14.2 | 8.6<br>8.7 | | | | | 80 | 8.0 | 9.3 | 7.2 | 68 | 2.3 | 33 | | 15 | 13.7 | 8.7 | 7.3 | 81 | 2.2 | _ | 81 | 8.0 | 9.3 | | | | | | 16 | 13.4 | 8.9 | | | | | 82 | 8.0 | 9.3 | | | | | | 17 | 13.0 | 9.1 | | | | | 83 | 7.9 | 9.3 | | | | | | 18 | 12.8 | 9.2 | 7.3 | 69 | 2.2 | 33 | 84 | 7.9 | 9.3 | | 40 | 2.3 | | | 19 | 12.4 | 9.3 | | | | | 85<br>86 | 7.9<br>7.9 | 9.3<br>9.2 | 7.2 | 69 | 2.3 | - | | 20 | 12.0 | 9.2 | 7 1 | | 3.6 | _ | 86<br>87 | 7.9 | 9.2 | | | | | | 21 | 11.8<br>11.8 | 9.2<br>9.3 | 7.3 | 66 | 2.4 | - | 88 | 7.9 | 9.2 | | | | | | 22<br>23 | 11.6 | 9.3 | | | | | 89 | 7.9 | 9.2 | | | | | | 24 | 11.3 | 9.3 | 7.3 | 63 | 2.9 | 31 | 90 | 7.8 | 9.1 | 7.2 | 70 | 3.0 | 33 | | 25 | 11.2 | 9.3 | | | | | 91 | 7.8 | 9.1 | | | | | | 26 | 11.1 | 9.2 | | | | | 92 | 7.8 | 9.1 | | | | | | 27 | 10.9 | 9.2 | 7.3 | 65 | 2.8 | - | 93<br>94 | 7.8 | 9.1<br>9.1 | | | | | | 28 | 10.9 | 9.2 | | | | | 95 | 7.8<br>7.8 | 9.0 | 7.2 | 69 | 2.4 | - | | 29<br>30 | 10.8<br>10.6 | 9.2<br>9.2 | 7.3 | 65 | 3.2 | 32 | 96 | 7.8 | 9.0 | | • • • | | | | 31 | 10.5 | 9.2 | ,., | 0,7 | 3.2 | JL | 97 | 7.8 | 8.9 | | | | | | 32 | 10.3 | 9.3 | | | | | 98 | 7.8 | 8.8 | | | | | | 33 | 10.2 | 9.4 | | | | | 99 | 7.8 | 8.6 | | | | | | 34 | 10.1 | 9.3 | | | | | 100 | <del>-</del> . | - | 7.2 | 72 | 3.9 | 35 | | 35 | 10.1 | 9.3 | 7.2 | 68 | 2.6 | - | 105 | _ | - | 7.2 | | 5.4 | 36 | | 36 | 10.0 | 9.3 | | | | | 106.4 | - | - | Bot | LOM. | | | | 37<br>38 | 10.0<br>9.9 | 9.3<br>9.2 | | | | | | | | | | | | | 39 | 9.9 | 9.2 | | | | | | | | | | | | | 40 | 9.8 | 9.2 | 7.2 | 71 | 2.1 | 34 | | | | | | | | | 41 | 9.8 | 9.2 | | | | | | | | | | | | | 42 | 9.6 | 9.2 | | | | | | | | | | | | | 43 | 9.4 | 9.2 | | | | | | | | | | | | | 44<br>45 | 9.3<br>9.2 | 9.2<br>9.2 | 7.2 | 73 | 1.8 | _ | | | | | | | | | 46 | 9.2 | 9.2 | | , 3 | 2.0 | | | | | | | | | | 47 | 9.1 | 9.3 | | | | | | | | | | | | | 48 | 9.1 | 9.4 | | | | | | | | | | | | | 49 | 9.0 | 9.4 | | _, | | | | | | | | | | | 50 | 9.0 | 9.4 | 7.2 | 74 | 2.1 | 35 | | | | | | | | | 51<br>5 <b>2</b> | 8.9<br>8.8 | 9.4<br>9.4 | | | | | | | | | | | | | 53 | 8.8 | 9.4 | | | | | | | | | | | | | 54 | 8.8 | 9.3 | | | | | | | | | | | | | 55 | 8.7 | 9.4 | 7.2 | 72 | 2.2 | - | | | | | | | | | 56 | 8.7 | 9.4 | | | | | | | | | | | | | 57 | 8.8 | 9.4 | | | | | | | | | | | | | 58 | 8.8 | 9.4 | | | | | | | | | | | | | 5 <b>9</b><br><b>60</b> | 8.7<br>8.7 | 9.4<br>9.4 | 7.2 | 69 | 2.0 | 31 | | | | | | | | | 61 | 8.6 | 9.4 | 1.2 | 07 | 2.0 | | | | | | | | | | 62 | 8.6 | 9.4 | | | | | | | | | | | | | 63 | 8.6 | 9.4 | | | | | | | | | | | | | 64 | 8.5 | 9.4 | | | | | | | | | | | | | 65 | 8.5 | 9.4 | 7.2 | 69 | 1.8 | - | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMMOLOGIC BATA | | Sta. A2L 04 | 8.5 22 | 2.8 S | астат | ento Ri | ver Arm | July 27, | 1983 <b>@</b> 0840 | Hrs. | Secc | hi 3. | <u>Cua</u> | | |--------------------------|--------------|--------------------|-------|-------|---------|---------|-----------------|--------------------|------------|------|-------|------------|------------| | epth(m) | | | | E.C. | Turb. | | Depth(m) | Temp.(°C) | D.O. | рĦ | E.C. | Turb. | Alk. | | urf. | 23.3 | 8.0 | 8.0 | 93 | 1.5 | 41 | 66 | 9.0 | 8.6 | | | | | | 1 | 23.2 | 8.0 | 0.0 | | | | 67 | 9.0 | 8.6 | | | | | | 2 | 23.1 | 7.9 | 7.0 | 93 | 1.6 | 40 | 68<br>69 | 9.0<br>9.0 | 8.5<br>8.5 | | | | | | 3<br>4 | 23.1<br>23.1 | 7.9<br>7.9 | 7.9 | 93 | 1.0 | 40 | 70 | 8.9 | 8.5 | 7.1 | 70 | 2.0 | 33 | | 5 | 23.0 | 7.8 | | | | | 71 | 8.9 | 8.5 | | | | | | 6 | 22.2 | 7.7 | 7.8 | 93 | 1.6 | ** | 72<br>73 | 8.8<br>8.8 | 8.5<br>8.5 | | | | | | 7<br>8 | 22.0<br>21.1 | 7.7<br>7.4 | | | | | 74 | 8.7 | 8.5 | | | | | | 9 | 19.3 | 7.1 | 7.4 | 98 | 1.6 | - | 75 | 8.6<br>8.5 | 8.5<br>8.5 | 7.2 | 69 | 2.2 | - | | 10<br>11 | 18.6<br>17.4 | 7.1<br>7.1 | | | | | <b>76</b><br>77 | 8.5<br>8.3 | 8.4 | | | | | | 12 | 16.4 | 7.0 | 7.3 | 108 | 1.6 | 50 | 78 | 8.3 | 8.4 | | | | | | 13 | 16.3 | 7.0 | | | | | 79<br>80 | 8.2<br>8.2 | 8.4<br>8.4 | 7.1 | 69 | 2.2 | 33 | | 14<br>15 | 16.1<br>16.0 | 7.0<br>7.1 | 7.3 | 107 | 1.9 | • | 81 | 8.2 | 8.3 | , | 0, | | | | 16 | 15.8 | 7.2 | | | | | 82 | 8.2 | 8.3 | | | | | | 17 | 15.3 | 7.3 | - ^ | • | • • | | 83<br>84 | 8.1<br>8.1 | 8.3<br>8.3 | | | | | | 18<br>19 | 15.0<br>15.0 | 7.5<br>7. <b>6</b> | 7.2 | 94 | 2.1 | - | 85 | 8.1 | 8.3 | 7.1 | 68 | 2.5 | _ | | 20 | 14.6 | 7.7 | | | | | 86 | 8.1 | 8.2 | | | | | | 21 | 14.2 | 7.8 | 7.2 | 82 | 1.9 | 34 | 87<br>88 | 8.0<br>8.0 | 8.2 | | | | | | 22<br>23 | 14.0<br>13.7 | 7.9<br>8.0 | | | | | 89 | 8.0 | 8.1 | | | | | | 24 | 13.3 | 8.1 | 7.2 | 72 | 1.7 | - | 90 | 8.0 | 8.1 | 7.1 | 70 | 3.0 | 33 | | 25<br>26 | 13.1<br>13.0 | 8.1<br>8.1 | | | | | 91<br>92 | 8.0<br>8.0 | 8.0<br>7.9 | | | | | | 27 | 12.9 | 8.2 | 7.2 | 71 | 1.7 | - | 93 | 8.0 | 7.6 | | | | | | 28 | 12.5 | 8.3 | | | | | 94<br>95 | 8.0<br>7.9 | 7.5<br>7.5 | 7.0 | 73 | 4.7 | <b>3</b> 5 | | 29<br>30 | 12.2<br>12.0 | 8.4<br>8.4 | 7.2 | 72 | 2.1 | 33 | 9.5<br>96 | 7.9 | 7.4 | ,.0 | , , | ٠., | | | 31 | 11.9 | 8.5 | | | | | 96.7 | 7 <b>.9</b> | - | Bott | om | | | | 32 | 11.7 | 8.5 | | | | | | | | | | | | | 33<br>34 | 11.4<br>11.2 | 8.5<br>8.6 | | | | | | | | | | | | | <b>3</b> 5 | 11.1 | 8.6 | 7.2 | 72 | 2.1 | - | | | | | | | | | 36<br>37 | 11.0<br>11.0 | 8.6<br>8.6 | | | | | | | | | | | | | 38 | 11.0 | 8.6 | | | | | | | | | | | | | 39 | 10.9 | 8.6 | 7.0 | 70 | 2 2 | 22 | | | | | | | | | 40<br>41 | 10.9<br>10.7 | 8.6<br>8.7 | 7.2 | 72 | 2.3 | 32 | | | | | | | | | 42 | 10.5 | 8.7 | | | | | | | | | | | | | 43<br>44 | 10.3 | 8.7<br>8.7 | | | | | | | | | | | | | 45 | 10.3<br>10.2 | 8.7 | 7.2 | 72 | 2.5 | _ | | | | | | | | | 46 | 10.1 | 8.7 | | | | | | | | | | | | | 47<br>48 | 10.1<br>10.0 | 8.7<br>8.7 | | | | | | | | | | | | | 49 | 10.0 | 8.7 | | | | | | | | | | | | | 50 | 10.0 | 8.7 | 7.2 | 71 | 2.4 | 33 | | | | | | | | | 51<br>52 | 10.0<br>9.9 | 8.7<br>8.8 | | | | | | | | | | | | | 53 | 9.8 | 8.8 | | | | | | | | | | | | | 54<br>55 | 9.8<br>9.8 | 8.7 | 7.2 | 69 | 2.2 | _ | | | | | | | | | 56 | 9.7 | 8.6 | | 0, | | | | | | | | | | | 57 | 9.6 | 8.6 | | | | | | | | | | | | | 58<br>59 | 9.6<br>9.4 | 8.7<br>8.7 | | | | | | | | | | | | | 60 | 9.2 | 8.6 | 7.2 | 70 | 2.3 | 35 | | | | | | | | | <b>6</b> 1<br><b>6</b> 2 | 9.2 | 8.6 | | | | | | | | | | | | | 63 | 9.1<br>9.1 | 8.6<br>8.6 | | | | | | | | | | | | | 64 | 9.0 | 8.6 | | | | | | | | | | | | | <b>6</b> 5 | 9.0 | 8.6 | 7.2 | 69 | 2.2 | - | | | | | | | | | e | +m. ≜21. 048 | . 5 222 | .8 Sac | rame | nto Riv | er Arm | August 25, | 1983 @ 081 | 5 Hrs. | Seco | :hi 4 | . 8m | | |-------------------------|-------------------------------|--------------------|-------------|------|---------|--------|--------------------------|------------|------------|------|-------|-------|------| | Depth(m) | | | | | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pH I | E.C. | Turb. | Alk. | | | | 8.1 | 7.9 | 95 | 1.0 | 40 | 66 | 9.7 | 8.5 | | | | | | Surf.<br>l | 23.9<br>23.9 | 8.1 | 7.9 | 90 | 1.0 | 40 | 67 | 9.6 | 8.5 | | | | | | 2 | 23.8 | 8.1 | 7.0 | 06 | 0.0 | _ | 68<br>69 | 9.4<br>9.2 | 8.5<br>8.5 | | | | | | 3<br>4 | 23.8<br>23.8 | 8.1<br>8.1 | 7.9 | 96 | 0.8 | - | 70 | 9.2 | 8.5 | 7.1 | 76 | 1.5 | 32 | | 5 | 23.6 | 8.1 | | | | | 71 | 9.0<br>9.0 | 8.4<br>8.3 | | | | | | 6 | 23.6 | 8.1 | 7.8 | 95 | 0.7 | 39 | 7 <b>2</b><br>7 <b>3</b> | 9.0 | 8.4 | | | | | | 7<br><b>8</b> | 2 <b>3.6</b><br>21.8 | 8.0<br>7.0 | | | | | 74 | 8.9 | 8.5 | | 76 | 2.0 | _ | | 9 | 20.6 | 6.5 | 7.3 | 98 | 0.7 | - | 75<br>7 <b>6</b> | 8.8<br>8.7 | 8.5<br>8.5 | 7.1 | 75 | 3.0 | - | | 10 | 20.0<br>18.9 | 6.6<br>6.1 | | | | | 77 | 8.7 | 8.5 | | | | | | 11<br>12 | 16.2 | 6.1 | 7.2 | 105 | 0.9 | 45 | 78 | 8.7 | 8.4 | | | | | | 13 | 17.7 | 6.2 | | | | | 7 <b>9</b><br>80 | 8.7<br>8.5 | 8.3<br>8.3 | 7.1 | 76 | 1.9 | 33 | | 14<br>15 | 17.4<br>17.1 | 6.9<br>6.5 | 7.3 | 120 | 0.9 | _ | 81 | 8.4 | 8.3 | | | | | | 16 | 16.9 | 6.5 | | | | | 82 | 8.4<br>8.3 | 8.2<br>8.2 | | | | | | 17 | 1 <b>6.8</b><br>1 <b>6.</b> 7 | 6.4<br>6.4 | 7.3 | 118 | 1.1 | 52 | 83<br>84 | 8.3 | 8.1 | | | | | | 18<br>19 | 16.7<br>16.5 | 6.4 | 7.3 | 110 | | | 85 | 8.3 | 8.1 | 7.1 | 76 | 2.1 | - | | 20 | 16.2 | 6.4 | | | 1 0 | | 86<br>87 | 8.3<br>8.1 | 8.0<br>7.6 | | | | | | 21<br>22 | 16.0<br>15.8 | 6.5<br>6.8 | 7.3 | 113 | 1.2 | - | 88 | 8.1 | 7.6 | | | | | | 23 | 15.4 | 7.0 | | | | | 89 | 8.1 | 7.3<br>7.2 | 7.0 | 78 | 2.6 | 34 | | 24 | 15.3 | 7.1 | 7.2 | 97 | 1.3 | 43 | 90<br>91 | 8.1<br>8.0 | 7.2 | 7.0 | ,,, | 2.0 | ٠, | | 25<br>26 | 14.9<br>14.7 | 7.4<br>7.5 | | | | | 92 | 8.0 | 7.2 | | | | | | 27 | 14.5 | 7.7 | 7.2 | 86 | 1.4 | - | 93<br>94 | 8.0<br>7.9 | 7.1<br>6.5 | 7.0 | 80 | 3.5 | 34 | | 28<br>29 | 14.2<br>14.0 | 7.7<br>7. <b>9</b> | | | | | 95 | 7.9 | 6.5 | , | ••• | | | | 30 | 13.9 | 8.0 | 7.2 | 79 | 1.3 | 34 | 96 | 7.9 | 6.3 | | | | | | 31 | 13.9 | 8.0 | | | | | 96.2 | - | - | Bott | COM | | | | 32<br>33 | 13.6<br>13.2 | 8.1<br>8.2 | | | | | | | | | | | | | 34 | 13.0 | 8.3 | | | | | | | | | | | | | 35 | 12.8 | 8.4<br>8.4 | 7. <b>2</b> | 74 | 1.5 | - | | | | | | | | | 36<br>37 | 12.4<br>12.3 | 8.5 | | | | | | | | | | | | | 38 | 12.3 | 8.5 | | | | | | | | | | | | | 39<br>40 | 11.9<br>11.7 | 8.6<br>8.6 | 7.2 | 72 | 1.5 | 31 | | | | | | | | | 41 | 11.5 | 8.7 | | | | | | | | | | | | | 42 | 11.5 | 8.7<br>8.7 | | | | | | | | | | | | | 43<br>44 | 11.3<br>11.1 | 8.8 | | | | | | | | | | | | | 45 | 11.0 | 8.8 | 7.2 | 72 | 1.5 | - | | | | | | | | | 46<br>47 | 11.0<br>10.9 | 8. <b>8</b> | | | | | | | | | | | | | 48 | 10.9 | 8.8 | | | | | | | | | | | | | 49 | 10.8 | 8.8<br>8.8 | 7.2 | 73 | 1.7 | 31 | | | | | | | | | 50<br>51 | 10.8<br>10.8 | 8.8 | 7.4 | ,, | | 31 | | | | | | | | | 52 | 10.8 | 8.7 | | | | | | | | | | | | | 53<br>54 | 10.5<br>10.3 | 8.8<br>8.9 | | | | | | | | | | | | | 55 | 10.3 | 8.9 | 7.2 | 72 | 1.9 | - | | | | | | | | | 56 | 10.2 | 8.9 | | | | | | | | | | | | | 57<br>5 <b>8</b> | 10.1<br>10.1 | 8.8<br>8.8 | | | | | | | | | | | | | 59 | 10.0 | 8.8 | | _ | | | | | | | | | | | <b>60</b><br><b>6</b> 1 | 9.9<br>9.9 | 8.7<br>8.7 | 7.2 | 74 | 2.0 | 32 | | | | | | | | | 62 | 9.8 | 8.5 | | | | | | | | | | | | | 63 | 9.8 | 8.5<br>8.5 | | | | | | | | | | | | | 64<br>65 | 9.8<br>9.7 | 8.5 | | 7: | 5 2.0 | - | | | | | | | | | S | sta. A2L 048 | .5 222 | 2.8 Sa | crame | nto Riv | er Arm | October 4, | 1983 @ 083 | O Hrs. | Sec | chi 7 | . 9m | | |--------------------------|--------------|--------------------|--------|-------|---------|--------|-------------------------|--------------|------------|-----|-------|-------|------| | epth(m) | | | | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | | urf. | 19.8 | 8.3 | 7 5 | 104 | 0.5 | 46 | <b>6</b> 6 | 10.3 | 7.4 | | | | | | 1 | 19.8 | 8.3 | ,., | 104 | 0.5 | 70 | 67 | 10.2 | 7.3 | | | | | | 2 | 19.8 | 8.3 | | | | | 68 | 10.1 | 7.3 | | | | | | 3 | 19.8 | 8.3 | 7.5 | 104 | 0.5 | - | 69 | 10.0<br>10.0 | 7.2 | 6.9 | 76 | 1.5 | 31 | | 4 | 19.8 | 8.3 | | | | | 70<br>71 | 10.0 | 7.2<br>7.2 | 0.7 | 70 | 1.5 | 31 | | 5<br><b>6</b> | 19.8<br>19.8 | 8.2<br>8.2 | 7.5 | 104 | 0.5 | _ | 72 | 9.9 | 7.2 | | | | | | 7 | 19.8 | 8.2 | , | 104 | 0.5 | | 73 | 9.8 | 7.3 | | | | | | 8 | 19.8 | 8.2 | | | | | 74 | 9.7 | 7.3 | | | | | | 9 | 19.8 | 8.2 | 7.5 | 104 | 0.6 | 43 | 75 | 9.6 | 7.2 | 6.9 | 76 | 1.7 | - | | 10 | 19.8 | 8.2 | | | | | <b>76</b><br><b>7</b> 7 | 9.4<br>9.4 | 7.2<br>7.1 | | | | | | 11<br>12 | 19.8<br>19.8 | 8.2<br>8.2 | 7.5 | 105 | 0.5 | | 78 | 9.2 | 7.0 | | | | | | 13 | 18.8 | 6.2 | 1.5 | 103 | 0.5 | _ | 79 | 9.1 | 6.9 | | | | | | 14 | 18.1 | 5.4 | | | | | 80 | 9.1 | 6.9 | 6.9 | 77 | 1.9 | 32 | | 15 | 17.7 | 5.4 | 7.1 | 115 | 0.5 | - | 81 | 9.0 | 6.9 | | | | | | 16 | 17.0 | 5.4 | | | | | 82 | 9.0 | 6.9 | | | | | | 17 | 17.0 | 5.4 | | | | | 83 | 8.9 | 6.8 | | | | | | 18 | 16.9 | 5.4 | 7.1 | 117 | 0.5 | 53 | 84<br>85 | 8.8<br>8.6 | 6.7<br>6.5 | 6.9 | 80 | 3.5 | _ | | 19<br>20 | 16.8<br>16.4 | 5.5<br>5. <b>6</b> | | | | | 86 | 8.5 | 6.2 | | | | | | 21 | 16.3 | 5.6 | 7.1 | 116 | 0.6 | _ | 87 | 8.3 | 6.3 | | | | | | 22 | 16.3 | 5.7 | | | | | 88 | 8.3 | 6.0 | | | | | | 23 | 16.2 | 5.7 | | | | | 89 | 8.3 | 6.0 | 6.9 | 82 | 2.4 | 35 | | 24 | 16.1 | 5.9 | 7.1 | 118 | 0.8 | - | 90 | 8.2 | 5.7<br>5.7 | Bot | | | | | 25 | 15.9<br>15.8 | 6.0 | | | | | 90.5 | 8.2 | 5.7 | BUL | LOM | | | | 26<br>27 | 15.8 | 6.1<br>6.2 | 7 1 | 115 | 0.7 | 50 | | | | | | | | | 28 | 15.7 | 6.2 | , | 113 | 0.7 | 50 | | | | | | | | | 29 | 15.6 | 6.4 | | | | | | | | | | | | | 30 | 15.5 | 6.4 | 7.1 | 115 | 0.7 | - | | | | | | | | | 31 | 15.4 | 6.5 | | | | | | | | | | | | | 32 | 15.3 | 6.5 | | | | | | | | | | | | | <b>3</b> 3<br><b>3</b> 4 | 15.1<br>15.0 | 6.6<br>6.7 | | | | | | | | | | | | | 35 | 14.8 | 6.9 | 7.1 | 100 | 1.2 | - | | | | | | | | | 36 | 14.6 | 6.9 | | | | | | | | | | | | | 37 | 14.5 | 7.0 | | | | | | | | | | | | | 38 | 14.4 | 7.1 | | | | | | | | | | | | | 39 | 14.2 | 7.2 | , , | 89 | 1 2 | 37 | | | | | | | | | 40<br>41 | 14.1<br>14.0 | 7.3<br>7.3 | 7.1 | 67 | 1.3 | 37 | | | | | | | | | 42 | 13.8 | 7.4 | | | | | | | | | | | | | 43 | 13.6 | 7.5 | | | | | | | | | | | | | 44 | 13.3 | 7.6 | | _ | | | | | | | | | | | 45 | 13.2 | 7.6 | 7.1 | 81 | 1.3 | - | | | | | | | | | 46<br>47 | 13.1<br>12.9 | 7.7<br>7.6 | | | | | | | | | | | | | 48 | 12.8 | 7.7 | | | | | | | | | | | | | 49 | 12.5 | 7.8 | | | | | | | | | | | | | 50 | 12.4 | 7.8 | 7.0 | 77 | 1.2 | - | | | | | | | | | 51 | 12.2 | 7.7 | | | | | | | | | | | | | 52 | 12.1 | 7.7 | | | | | | | | | | | | | 53<br>54 | 11.9<br>11.9 | 7.6<br>.7.6 | | | | | | | | | | | | | 55 | 11.7 | 7.5 | 6.9 | 75 | 1.1 | 31 | | | | | | | | | 56 | 11.6 | 7.5 | _ | - | | | | | | | | | | | 57 | 11.4 | 7.6 | | | | | | | | | | | | | 58 | 11.2 | 7.6 | | | | | | | | | | | | | 59<br>60 | 11.1 | 7.6 | 6.9 | 75 | 1.3 | _ | | | | | | | | | 61 | 11.0<br>10.9 | 7.6<br>7.5 | 0.9 | 13 | 1., | - | | | | | | | | | 62 | 10.9 | 7.5 | | | | | | | | | | | | | 63 | 10.8 | 7.5 | | | | | | | | | | | | | 64 | 10.6 | 7.4 | | | | | | | | | | | | | <b>6</b> 5 | 10.5 | 7.4 | 6.9 | 74 | 2.1 | - | | | | | | | | | | | | | | | | | | | | | | | | | Sta. A2L 048 | .5 222 | .8 Sa | crame | nto Riv | er Arm | October 27 | , 1983 @ 09 | 30 Hrs | . Sec | ch1_ | 5.4m | | |---------------|--------------|-------------|-------|-------|---------|--------|------------|------------------------|--------|-------|------|-------|------| | pth( | | D.O. | рH | | Turb. | Alk. | Depth(m) | Temp.(°C) | | pH E | .c. | Turb. | Alk. | | rf. | 17.2 | 8.1 | 7.4 | 108 | 0.5 | 47 | <b>6</b> 6 | 11.0 | _ | | | | | | 1 | 17.2 | _ | | | | | <b>6</b> 7 | 10.9 | - | | | | | | 2 | 17.2 | | | | | | 68 | 10.6 | - | | | | | | 3 | 17.2 | 8.1 | 7.4 | 107 | 0.8 | - | 69 | 10.5 | - | | 7.2 | 1.6 | 22 | | 4 | 17.2 | | | | | | 70 | 10.3 | 7.2 | 6.8 | 72 | 1.6 | 32 | | 5<br><b>6</b> | 17.2 | | | | • • | | 71<br>72 | 10.1<br>10.0 | | | | | | | 6 | 17.1 | 8.1 | 7.3 | 108 | 0.9 | - | 73 | 9.9 | _ | | | | | | 7 | 17.1 | - | | | | | 74 | 9.7 | - | | | | | | 8 | 17.1<br>17.1 | 8.1 | 7.3 | 108 | 0.8 | 47 | 75 | 9.4 | 6.9 | 6.9 | 74 | 2.2 | - | | 10 | 17.1 | - | 7.5 | 100 | 0.0 | ٠, | 76 | 9.2 | - | | | | | | 11 | 17.1 | _ | | | | | <b>7</b> 7 | 9.1 | - | | | | | | 12 | 17.1 | 8.1 | 7.3 | 108 | 0.9 | - | 78 | 9.0 | - | | | | | | 13 | 17.1 | _ | | | | | 79 | 9.0 | | | | | 24 | | 14 | 17.1 | - | | | | | 80 | 8.9 | 6.6 | 6.9 | 78 | 3.2 | 34 | | 15 | 17.1 | 8.1 | 7.3 | 115 | 0.6 | - | 81<br>92 | 8.8 | _ | | | | | | 16 | 17.1 | - | | | | | 82<br>83 | 8. <del>6</del><br>8.4 | _ | | | | | | £7 | 17.1 | 5.9 | 7 1 | 111 | 0.6 | 50 | 84 | 8.2 | _ | | | | | | L8<br>L9 | 16.7<br>16.3 | J. 7 | / + 1 | 111 | 0.0 | ,,, | 85 | 8.1 | 5.9 | 6.8 | 81 | 3.4 | - | | 10 | 16.0 | | | | | | 86 | 8.1 | - | | | | | | 21 | 16.0 | 5. <b>3</b> | 7.0 | 110 | 0.8 | - | 87 | 8.0 | - | | | | | | 22 | 15.9 | - | | | | | 88 | 8.0 | - | | | | | | 23 | 15.9 | | | | | | 89 | 8.0 | | | | | 2.5 | | 24 | 15.7 | 5.8 | 7.0 | 109 | 1.0 | - | 90 | 7.9 | 5.7 | 6.8 | 82 | 3.9 | 35 | | 25 | 15.5 | - | | | | | 91 | 7.9 | - | Bott | | | | | 26 | 15.4 | - | | 107 | 1.0 | 60 | 91.2 | - | - | BOLL | Del | | | | 27 | 15.3 | 6.2 | 7.1 | 107 | 1.0 | 50 | | | | | | | | | 28<br>29 | 15.1<br>15.1 | - | | | | | | | | | | | | | 30 | 15.0 | 6.4 | 7.1 | 97 | 1.1 | - | | | | | | | | | 31 | 15.0 | - | | • | | | | | | | | | | | 32 | 14.9 | | | | | | | | | | | | | | 33 | 14.8 | - | | | | | | | | | | | | | 34 | 14.8 | | | | | | | | | | | | | | 35 | 14.6 | 6.7 | 7.0 | 108 | 1.1 | - | | | | | | | | | 36 | 14.4 | - | | | | | | | | | | | | | 37<br>38 | 14.3<br>14.2 | - | | | | | | | | | | | | | 39 | 14.2 | - | | | | | | | | | | | | | 10 | 14.1 | 7.5 | 7.0 | 107 | 1.1 | 47 | | | | | | | | | 61 | 14.1 | - | | | | | | | | | | | | | 62 | 14.0 | - | | | | | | | | | | | | | 13 | 14.0 | - | | | | | | | | | | | | | 44 | 14.0 | | | | , , | | | | | | | | | | 45 | 14.0 | 7.5 | 7.1 | 84 | 1.2 | - | | | | | | | | | 66<br>67 | 13.9<br>13.8 | _ | | | | | | | | | | | | | 46 | 13.6 | - | | | | | | | | | | | | | 19 | 13.5 | _ | | | | | | | | | | | | | 50 | 13.3 | 7.7 | 7.1 | 79 | 1.4 | - | | | | | | | | | 51 | 13.1 | - | | | | | | | | | | | | | 52 | 13.0 | - | | | | | | | | | | | | | 53 | 13.0 | - | | | | | | | | | | | | | 54 | 12.9 | 7 0 | 7.0 | 79 | 1 2 | 34 | | | | | | | | | 55<br>56 | 12.7<br>12.5 | 7.8 | 7.0 | /9 | 1.3 | 34 | | | | | | | | | 57 | 12.3 | - | | | | | | | | | | | | | 58 | 12.3 | _ | | | | | | | | | | | | | 59 | 12.1 | - | | | | | | | | | | | | | 60 | 12.0 | 7.0 | 6.9 | 75 | 1.3 | - | | | | | | | | | 61 | 11.8 | - | | | | | | | | | | | | | 62 | 11.5 | - | | | | | | | | | | | | | 63 | 11.3 | - | | | | | | | | | | | | | 64 | 11.2 | - 0 | | - | | | | | | | | | | | 65 | 11.0 | 7.0 | 6.9 | 73 | 1.5 | - | | | | | | | | | Surf. | 12.8 | | рН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | |----------|--------------|------------|-------|------|-------|------|------------|-----------|------|-------|------|-------|------| | 1<br>2 | | | | | | | | | | | | | | | 1<br>2 | | 9.4 | 7.5 | 103 | 1.2 | 46 | 66 | _ | - | | | | | | 2 | 12.8 | 9.5 | | | | | 67 | - | - | | | | | | | 12.8 | 9.4 | | | | | 68 | - | - | | | | | | 3 | 12.8 | 9.4 | 7.5 | 102 | 1.4 | - | 69 | | - | ٠, | 110 | 2.0 | 50 | | 4 | 1 <b>2.8</b> | 9.4 | | | | | 70 | 11.7 | - | / - 3 | 112 | 3.9 | 30 | | 5 | 12.8 | 9.4 | | | | | 71 | - | _ | | | | | | 6 | 12.8 | 9.4 | 7.5 | 103 | 1.3 | - | 72<br>73 | - | - | | | | | | 7 | 12.8 | 9.4 | | | | | 73<br>74 | - | _ | | | | | | 8 | 12.8 | 9.4 | | | | 1.0 | 74<br>75 | 11.1 | 9.1 | 7.3 | 111 | 4.5 | _ | | 9 | 12.7 | 9.4 | 7.5 | 102 | 1.4 | 46 | 7 <b>6</b> | - | - | ,,, | *** | | | | 10 | 12.8<br>12.8 | 9.4 | | | | | 77 | _ | _ | | | | | | 11 | | 9.4 | 7 6 | 103 | 1.4 | _ | 78 | - | _ | | | | | | 12 | 12.8<br>12.8 | 9.4<br>9.4 | 7.3 | 103 | 1.4 | - | 79 | - | _ | | | | | | 13<br>14 | 12.8 | 9.4 | | | | | 80 | 10.0 | | 7.0 | 86 | 4.0 | - | | 15 | 12.8 | 9.4 | 7 5 | 103 | 1.4 | _ | 81 | - | _ | | | | | | 16 | 12.6 | 9.4 | ,,, | 103 | | | 82 | - | - | | | | | | 17 | 12.8 | 9.4 | | | | | 83 | - | _ | | | | | | 18 | 12.8 | 9.4 | 7.5 | 102 | 1.5 | 46 | 84 | - | - | | | | | | 19 | 12.8 | 9.4 | | | | | 85 | 9.4 | 6.5 | 6.8 | 80 | 4.7 | 36 | | 20 | 12.8 | 9.4 | | | | | 86 | - | - | | | | | | 21 | 12.8 | 9.4 | 7.5 | 103 | 1.4 | - | 87.0 | - | - | Bott | OR | | | | 22 | 12.8 | 9.4 | | | | | | | | | | | | | 23 | 12.8 | 9.4 | | | | | | | | | | | | | 24 | 12.8 | 9.4 | 7.5 | 103 | 1.4 | - | | | | | | | | | 25 | 12.8 | 9.4 | | | | | | | | | | | | | 26 | 12.8 | 9.4 | | | | | | | | | | | | | 27 | 12.8 | 9.4 | 7.4 | 104 | 1.5 | 46 | | | | | | | | | 28 | 12.8 | 9.4 | | | | | | | | | | | | | 29 | 12.8 | 9.4 | | | | | | | | | | | | | 30 | 12.8 | 9.4 | 7.5 | 103 | 1.5 | - | | | | | | | | | 31 | 12.7 | 9.4 | | | | | | | | | | | | | 32 | 12.7 | 9.4 | | | | | | | | | | | | | 33 | 12.7 | 9.4 | | | | | | | | | | | | | 34<br>35 | 12.7<br>12.7 | 9.4<br>9.4 | 7 5 | 103 | 1.3 | _ | | | | | | | | | 36 | 12.7 | 9.4 | / | 103 | 1.3 | _ | | | | | | | | | 37 | 12.7 | 9.4 | | | | | | | | | | | | | 38 | 12.7 | 9.4 | | | | | | | | | | | | | 39 | 12.7 | 9.4 | | | | | | | | | | | | | 40 | 12.7 | 9.4 | 7.5 | 103 | 1.2 | 47 | | | | | | | | | 41 | 12.7 | 9.4 | | | | | | | | | | | | | 42 | 12.7 | 9.4 | | | | | | | | | | | | | 43 | 12.4 | 9.4 | | | | | | | | | | | | | 44 | 12.0 | 9.4 | | | | | | | | | | | | | 45 | 12.1 | 9.3 | 7.5 | 101 | 1.6 | - | | | | | | | | | 46 | 12.1 | 9.4 | | | | | | | | | | | | | 47 | 12.0 | 9.5 | | | | | | | | | | | | | 48 | 11.7 | 9.5 | | | | | | | | | | | | | 49 | 11.2 | 9.6 | _ | | | | | | | | | | | | 50 | 11.1 | 9.5 | 7.5 | 100 | 2.6 | - | | | | | | | | | 51 | - | - | | | | | | | | | | | | | 52 | - | - | | | | | | | | | | | | | 53 | - | - | | | | | | | | | | | | | 54 | 1, | | ., · | 102 | 3.9 | 45 | | | | | | | | | 55<br>56 | 11.1 | 9.4 | /.5 | 103 | 3.9 | 43 | | | | | | | | | | - | _ | | | | | | | | | | | | | 57<br>58 | | - | | | | | | | | | | | | | 58<br>59 | - | _ | | | | | | | | | | | | | 60 | 11.7 | _ | 7.4 | 99 | 4.0 | _ | | | | | | | | | 61 | | _ | / • 4 | , ,, | 4.0 | - | | | | | | | | | 62 | - | _ | | | | | | | | | | | | | 63 | _ | _ | | | | | | | | | | | | | 64 | _ | _ | | | | | | | | | | | | | 65 | 11.7 | 9.1 | 7.3 | 96 | 3.2 | _ | | | | | | | | | 05 | 11.7 | 9.1 | 7.3 | . 70 | 3.2 | - | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L 048 | 8.5 222 | 2.8 S | acrame | nto Rí | ver Arm | January 25 | . 1984 @ 09 | 30 Hrs | . Se | cch1 | 4.6m | | |------------------|--------------------|--------------|-------|--------|--------|---------|------------------|-------------|--------|------|------|------|------| | Depth(m) | | D.O. | | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | | | E.C. | | Alk. | | Surf. | 9.2 | 10.6 | 7.3 | 94 | 0.8 | 45 | 66 | 7.8 | _ | | | | | | 1 | 9.2 | 10.6 | | | | | 67 | 7.7 | | | | | | | 2 | 9.2 | 10.7 | | | | | 68 | 7.7 | - | | | | | | 3<br>4 | 9.2<br>9.2 | 10.7<br>10.7 | 7.3 | 89 | 0.7 | - | 69<br>70 | 7.7<br>7.7 | 11.5 | 7 2 | 109 | 6.7 | 53 | | 5 | 9.2 | 10.7 | | | | | 70<br>71 | 7.7 | 11.5 | 1.2 | 109 | 6.7 | 33 | | 6 | 9.2 | 10.7 | 7.3 | 90 | 0.9 | - | 72 | 7.7 | _ | | | | | | 7 | 9.2 | 10.7 | | | | | 73 | 7.7 | - | | | | | | 8<br>9 | 9.2<br>9.2 | 10.7<br>10.7 | 7 2 | 00 | 0.0 | 4.3 | 74 | 7.7 | | ٦. | | | | | 10 | 9.1 | 10.7 | 7.2 | 90 | 0.9 | 43 | 75<br>7 <b>6</b> | 7.7<br>7.6 | 11.5 | 1.2 | 112 | 7.3 | - | | 11 | 9.1 | 10.7 | | | | | 77 | 7.6 | _ | | | | | | 12 | 9.1 | 10.7 | 7.2 | 90 | 0.8 | - | 78 | 7.6 | - | | | | | | 13 | 9.1 | 10.6 | | | | | 79 | 7.6 | | | | | | | 14<br>15 | 9.1<br>9.1 | 10.6 | 7.2 | 88 | 0.9 | _ | 80<br>81 | 7.6 | 11.7 | 7.2 | 112 | 7.1 | 53 | | 16 | 9.1 | 10.6 | , | 00 | 0.9 | _ | 82 | 7.6<br>7.6 | - | | | | | | 17 | 9.1 | 10.6 | | | | | 83 | 7.6 | - | | | | | | 18 | 9.1 | 10.6 | 7.2 | 90 | 0.9 | 42 | 84 | 7.6 | - | | , | | | | 19<br>20 | 9.0 | 10.6 | | | | | 85 | 7.6 | 11.6 | 7.2 | 109 | 6.6 | _ | | 20<br>21 | 9.0<br>9.0 | 10.6 | 7.2 | 90 | 0.9 | - | 86<br>87 | 7.6<br>7.6 | 11.6 | 7 9 | 100 | | | | 22 | 9.0 | 10.6 | , | ,, | 0., | _ | 88 | 7.6 | 11.0 | 7.2 | 108 | 8.2 | 54 | | 23 | 9.0 | 10.6 | | | | | 89.9 | - | _ | Bott | OB | | | | 24 | 9.0 | 10.6 | 7.2 | 91 | 1.1 | - | | | | | | | | | 25<br>26 | 9.0<br>9.0 | 10.6 | | | | | | | | | | | | | 27 | 9.0 | 10.6 | 7.2 | 91 | 1.0 | 42 | | | | | | | | | 28 | 9.0 | 10.6 | | 7. | 1.0 | 7. | | | | | | | | | 29 | 9.0 | 10.6 | | | | | | | | | | | | | 30 | 9.0 | 10.6 | 7.2 | 91 | 0.8 | - | | | | | | | | | 31<br>32 | 9.0<br>9.0 | 10.6<br>10.6 | | | | | | | | | | | | | 33 | 8.9 | 10.6 | | | | | | | | | | | | | 34 | 8.9 | 10.6 | | | | | | | | | | | | | 35 | 8.8 | 10.6 | 7.2 | 84 | 1.5 | - | | | | | | | | | 36<br>37 | 8.6 | 10.6 | | | | | | | | | | | | | 38 | 8.4<br>8.2 | 10.6<br>10.6 | | | | | | | | | | | | | 39 | 8.2 | 10.7 | | | | | | | | | | | | | 40 | 8.2 | 10.7 | 7.2 | 81 | 1.4 | 37 | | | | | | | | | 41 | 8.2 | 10.7 | | | | | | | | | | | | | 42<br>43 | 8.2<br>8.2 | 10.7<br>10.7 | | | | | | | | | | | | | 44 | 8.0 | 10.7 | | | | | | | | | | | | | 45 | 8.0 | 10.7 | 7.2 | 81 | 1.7 | - | | | | | | | | | 46 | 7.8 | 10.8 | | | | | | | | | | | | | 47<br>48 | 7. <b>6</b><br>7.5 | 10.8<br>10.8 | | | | | | | | | | | | | 49 | 7.5 | 10.9 | | | | | | | | | | | | | 50 | 7.5 | 10.9 | 7.2 | 82 | 1.7 | _ | | | | | | | | | 51 | 8.2 | - | | | | | | | | | | | | | 52<br>53 | 8.1 | - | | | | | | | | | | | | | 53<br>54 | 8.1<br>8.1 | - | | | | | | | | | | | | | 55 | 8.0 | 10.9 | 7.2 | 86 | 1.6 | 40 | | | | | | | | | 56 | 8.0 | _ | . – | | | | | | | | | | | | 57 | 8.0 | - | | | | | | | | | | | | | 58<br>59 | 8.0<br>8.0 | _ | | | | | | | | | | | | | 60 | 8.0 | 10.9 | 7.2 | 89 | 2.1 | _ | | | | | | | | | <b>6</b> 1 | 8.0 | | | 3, | | _ | | | | | | | | | 62 | 7.9 | - | | | | | | | | | | | | | 63<br><b>6</b> 4 | 7.9 | - | | | | | | | | | | | | | <b>6</b> 5 | 7.9<br>7.9 | 11.4 | 7.9 | 108 | 6.1 | _ | | | | | | | | | | 7.7 | 11.4 | | 100 | U.1 | - | | | | | | | | SHASTA RESERVOIR LINGGLOGIC DATA | ; | Sta. A2L 04 | 8.5 22 | 2.8 | Sacram | ento Ri | ver Arm | February | 29, 1984 @ | 0930 H | lrs. | Secch | <u>i – </u> | | |-------------------------|--------------------|---------------------|-----|------------|---------|---------|----------|-------------------|--------------|------|-------|-------------|------| | | Temp.(°C) | | | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | urf. | 8.8 | 11.1 | 7.4 | <b>9</b> 3 | 1.0 | 42 | 66 | 6.8 | 10.7 | | | | | | 1 | 8.8 | 11.1 | | | | | 67 | 6.8 | 10.7 | | | | | | 2 | 8.8 | 11.1 | | | 0.0 | | 68 | 6.8<br>6.8 | 10.7<br>10.7 | | | | | | 3 | 8.8<br>8.8 | $\frac{11.0}{11.0}$ | 7.4 | 94 | 0.9 | - | 69<br>70 | 6.8 | 10.7 | 7.2 | 112 | 5.8 | 52 | | 4<br>5 | 8.8 | 11.0 | | | | | 71 | 6.8 | 10.7 | | | | | | 5<br><b>6</b> | 8.8 | 11.0 | 7.4 | 95 | 1.0 | - | 72 | 6.8 | 10.7 | | | | | | 7 | 8.8 | 11.0 | | | | | 73 | 6.8 | 10.7<br>10.7 | | | | | | 8 | 8.8 | 10.9 | 7.3 | 95 | 1.0 | 43 | 74<br>75 | 6.8<br>6.8 | 10.7 | 7.2 | 114 | 6.1 | 52 | | 9<br>10 | 8.8<br>6. <b>8</b> | 10.9<br>10.8 | 7.3 | 73 | 1.0 | 43 | 76 | 6.7 | 10.7 | | | | | | 11 | 8.8 | 10.8 | | | | | 77 . | 6.7 | 10.7 | | | | | | 12 | 8.8 | 10.8 | 7.3 | 95 | 1.0 | - | 78 | 6.7 | 10.8 | | | | | | 13 | 8.8 | 10.8 | | | | | 79<br>80 | 6.7<br><b>6.6</b> | 10.8 | 7.2 | 115 | 6.3 | 53 | | 14 | 8.7<br>8.7 | 10.8<br>10.8 | 7.3 | 95 | 1.0 | _ | 81 | 6.6 | 10.7 | | *** | 0.5 | 3.5 | | 15<br>1 <b>6</b> | 8.7 | 10.8 | , | ,,, | 1.0 | | 82 | 6.6 | 10.7 | | | | | | 17 | 8.7 | 10.8 | | | | | 83 | 6.6 | 10.7 | | | | | | 18 | 8.7 | 10.8 | 7.3 | 94 | 1.0 | 43 | 84 | 6.5 | 10.7 | 7.0 | 116 | | 55 | | 19 | 8.6 | 10.8 | | | | | 85<br>86 | 6.5<br>6.5 | 10.7<br>10.7 | 7.2 | 115 | .5.8 | 33 | | 20<br>21 | 8.6<br>8.6 | 10.8<br>10.8 | 7.3 | 94 | 1.0 | _ | 87 | 6.5 | 10.7 | | | | | | 22 | 8.5 | 10.7 | ,,, | ,- | 1.0 | | 88 | 6.5 | 10.7 | | | | | | 23 | 8.5 | 10.7 | | | | | 89 | 6.4 | 10.7 | | | | | | 24 | 8.5 | 10.7 | 7.3 | 95 | 1.2 | - | 90 | 6.4 | 10.7 | 7.2 | 116 | 6.0 | 54 | | <b>2</b> 5 | 8.5 | 10.7 | | | | | 91<br>92 | 6.4<br>6.4 | 10.7<br>10.7 | | | | | | 26<br>27 | 8.5<br>8.5 | 10.7<br>10.7 | 7.3 | 94 | 1.0 | 42 | 93 | 6.4 | 10.7 | | | | | | 28 | 8.5 | 10.6 | , | 7- | 1.0 | | 94 | 6.4 | 10.7 | | | | | | 29 | 8.5 | 10.6 | | | | | 95 | 6.4 | 10.7 | | | | | | 30 | 8.4 | 10.6 | 7.3 | 94 | 1.0 | - | 96 | 6.4 | 10.7 | 7.2 | 118 | 6.1 | 55 | | 31 | 8.3 | 10.6 | | | | | 97<br>98 | 6.4<br>6.4 | 10.7<br>10.7 | Bot | t om | | | | 32<br>33 | 8.3<br>8.2 | 10.6<br>10.5 | | | | | 76 | 0.4 | 10.7 | DOC | COM | | | | 34 | 8.1 | 10.5 | | | | | | | | | | | | | <b>3</b> 5 | 8.0 | 10.5 | 7.3 | 93 | 1.4 | - | | | | | | | | | 36 | 7.9 | 10.5 | | | | | | | | | | | | | 37<br>38 | 7. <b>8</b><br>7.7 | 10.5<br>10.6 | | | | | | | | | | | | | 39 | 7.5 | 10.6 | | | | | | | | | | | | | 40 | 7.4 | 10.6 | 7.3 | 92 | 1.8 | 42 | | | | | | | | | 41 | 7.3 | 10.6 | | | | | | | | | | | | | 42 | 7.3 | 10.7 | | | | | | | | | | | | | 43<br>44 | 7.3<br>7.2 | 10.8<br>10.8 | | | | | | | | | | | | | 45 | 7.2 | 10.8 | 7.3 | 90 | 1.6 | _ | | | | | | | | | 46 | 7.2 | 10.8 | | | | | | | | | | | | | 47 | 7.1 | 10.8 | | | | | | | | | | | | | 48<br>49 | 7.1<br>7.1 | 10.8<br>10.8 | | | | | | | | | | | | | 50 | 7.1 | 10.8 | 7.3 | 90 | 2.0 | _ | | | | / | | | | | 51 | 7.0 | 10.8 | | | | | | | | | | | | | 52 | 7.0 | 10.8 | | | | | | | | | | | | | 53<br>54 | 7.0<br>7.0 | 10.8<br>10.8 | | | | | | | | | | | | | 55 | 7.0 | 10.8 | 7.2 | 95 | 2.7 | 42 | | | | | | | | | 56 | 7.0 | 10.8 | | | | | | | | | | | | | 57 | 7.0 | 10.8 | | | | | | | | | | | | | 58<br>50 | 7.0 | 10.8 | | | | | | | | | | | | | 59<br><b>6</b> 0 | 7.0<br>7.0 | 10.8<br>10.8 | 7.9 | 104 | 3.8 | 47 | | | | | | | | | 61 | 7.0 | 10.8 | | | 5.0 | ٠, | | | | | | | | | 62 | 7.0 | 10.8 | | | | | | | | | | | | | 63 | 6.9 | 10.8 | | | | | | | | | | | | | <b>64</b><br><b>6</b> 5 | 6.9 | 10.8<br>10.7 | 7 ? | לחו | 4.1 | 48 | | | | | | | | | 0.5 | 6.9 | 10.7 | 1.2 | 107 | 4.1 | 40 | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L C | 48.5 2 | 22.8 | Sacra | mento I | River Ar | m April 4, | 1984 @ 09 | 30 Hrs | . Sec | chi | 4.7 = | | |------------------|----------------------|--------------|------------|-------|---------|----------|--------------|--------------------|--------------|-------|-----|-------|------------| | Depth(m) | Temp.(°C) | D.O. | | E.C. | Turb. | Alk. | | Temp.(°C) | D.O. | pH E | | Turb. | Alk. | | Surf. | 11.5 | 10.8 | 7.7 | 92 | 1.2 | 41 | 66 | 6.9 | 10.5 | | | | | | 1 | 11.5 | 10.8 | | | | | 67 | 6.9 | 10.5 | | | | | | 2 | 11.3 | 10.7<br>10.7 | 7 7 | 94 | 1 2 | _ | 68<br>69 | 6.8<br>6.8 | 10.5<br>10.5 | | | | | | 3<br>4 | 11.3<br>11.3 | 10.7 | 7.7 | 94 | 1.2 | - | 70 | 6.8 | 10.5 | 7.3 | 113 | 3.7 | 49 | | 5 | 11.2 | 10.7 | | | | | 71 | 6.8 | 10.5 | | | | | | 6 | 11.2 | 10.7 | 7.7 | 97 | 1.6 | - | 72 | 6.8 | 10.5 | | | | | | 7<br>8 | 11.2 | 10.7<br>10.7 | | | | | 73<br>74 | 6. <b>8</b><br>6.8 | 10.5<br>10.5 | | | | | | 9 | 11.0<br>1 <b>9.8</b> | 10.7 | 7.6 | 97 | 1.4 | 41 | 75 | 6.8 | 10.5 | 7.3 | 115 | 3.9 | · <b>_</b> | | 10 | 10.5 | 10.7 | | • | | | 76 | 6.8 | 10.5 | | | | | | 11 | 10.3 | 10.7 | | | | | 77 | 6.8 | 10.5 | | | | | | 12 | 10.2 | 10.6 | 7.5 | 98 | 1.0 | - | 78<br>79 | 6.7<br>6.7 | 10.6<br>10.6 | | | | | | 13<br>14 | 10.0<br>9.8 | 10.6<br>10.5 | | | | | 80 | 6.7 | 10.6 | 7.3 | 118 | 4.5 | - | | 15 | 9.6 | 10.5 | 7.4 | 98 | 1.3 | _ | 81 | 6.7 | 10.6 | | | | | | 16 | 9.5 | 10.5 | | | | | 82 | 6.7 | 10.6 | | | | | | 17 | 9.3 | 10.5 | <b>-</b> , | | | | 83 | 6.7 | 10.6 | | | | | | 18<br>19 | 9.2<br>9.2 | 10.5<br>10.5 | 7.4 | 99 | 1.3 | 42 | 84<br>85 | 6.7<br>6.7 | 10.6<br>10.6 | 7.3 | 120 | 4.4 | 52 | | 20 | 9.2 | 10.5 | | | | | 86 | 6.7 | 10.6 | , | | | | | 21 | 9.1 | 10.5 | 7.4 | 99 | 1.3 | - | 87 | 6.6 | 10.6 | | | | | | 22 | 9.1 | 10.5 | | | | | 88 | 6.6 | 10.6 | | | | | | 23 | 9.0 | 10.5 | ٠, | 00 | | | 89 | 6.6 | 10.6 | 7 2 | 121 | | | | 24<br>25 | 8.9<br>8.8 | 10.4<br>10.4 | 7.4 | 99 | 1.0 | - | 90<br>91 | 6.6<br>6.5 | 10.6 | 7.3 | 121 | 4.6 | - | | 26 | 8.8 | 10.4 | | | | | 92 | 6.5 | 10.5 | | | | | | 27 | 8.7 | 10.4 | 7.4 | 99 | 0.9 | 43 | 93 | 6.6 | 10.5 | | | | | | 28 | 8.7 | 10.4 | | | | | 94 | 6.6 | 10.5 | | | | | | 29 | 8.6 | 10.4 | ٦, | 00 | | | 95<br>96 | 6.5 | 10.4<br>10.4 | 7.3 | 122 | 4.8 | 55 | | 30<br>31 | 8.5<br>8.5 | 10.4<br>10.5 | 7.4 | 98 | 0.9 | - | 97 | 6.5<br>6.5 | 10.4 | | | | | | 32 | 8.4 | 10.5 | | | | | 98 | 6.5 | 10.4 | | | | | | 33 | 8.4 | 10.4 | | | | | <b>98.</b> 5 | - | - | Botto | œ. | | | | 34 | 8.4 | 10.4 | | | | | | | | | | | | | 35<br>36 | 8.4<br>8.4 | 10.4<br>10.5 | 7.4 | 101 | 1.2 | - | | | | | | | | | 37 | 8.3 | 10.5 | | | | | | | | | | | | | 38 | 8.3 | 10.5 | | | | | | | | | | | | | 39 | 8.3 | 10.5 | | | | | | | | | | | | | 40<br>41 | 8.2 | 10.5<br>10.5 | 7.3 | 99 | 1.0 | 43 | | | | | | | | | 42 | 8.2<br>8.2 | 10.5 | | | | | | | | | | | | | 43 | 8.2 | 10.5 | | | | | | | | | | | | | 44 | 8.1 | 10.5 | | | | | | | | | | | | | 45<br>46 | 8.1 | 10.5 | 7.3 | 98 | 1.0 | - | | | | | | | | | 47 | 6.1<br>8.0 | 10.5<br>10.5 | | | | | | | | | | | | | 48 | 8.0 | 10.5 | | | | | | | | | | | | | 49 | 8.0 | 10.5 | | | | | | | | | | | | | 50 | 7.9 | 10.5 | 7.3 | 98 | 1.0 | - | | | | | | | | | 51<br>52 | 7.9<br>7.8 | 10.5<br>10.5 | | | | | | | | | | | | | 53 | 7.8 | 10.5 | | | | | | | | | | | | | 54 | 7.7 | 10.6 | | | | | | | | | | | | | 55 | 7.6 | 10.6 | 7.3 | 96 | 1.4 | 43 | | | | | | | | | 5 <b>6</b><br>57 | 7.5<br>7.5 | 10.6<br>10.6 | | | | | | | | | | | | | 58 | 7.3 | 10.6 | | | | | | | | | | | | | 5 <b>9</b> | 7.3 | 10.6 | | | | | | | | | | | | | 60 | 7.2 | 10.6 | 7.3 | 101 | 2.0 | - | | | | | | | | | 61<br>62 | 7.2 | 10.6 | | | | | | | | | | | | | 62<br>-63 | 7.1<br>7.0 | 10.6 | | | | | | | | | | | | | 64 | 7.0 | 10.5 | | | | | | | | | | | | | 65 | 6.9 | | 7.3 | 108 | 3.0 | - | | | | | | | | | | | | | | | | | | | | | | | SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L | 048.5 | 222.8 | Sacr | amento | River | Arm May 9, | 1984 @ 0930 | Hrs. | Seco | ch1 6. | 8m | | |------------|--------------|--------------|-------|------|--------|-------|------------|-------------|--------------|-------|--------|-------|------| | Mepth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | рH | E.C. | Turb. | Alk. | | iurf. | 14.8 | 10.0 | 7.6 | 96 | 0.5 | 43 | 66 | 7.7 | 10.1 | | | | | | 1 | 14.8 | 10.0 | | ,, | 0.5 | ,, | 67 | 7.6 | 10.0 | | | | | | 2 | 14.8 | 10.0 | | | | | 68 | 7.5 | 10.0 | | | | | | 3 | 14.8 | 10.0 | 7.6 | 96 | 0.7 | - | 69 | 7.5 | 10.0 | | | | | | 4 | 14.6 | 10.0 | | | | | 70 | 7.4 | 10.0 | 7.2 | 99 | 1.5 | 43 | | 5 | 14.2 | 10.1 | 7.6 | 0.0 | | | 71 | 7.3 | 10.0<br>10.0 | | | | | | 6<br>7 | 14.0<br>13.8 | 10.2 | 7.5 | 96 | 0.8 | - | 72<br>73 | 7.2<br>7.1 | 9.9 | | | | | | 8 | 13.6 | 10.0 | | | | | 74 | 7.1 | 9.9 | | | | | | 9 | 13.5 | 10.0 | 7.5 | 96 | 0.8 | 40 | 75 | 7.1 | 9.9 | 7.2 | 101 | 2.0 | - | | 10 | 13.4 | 10.0 | | | | | 76 | 7.0 | 9.9 | | | | | | 11 | 13.2 | 10.0 | | | | | 77 | 7.0 | 9.9 | | | | | | 12 | 13.1 | 10.0 | 7.4 | 96 | 0.6 | - | 78 | 7.0 | 9.9 | | | | | | 13 | 12.9 | 10.0 | | | | | 79 | 6.9 | 9.8 | | 105 | 2.4 | | | 14<br>15 | 12.5<br>12.1 | 10.0<br>9.9 | 7 3 | 99 | 1 2 | | 80<br>81 | 6.9<br>6.9 | 9.8<br>9.8 | / . Z | 105 | 2.4 | - | | 16 | 11.9 | 9.9 | 7.3 | " | 1.2 | - | 82 | 6.9 | 9.8 | | | | | | 17 | 11.7 | 9.9 | | | | | 83 | 6.9 | 9.8 | | | | | | 18 | 11.3 | 9.9 | 7.3 | 102 | 1.4 | 48 | 84 | 6.9 | 9.8 | | | • | | | 19 | 11.2 | 9.9 | | | | | 85 | 6.8 | 9.8 | 7.2 | 109 | 2.5 | 51 | | 20 | 10.5 | 10.0 | | | | | 86 | 6.8 | 9.8 | | | | | | 21 | 10.3 | 10.0 | 7.3 | 103 | 1.4 | - | 87 | 6.8 | 9.8 | | | | | | 22<br>23 | 9.8<br>9.8 | 10.0<br>10.0 | | | | | 88<br>89 | 6.7<br>6.7 | 9.8<br>9.8 | | | | | | 24 | 9.6 | 10.0 | 7.3 | 102 | 1.5 | _ | 90 | 6.7 | 9.8 | 7.2 | 111 | 2.9 | _ | | 25 | 9.5 | 10.0 | | | | | 91 | 6.6 | 9.7 | | | | | | 26 | 9.4 | 10.0 | | | | | 92 | 6.6 | 9.7 | | | | | | 27 | 9.3 | 10.1 | 7.3 | 100 | 1.3 | 44 | 93 | 6.6 | 9.7 | | | | | | 28 | 9.2 | 10.1 | | | | | 94 | 6.6 | 9.6 | 7.2 | 104 | 1.9 | 47 | | 29<br>30 | 9.1<br>9.0 | 10.1<br>10.1 | 7.3 | 98 | 1 1 | | 95<br>95.5 | 6.6 | 9.5 | Bot | + om | | | | 31 | 9.0 | 10.1 | 1.3 | 70 | 1.1 | _ | 93.3 | - | _ | BOL | LOM | | | | 32 | 9.0 | 10.1 | | | | | | | | | | | | | 33 | 8.9 | 10.1 | | | | | | | | | | | | | 34 | 8.9 | 10.1 | | | | | | | | | | | | | <b>3</b> 5 | 8.9 | 10.1 | 7.3 | 95 | 1.1 | - | | | | | | | | | 36<br>37 | 8.8<br>8.8 | 10.1 | | | | | | | | | | | | | 38 | 8.7 | 10.1 | | | | | | | | | | | | | 39 | 8.7 | 10.1 | | | | | | | | | | | | | 40 | 8.6 | 10.1 | 7.3 | 93 | 1.0 | 42 | | | | | | | | | 41 | 8.6 | 10.1 | | | | | | | | | | | | | 42 | 8.6 | 10.1 | | | | | | | | | | | | | 43<br>44 | 8.6 | 10.1<br>10.1 | | | | | | | | | | | | | 45 | 8.6<br>8.5 | 10.1 | 7.3 | 93 | 0.5 | - | | | | | | | | | 46 | - | 10.1 | | | | | | | | | | | | | 47 | 8.4 | 10.1 | | | | | | | | | | | | | 48 | 8.4 | 10.1 | | | | | | | | | | | | | 49<br>50 | 8.3<br>8.3 | 10.2<br>10.2 | 7.3 | 94 | 0.0 | | | | | | | | | | 50<br>51 | 8.2 | 10.2 | 7.3 | 94 | 0.9 | - | | | | | | | | | 52 | 8.2 | 10.2 | | | | | | | | | | | | | 53 | 8.2 | 10.2 | | | | | | | | | | | | | 54 | 8.2 | 10.2 | | | | | | | | | | | | | 55 | 8.1 | | 7.3 | 96 | 1.0 | 42 | | | | | | | | | 56<br>57 | 8.1 | 10.2 | | | | | | | | | | | | | 57<br>58 | 8.1<br>8.1 | 10.2<br>10.2 | | | | | | | | | | | | | 59 | 8.1 | 10.2 | | | | | | | | | | | | | 60 | 8.0 | 10.1 | 7.2 | 95 | 0.9 | _ | | | | | | | | | <b>6</b> 1 | 8.0 | 10.1 | | | | | | | | | | | | | 62 | 8.0 | 10.1 | | | | | | | | | | | | | 63 | 7.9 | 10.1 | | | | | | | | | | | | | 64<br>65 | 7.8<br>7.8 | 10.1<br>10.1 | 7 2 | 96 | 1.1 | _ | | | | | | | | | 3, | / • 0 | 10.1 | 1.4 | 70 | 1.1 | - | | | | | | | | ## SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L | 048.5 | 222.8 | Sacra | mento I | liver Arm | June 8. | 1984 @ 1100 | Hra. | Sec | chi 7 | 1 == | | |-----------------|--------------|------------|-------|------------|---------|-----------|----------|-------------|------------|-----|-------|-------|------| | Depth(m) | Temp.(°C) | | | E.C. | Turb. | Alk. | | | | | | | | | 5554(4) | 10mp1( 0) | <u> </u> | | 2.0. | IUID. | ALK. | Depth(m) | Temp.(°C) | D.O. | PH | E.C. | Turb. | Alk. | | Surf. | 18.1 | 9.1 | 7.4 | 99 | <1.0 | 40 | 66 | 8.1 | 8.8 | | | | | | 1 | 18.1 | 9.1 | | | | | 67 | 8.1 | 8.8 | | | | | | 2<br>3 | 18.1<br>18.0 | 9.1 | 7 / | 101 | | | 68 | 8.1 | 8.8 | | | | | | 4 | 18.0 | 9.0<br>9.0 | 7.4 | 101 | <1.0 | - | 69<br>70 | 8.0 | 8.8 | | | | | | 5 | 18.0 | 9.0 | | | | | 70<br>71 | 8.0<br>8.0 | 8.8<br>8.8 | 7.2 | 97 | 1.3 | 41 | | 6 | 17.9 | 9.0 | 7.4 | 101 | <1.0 | _ | 72 | 7.9 | 8.7 | | | | | | 7 | 17.9 | 9.0 | | | | | 73 | 7.9 | 8.7 | | | | | | 8 | 17.9 | 9.0 | | | | | 74 | 7.9 | 8.7 | | | | | | 9 | 17.9 | 8.9 | 7.4 | 101 | <1.0 | 43 | 75 | 7.9 | 8.6 | 7.2 | 98 | 1.5 | _ | | 10 | 17.8 | 8.9 | | | | | 76 | 7.8 | 8.6 | | | | | | 11<br>12 | 17.7 | 8.8 | ٠, | 110 | | | 77 | 7.8 | 8.6 | | | | | | 13 | 15.1<br>14.7 | 9.0<br>9.0 | 7.4 | 112 | <1.0 | - | 78<br>70 | 7.7 | 8.6 | | | | | | 14 | 14.2 | 9.1 | | | | | 79<br>80 | 7.5<br>7.3 | 8.6 | | 101 | | | | 15 | 13.9 | 8.9 | 7.4 | 109 | 1.0 | _ | 81 | 7.3 | 8.5<br>8.5 | 1.2 | 101 | 1.8 | 43 | | 16 | 13.3 | 8.9 | | , | | | 82 | 7.3 | 8.4 | Bot | t om | | | | 17 | 13.0 | 8.8 | | | | | | | | | | | | | 18 | 12.8 | 8.8 | 7.3 | 109 | 1.1 | 47 | | | | | | | | | 19 | 12.5 | 8.7 | | | | | | | | | | | | | <b>20</b><br>21 | 12.2<br>12.0 | 8.7 | 7 3 | 107 | | | | | | | | | | | 22 | 11.9 | 8.7<br>8.7 | 7.3 | 107 | 1.1 | - | | | | | | | | | 23 | 11.7 | 8.7 | | | | | | | | | | | | | 24 | 11.5 | 8.7 | 7.3 | 108 | 1.3 | _ | | | | | | | | | 25 | 11.1 | 8.6 | | | | | | | | | | | | | 26 | 11.0 | 8.7 | | | | | | | | | | | | | 27 | 10.8 | 8.7 | 7.3 | 108 | 1.3 | 47 | | | | | | | | | 28<br>29 | 10.7 | 8.7 | | | | | | | | | | | | | 30 | 10.5<br>10.2 | 8.7<br>8.7 | 7.2 | 108 | , , | | | | | | | | | | 31 | 10.1 | 8.6 | 7.2 | 108 | 1.5 | - | | | | | | | | | 32 | 10.1 | 8.6 | | | | | | | | | | | | | 33 | 10.0 | 8.6 | | | | | | | | | | | | | 34 | 9.9 | 8.6 | | | | | | | | | | | | | <b>3</b> 5 | 9.6 | 8.6 | 7.2 | 102 | 1.2 | - | | | | | | | | | <b>36</b><br>37 | 9.5 | 8.6 | | | | | | | | | | | | | 38 | 9.3<br>9.2 | 8.7<br>8.7 | | | | | | | | | | | | | 39 | 9.2 | 8.7 | | | | | | | | | | | | | 40 | 9.2 | 8.7 | 7.2 | 101 | 1.0 | 43 | | | | | | | | | 41 | 9.1 | 8.7 | | | | ~~ | | | | | | | | | 62 | 9.1 | 8.7 | | | | | | | | | | | | | 63 | 9.0 | 8.7 | | | | | | | | | | | | | 14<br>15 | 9.0 | 8.7 | | | | | | | | | | | | | 16 | 9.0<br>8.9 | 8.8<br>8.8 | 7.2 | 100 | 1.0 | - | | | | | | | | | 67 | 8.7 | 8.8 | | | | | | | | | | | | | i# | 8.8 | 8.8 | | | | | | | | | | | | | 19 | 8.8 | 8.8 | | | | | | | | | | | | | Ю | 8.7 | 8.8 | 7.2 | 97 | 1.0 | - | | | | | | | | | 51<br>52 | 8.7 | 8.8 | | | | | | | | | | | | | ; <u>3</u> | 8.5<br>8.6 | 8.8<br>8.8 | | | | | | | | | | | | | i4 | 8.5 | 8.8 | | | | | | | | | | | | | i5 | 8.4 | 8.8 | 7.2 | 96 | 1.0 | 41 | | | | | | | | | i <b>6</b> | 8.3 | 8.8 | | . • | | ** | | | | | | | | | 17 | 8.3 | 8.8 | | | | | | | | | | | | | | 8.3 | 8.8 | | | | | | | | | | | | | ₁9<br>₁0 | 8.3 | 8.8 | ~ ~ | | | | | | | | | | | | 1 | 8.2 | 8.8 | 7.2 | <b>9</b> 5 | 1.0 | - | | | | | | | | | 2 | 8.2<br>8.2 | 8.8<br>8.8 | | | | | | | | | | | | | 3 | 8.2 | 8.8 | | | | | | | | | | | | | 4 | 8.1 | 8.8 | | | | | | | | | | | | | 5 | 8.1 | 8.8 | 7.2 | 95 | 1.0 | - | | | | | | | | | | | | | | | | | | | | | | | #### SHASTA RESERVOIR LIMMOLOGIC DATA | Sta. A2L | 048.5 222.8 | Sacramento | River Are | July | y 12, | 1964 @ | 1000 Hrs | . Secchi 3.3m | |----------|-------------|------------|-----------|------|-------|--------|----------|---------------| | | | | | | | | | | | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pli E.C. | Turb. | Alk. | |------------------|--------------|------------|-------|------|-------|------|----------|-----------|------|---------------|-------|------| | Surf. | 25.4 | 7.8 | 7.6 | 101 | 0.6 | 45 | 70 | 9.7 | 9.5 | 7.2 94 | 1.3 | 41 | | 1 | 25.3 | 7.8 | | | | | 75 | 9.4 | 9.5 | 7.2 95 | 1.1 | - | | 2 | 25.3 | 7.9 | | | | | 80 | 9.2 | 9.4 | 7.2 <b>96</b> | 1.5 | - | | 3 | 25.3 | 7.9 | 7.6 | 101 | 0.7 | - | 85 | 8.9 | 8.9 | 7.1 103 | 2.4 | 47 | | 4 | 25.0 | 7.9 | | | | | 87.5 | - | - | Bottom | | | | 5 | 24.8 | 8.0 | | | | | | | | | | | | 5<br>6<br>7<br>8 | 23.2 | 8.2 | 7.5 | 102 | 0.6 | - | | | | | | | | 7 | 22.3 | 8.3 | | | | | | | | | | | | 8 | 21.8 | 8.4 | | | | | | | | | | | | 9 | 20.7 | 8.4 | 7.4 | 102 | 0.7 | 46 | | | | | | | | 10 | 19.1 | 8.3 | | | | | | | | | | | | 11 | 18.8 | 8.3 | | | | | | | | | | | | 12 | 18.3 | 8.1 | 7.4 | 102 | 0.6 | - | | | | | | | | 13 | 18.0 | 7.9 | | | | | | | | | | | | 14 | 17.6 | 7.8 | | | | | | | | | | | | 15 | 17.2 | 7.9 | 7.3 | 110 | 0.8 | - | | | | | | | | 16 | 16.9 | 7.9 | | | | | | | | | | | | 17 | 16.4 | 7.9 | | | | | | | | | | | | 18 | 16.0 | 8.0 | 7.3 | 115 | 1.0 | 55 | | | | | | | | 19 | 15.7 | 8.0 | | | | | | | | | | | | 20 | 15.3 | 8.1 | | | | | | | | | | | | 21 | 15.0 | 8.1 | 7.3 | 115 | 0.9 | - | | | | | | | | 22 | 14.8 | 8.2 | | | | | | | | | | | | 23 | 14.5 | 8.3 | | | | | | | | | | | | 24 | 14.1 | 8.4 | 7.3 | 107 | 0.6 | - | | | | | | | | 25 | 13.8 | 8.5 | | | | | | | | | | | | 26 | 13.4 | 8.6 | | | | | | | | | | | | 27 | 13.2 | 8.6 | 1.3 | 101 | 0.7 | 45 | | | | | | | | 28 | 12.9 | 8.6 | | | | | | | | | | | | 29 | 12.7 | 8.7 | 7.3 | | | | | | | | | | | 30<br>31 | 12.3 | 8.7 | /.3 | 101 | 0.9 | - | | | | | | | | 32 | 11.9<br>11.7 | 8.8<br>8.9 | | | | | | | | | | | | 33 | 11.6 | 8.9 | | | | | | | | | | | | 34 | 11.4 | 8.9 | | | | | | | | | | | | 35 | 11.2 | 9.0 | 7 2 | 107 | 1.4 | | | | | | | | | 36 | 11.1 | 9.0 | 7.3 | 107 | 1.4 | - | | | | | | | | 37 | 11.0 | 9.0 | | | | | | | | | | | | 38 | 10.9 | 9.0 | | | | | | | | | | | | 39 | 10.8 | 9.1 | | | | | | | | | | | | 40 | 10.7 | 9.1 | 7.3 | 108 | 1.4 | 49 | | | | | | | | 41 | 10.6 | 9.1 | ,,, | 100 | 1.4 | 77 | | | | | | | | 42 | 10.5 | 9.1 | | | | | | | | | | | | 43 | 10.5 | 9.1 | | | | | | | | | | | | 44 | 10.3 | 9.1 | | | | | | | | | | | | 45 | 10.1 | 9.1 | 7.3 | 102 | 1.2 | _ | | | | | | | | 46 | 10.0 | 9.1 | . • • | | | | | | | | | | | 47 | 9.9 | 9.1 | | | | | | | | | | | | 48 | 9.9 | 9.1 | | | | | | | | | | | | 49 | 9.8 | 9.1 | | | | | | | | | | | | 50 | 9.8 | 9.1 | 7.2 | 100 | 1.5 | - | | | | | | | | 55 | 10.6 | 9.4 | 7.2 | | 0.6 | 48 | | | | | | | | 60 | 10.3 | 9.5 | 7.2 | | 1.0 | ~ | | | | | | | | 65 | 9.7 | 9.5 | 7.2 | 94 | 0.6 | | | | | | | | | | | | | | | | | | | | | | ## SHASTA RESERVOIR LIMNOLOGIC DATA | Sta. A2L 048.5 222.8 Sacramento River Ar | | | | | | | August 15, | 1984 @ 100 | O Hrs. | Sec | ch1 7 | . 5m | | |------------------------------------------|--------------|-------------|-----|------|-------|------|------------|----------------------------|------------|------|-------|-------|------| | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | Surf. | 25.8 | 7 <b>.9</b> | 7.5 | 107 | 1.3 | 46 | 66 | 9.1 | 4.3 | | | | | | 1 | <b>25.6</b> | 8.0 | | | | | 67 | 9.0 | 4.3 | | | | | | 2 | 25.4 | 8.05 | | | | | 68 | 9.0 | 4.4 | | | | | | 3 | 25.3 | 8.1 | 7.5 | 107 | 0.5 | - | 69 | 9.0 | 4.4 | | | | | | 4 | 25.3 | 8.15 | | | | | 70 | 8.8 | 4.4 | 7.1 | 93 | 1.1 | - | | 5<br>6 | 25.2<br>25.2 | 8.1 | 7 6 | 107 | | | 71<br>72 | 8.7 | 4.5 | | | | | | 7 | 25.2 | 8.1<br>8.05 | /.5 | 107 | 0.5 | - | 73 | 8.7<br>8.5 | 4.5<br>4.5 | | | | | | 8 | 24.8 | 6.1 | | | | | 74 | 8.5 | 4.5 | | | | | | ģ | 22.5 | 4.6 | 7.3 | 109 | 0.6 | 49 | 75 | 8.4 | 4.5 | 7.0 | 94 | 1.1 | _ | | 10 | 21.5 | 4.4 | | | | | 76 | 8.3 | 4.6 | | | | | | 11 | 20.5 | 4.4 | | | | | 77 | 8.2 | 4.5 | | | | | | 12 | 20.0 | 4.3 | 7.3 | 122 | 0.7 | - | 78 | 8.1 | 4.5 | | | | | | - 13 | 19.5 | 4.15 | | | | | 79 | 8.0 | 4.5 | | | | | | 14<br>15 | 19.3 | 4.0 | 7 2 | 120 | Λ. | 61 | 80 | 7.9 | 4.4 | 7.0 | 96 | 2.0 | 43 | | 16 | 19.0<br>18.7 | 3.9<br>3.85 | /.3 | 128 | 0.5 | 61 | 81<br>82 | 7 <b>.9</b><br>7 <b>.8</b> | 4.4 | | | | | | 17 | 18.5 | 3.8 | | | | | 83 | 7.8 | 4.2 | | | | | | 18 | 18.1 | 3.8 | 7.3 | 123 | 0.6 | - | 84 | 7.6 | 3.9 | | | | | | 19 | 17.9 | 3.8 | | | | | 85 | 7.5 | 3.8 | 6.9 | 103 | 3.0 | - | | 20 | 17.6 | 3.75 | | | | | 86 | 7.4 | 3.8 | | | | | | 21 | 17.3 | 3.75 | 7.2 | 118 | 0.6 | - | 87 | 7.2 | 3.7 | | | | | | 22 | 17.1 | 3.75 | | | | | 88 | 7.2 | 3.7 | | | | | | 23<br>24 | 16.8<br>16.2 | 3.7<br>3.75 | 7 2 | 113 | 0.8 | 61 | 89<br>90 | 7.1<br>7.0 | 3.7 | ۷ ۵ | | 3 6 | | | 25 | 15.9 | 3.8 | 1.2 | 113 | 0.0 | 51 | 91 | 7.0 | 3.7<br>3.7 | 0.0 | 111 | 3.6 | _ | | 26 | 15.8 | 3.8 | | | | | 92 | 7.0 | 3.7 | 6.8 | 111 | 4.0 | 52 | | 27 | 15.2 | 3.85 | 7.2 | 113 | 0.7 | _ | 93 | 7.0 | 3.7 | | | ,,, | - | | 28 | 15.0 | 3.9 | | | | | 94 | 7.0 | 3.65 | Bott | OM | | | | 29 | 14.9 | 3.9 | | | | | | | | | | | | | 30 | 14.5 | 4.0 | 7.2 | 111 | 0.7 | - | | | | | | | | | 31<br>32 | 14.2<br>13.9 | 4.0<br>4.05 | | | | | | | | | | | | | 33 | 13.7 | 4.1 | | | | | | | | | | | | | 34 | 13.5 | 4.1 | | | | | | | | | | | | | 35 | 13.2 | 4.1 | 7.2 | 101 | 0.7 | 45 | | | | | | | | | 36 | 12.9 | 4.1 | | | | | | | | | | | | | 37 | 12.7 | 4.1 | | | | | | | | | | | | | 38<br>39 | 12.5 | 4.1 | | | | | | | | | | | | | 40 | 12.2<br>12.0 | 4.1<br>4.2 | 7.2 | 99 | 1.1 | | | | | | | | | | 41 | 11.8 | 4.2 | 7.2 | 77 | 1.1 | _ | | | | | | | | | 42 | 11.8 | 4.2 | | | | | | | | | | | | | 43 | 11.5 | 4.2 | | | | | | | | | | | | | 44 | 11.5 | 4.2 | | | | | | | | | | | | | 45<br>45 | 11.3 | 4.2 | 7.2 | 98 | 1.0 | - | | | | | | | | | <b>45</b><br>47 | 11.2<br>11.0 | 4.2 | | | | | | | | | | | | | 48 | 10.8 | 4.2 | | | | | | | | | | | | | 49 | 10.8 | 4.2 | | | | | | | | | | | | | 50 | 10.7 | 4.2 | 7.2 | 96 | 1.0 | 43 | | | | | | | | | 51 | 10.7 | 4.2 | | | | | | | | | | | | | 52<br>53 | 10.5 | 4.2 | | | | | | | | | | | | | 54 | 10.3 | 4.2<br>4.2 | | | | | | | | | | | | | 55 | 10.2<br>10.2 | 4.2 | 7.1 | 96 | 0.8 | _ | | | | | | | | | 56 | 10.1 | 4.3 | , | 70 | V.0 | _ | | | | | | | | | 57 | 10.0 | 4.2 | | | | | | | | | | | | | 58 | 9.9 | 4.2 | | | | | - | | | | | | | | 59 | 9.8 | 4.3 | | | | | | | | | | | | | 60 | 9.7 | 4.3 | 7.1 | 96 | 1.3 | - | | | | | | | | | 61<br>62 | 9.6 | 4.3 | | | | | | | | | | | | | 62<br>63 | 9.5<br>9.4 | 4.3<br>4.3 | | | | | | | | | | | | | 64 | 9.2 | 4.3 | | | | | | | | | | | | | 65 | 9.1 | 4.3 | 7.1 | 94 | 1.0 | 41 | | | | | | | | ## SHASTA RESERVOIR LIMMOLOGIC DATA | | | | | | .co kirt | ALM | pehremper v | <b>0, 1984</b> @ 1 | 100 H | IB. | 26ccu1 | 6.0m | | |----------|--------------|------------|-----|------|-------------|------|-----------------|--------------------|------------|------|--------|-------|------| | pth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | D.O. | pН | E.C. | Turb. | Alk. | | rf. | 23.9 | 8.1 | 7.6 | 116 | 0.5 | 48 | <b>6</b> 6 | 9.4 | 5.3 | | | | | | 1 | 23.8 | 8.0 | | | | | <b>6</b> 7 | 9.3 | 5.3 | | | | | | 2 | 23.6 | 8.0 | | | | | 68 | 9.1 | 5.3 | | | | | | 3<br>4 | 23.3<br>23.2 | 7.9 | 7.6 | 116 | 0.5 | - | 69 | 9.0 | 5.4 | | | | | | 5 | 23.2 | 7.9<br>7.8 | | | | | 70 | 9.0 | 5.4 | 7.0 | 102 | 1.1 | 44 | | 6 | 23.1 | 7.8 | 7.6 | 117 | 0.4 | | 71 | 8.9 | 5.4 | | | | | | 7 | 23.1 | 7.8 | 7.0 | 117 | 0.4 | - | 72<br>73 | 8.8 | 5.4 | | | | | | 8 | 23.1 | 7.7 | | | | | 73<br>74 | 8.7<br>8.6 | 5.4 | | | | | | 9 | 23.1 | 7.7 | 7.6 | 117 | 0.6 | 49 | 75 | 8.5 | 5.4<br>5.5 | 7.0 | 102 | 1 0 | | | 0 | 22.4 | 7.2 | | | | | 76 | 6.3 | 5.4 | 7.0 | 102 | 1.0 | _ | | 1 | 20.8 | 5.6 | | | | | 77 | 8.2 | 5.3 | | | | | | 2 | 20.2 | 5.7 | 7.2 | 126 | 0.4 | _ | 78 | 8.1 | 5.3 | | | | | | 3 | 19.7 | 5.4 | | | | | 79 | 8.0 | 5.2 | | | | | | 4 | 19.1 | 5.3 | | | | | 80 | 8.0 | 5.1 | 7.0 | 106 | 1.8 | 44 | | 5<br>6 | 18.9 | .5.3 | 7.2 | 133 | 0.5 | - | 81 | 7.9 | 4.9 | | | | | | 7 | 18.8 | 5.3 | | | | | 82 | 7.8 | 4.6 | | | | | | ,<br>B | 18.5<br>18.3 | 5.4 | 7 4 | 125 | ۸. | | 83 | 7.8 | 4.5 | | | | | | • | 18.2 | 5.5<br>5.6 | 7.2 | 135 | 0.5 | 60 | 84 | 7.7 | 4.2 | | | | | | Ď | 18.0 | 5.7 | | | | | 85<br>84 | 7.5 | 4.0 | 6.9 | 114 | 3.3 | - | | l | 18.0 | 5.7 | 7.2 | 135 | 0.5 | _ | <b>86</b><br>87 | 7.3<br>7.1 | 4.0 | | | | | | 2 | 17.9 | 5.8 | | 133 | <b>V.</b> 3 | | 86 | 7.0 | 4.0 | | | | | | 3 | 17.7 | 5.8 | | | | | 89 | 7.0 | 3.9 | | | | | | 4 | 17.4 | 5.9 | 7.2 | 135 | 0.5 | - | 90 | 7.0 | 3.9 | 6.9 | 119 | 4.7 | 47 | | 5 | 17.1 | 5.9 | | | | | 91 | 7.0 | 3.8 | 0., | 117 | 4.7 | 47 | | 5 | 16.9 | 6.0 | | | | | 92 | 7.0 | 3.8 | | | | | | 7 | 16.8 | 6.0 | 7.2 | 136 | 0.7 | 55 | <b>92.</b> 5 | _ | _ | Bott | om | | | | }<br>` | 16.5 | 6.1 | | | | | | | | | | | | | ,<br>) | 16.3 | 6.1 | 7.0 | | | | | | | | | | | | <b>,</b> | 16.0 | 6.1 | 7.2 | 120 | 0.7 | - | | | | | | | | | ·<br>• | 15.8<br>15.4 | 6.3 | | | | | | | | | | | | | 1 | 15.3 | 6.4<br>6.4 | | | | | | | | | | | | | | 15.1 | 6.4 | | | | | | | | | | | | | , | 14.8 | 6.5 | 7.2 | 117 | 0.9 | _ | | | | | | | | | ) | 14.3 | 6.6 | ••• | | 0.7 | _ | | | | | | | | | ı | 14.0 | 6.7 | | | | | | | | | | | | | ŀ | 13.8 | 6.8 | | | | | | | | | | | | | l | <b>13.</b> 7 | 6.7 | | | | | | | | | | | | | I | <b>13.</b> 7 | 6.8 | 7.2 | 110 | 0.8 | 48 | | | | | | | | | | 13.6 | 6.8 | | | | | | | | | | | | | | 13.2 | 6.7 | | | | | | | | | | | | | | 12.9 | 6.8 | | | | | | | | | | | | | | 12.7<br>12.5 | 6.8 | | 107 | | | | | | | | | | | | 12.3 | 6.8<br>6.7 | 7.2 | 107 | 0.9 | - | | | | | | | | | | 12.1 | 6.7 | | | | | | | | | | | | | | 12.0 | 6.7 | | | | | | | | | | | | | | 11.9 | 6.6 | | | | | | | | | | | | | | 11.7 | 6.6 | 7.2 | 105 | 0.9 | _ | | | | | | | | | | 11.6 | 6.6 | | | | | | | | | | | | | | 11.5 | 6.5 | | | | | | | | | | | | | | 11.3 | 6.3 | | | | | | | | | | | | | | 11.1 | 6.3 | | | | | | | | | | | | | | 10.9 | 6.2 | 7.1 | 104 | 0.9 | 42 | | | | | | | | | | 10.8 | 6.1 | | | | | | | | | | | | | | 10.7 | 6.0 | | | | | | | | | | | | | | 10.6 | 5.8 | | | | | | | | | | | | | | 10.4<br>10.2 | 5.8 | 7 1 | 102 | 0.7 | | | | | | | | | | | 10.2 | 5.7<br>5.5 | 7.1 | 103 | 0.7 | _ | | | | | | | | | | 10.1 | 5.3 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 9.9 | 5.3 | | | | | | | | | | | | | | 9.9<br>9.8 | 5.3<br>5.3 | | | | | | | | | | | | ## SHASTA RESERVOIR LIMNOLOGIC DATA | | Sta. A2L 048 | 3.5 222 | 2.8 S | acrame | nto Riv | er Arm | October 18 | . 1984 @ 08 | 30 Hr | <b>s.</b> S∢ | ecchi | 5.2m | • | |------------------|---------------|----------------------------|-------|--------|---------|--------|-----------------------------|----------------------------|------------|--------------|------------|------------|----------| | Depth(m | | D.O. | | E.C. | Turb. | Alk. | Depth(m) | Temp.(°C) | | | E.C. | turb. | Alk. | | Surf. | 16.5 | 8.1 | 7.3 | 127 | 0.7 | 58 | 66 | 10.0 | 4.5 | | | | | | 1 | 16.5 | 8.1 | | | | | 67 | 9.9 | 4.4 | | | | | | 2 | 16.5<br>16.5 | 8.2<br>8.2 | 7.3 | 125 | 1.0 | _ | 68<br>69 | 9.6<br>9.3 | 4.5 | | | | | | 4 | 16.5 | 8.2 | | | | | 70 | 9.2 | 4.7 | 6.9 | 109 | 1.1 | 44 | | 5<br><b>6</b> | 16.5<br>16.5 | 8.2<br>8.2 | 7 3 | 126 | 0.9 | - | 71<br>72 | 9.0<br>8.9 | 4.8<br>4.8 | | | | | | 7 | 1 <b>6.</b> 5 | 8.1 | , | 120 | 0.9 | _ | 73 | 8.6 | 4.8 | | | | | | 8<br>9 | 16.5<br>16.5 | 8.0 | | 100 | | | 74<br>75 | 8.4 | 4.9 | | . 100 | | | | 10 | 16.5<br>16.5 | 8.0<br>8.0 | 7.3 | 125 | 0.9 | 56 | 75<br>7 <b>6</b> | 8.2<br>8.0 | 4.9<br>5.1 | 6.9 | 109 | 1.3 | - | | 11 | 16.5 | 7.9 | | | | | 77 | 8.0 | 5.1 | | | | | | 12<br>13 | 16.5<br>16.5 | 7.9<br>7.9 | 7.3 | 124 | 0.7 | - | 78<br>79 | 7 <b>.9</b><br>7 <b>.8</b> | 5.2<br>5.2 | | | | | | 14 | 16.5 | 7.9 | | | | | 80 | 7.6 | 5.2 | 6.9 | 112 | 2.0 | | | 15<br>1 <b>6</b> | 16.5<br>16.5 | 7 <b>.9</b><br>7 <b>.8</b> | 7.3 | 126 | 0.8 | - | 81<br>82 | 7.4 | 5.0 | | | | | | 17 | 16.5 | 7.8 | | | | | 83 | 7.3<br>7.2 | 4.8 | | | | | | 18 | 16.5 | 7.7 | 7.3 | 125 | 0.8 | 57 | 84 | 7.0 | 4.5 | | | | | | 19<br>20 | 16.5<br>16.5 | 7.7<br>7.7 | | | | | 85<br>86 | 6.9<br>6.8 | 4.3<br>4.1 | 6.8<br><6.8 | 119<br>133 | 3.2<br>1.0 | 48<br>56 | | 21 | 16.5 | 7.6 | 7.3 | 124 | 0.6 | - | 87 | 6.7 | 4.0 | | | | ,, | | 22<br>23 | 16.5<br>16.5 | 7 <b>.6</b><br>7 <b>.6</b> | | | | | 8 <b>8</b><br>8 <b>8.</b> 5 | 6.6 | 3.8 | Bass | | | | | 24 | 16.5 | 7.3 | 7.3 | 124 | 0.6 | - | 00.5 | _ | _ | Bott | .OM | | | | 25 | 16.4 | 7.2 | | | | | | | | | | | | | 26<br>27 | 16.4<br>16.4 | 7.2<br>6.7 | 7.3 | 123 | 1.0 | 57 | | | | | | | | | 28 | 16.1 | 5.7 | | | | | | | | | | | | | 29<br>30 | 15.9<br>15.7 | 5.7<br>5.9 | 7 2 | 124 | 0.8 | _ | | | | | | | | | 31 | 15.5 | 5 <b>.9</b> | / • 2 | 124 | 0.0 | - | | | | | | | | | 32<br>33 | 15.4<br>15.2 | 6.0 | | | | | | | | | | | | | 34 | 15.1 | 5 <b>.8</b><br>5 <b>.9</b> | | | | | | | | | | | | | 35 | 15.0 | 5.9 | 7.1 | 122 | 1.0 | _ | | | | | | | | | 36<br>37 | 14.9<br>14.8 | 5.9<br>5.9 | | | | | | | | | | | | | 38 | 14.7 | 6.0 | | | | | | | | | | | | | 39<br>40 | 14.5<br>14.3 | 6.0<br>6.1 | 7.1 | 121 | 1.0 | 55 | | | | | | | | | 41 | 14.2 | 6.2 | | | 2.0 | ,, | | | | | | | | | 42<br>43 | 14.0<br>13.9 | 6.3<br>6.4 | | | | | | | | | | | | | 44 | 13.9 | 6.4 | | | | | | | | | | | | | 45<br>46 | 13.8 | 6.3 | 7.1 | 120 | 1.0 | - | | | | | | | | | 47 | 13.6<br>13.5 | 6.3<br>6.3 | | | | | | | | | | | | | 48 | 13.3 | 6.3 | | | | | | | | | | | | | 49<br>50 | 13.2<br>13.1 | 6.3<br>6.2 | 7.0 | 112 | 1.0 | _ | | | | | | | | | 51 | 12.9 | 6.1 | | | | | | | | | | | | | 52<br>53 | 12.7<br>12.5 | 5.9<br>5.9 | | | | | | | | | | | | | 54 | 12.3 | 5.6 | | | | | | | | | | | | | 55<br>5 <b>6</b> | 12.2 | 5.5 | 7.0 | 102 | 1.0 | 50 | | | | | | | | | 5 <b>7</b> | 12.1<br>11.9 | 5. <b>6</b><br>5.7 | | | | | | | | | | | | | 58 | 11.6 | 5.6 | | | | | | | | | | | | | 59<br>60 | 11.4<br>11.3 | 5.4<br>5.2 | 7.0 | 113 | 1.1 | _ | | | | | | | | | 61 | 11.1 | 5.0 | | | ••• | | | | | | | | | | 62<br>63 | 10.9<br>10.7 | 4.9<br>4.9 | | | | | | | | | | | | | 64 | 10.5 | 4.7 | | | | | | | | | | | | | <b>6</b> 5 | 10.2 | 4.6 | 7.0 | 109 | 1.0 | - | | | | | | | | ## ATTACHMENT E CHEMICAL ANALYSES FROM SHASTA RESERVOIR AND THE SACRAMENTO RIVER | DATE<br>TIME | SAMP<br>LAB | G.H.<br>Q<br>* * * * | TEMP<br>DEPTH<br>+ + + + | F EC<br>F PH<br>* * * * | TURB<br>F CO2<br>+ + + + | FIELD<br>P ALK<br>T ALK | D NO2 +<br>NO3 | D NO2<br>D NO3<br>+ + + + | CONSTITU<br>D DRG N<br>T DRG N<br>+ + + + | ENTS IN MI<br>D NH3<br>T NH3<br>+ + + + | T NH3 +<br>DRG N | PER LITER<br>DIS<br>A.H.PO4<br>* * * * * | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P REY<br>+ + + + + + | |---------------------------|--------------|----------------------|--------------------------|-------------------------|--------------------------|-------------------------|----------------|---------------------------|-------------------------------------------|-----------------------------------------|------------------|------------------------------------------|--------------------|---------------------------------------| | 04/28/83<br>1000 | | AD 210 | 0.00<br>11.10 | SAC<br>80<br>7+2 | RAMENTO R | A SACTO | 0.07 | | A | 05A2<br>0.02 | 0.1 | | 0.01 | 0.06 | | 07/14/83<br>1040 | 5050<br>5050 | | 18.30 | 96<br>7•2 | 7AF | | 0.08 | | | 0.03 | 0.9 | | 0.00 | 0.05 | | 08/16/63<br>1000 | 5050<br>5050 | | 20.60 | 100<br>6.1 | 7AF | | 0.03 | | | 0.02 | 0.3 | ** | 0.02 | 0.09 | | 09/20/83<br>1100 | 5050<br>5050 | | 18.90 | 98<br>7•3 | 12AF | | 0.07 | ' | | 0.00 | 0.2 | ** | 0.01 | 0.05 | | 10/19/83<br>1100 | 5050<br>5050 | | 16.40 | 79<br>7.2 | 3AF | | 0108 | | | 0.00 | 0.2 | | 0.00 | 0.04 | | 11/29/83<br>1100 | 5050<br>5050 | | 11.10 | 58<br>7•6 | 17AF | | 0.07 | <br> | | 0.01 | 0.1 | | 0.00 | 0.03 | | 01/10/84<br>1100 | 5050<br>5050 | | 9.00 | 85<br>7•1 | 13AF | | 0.15 | | | 0.02 | 0.2 | | 0.01 | 0.05 | | 02/22/84<br>1110 | 5050<br>5050 | | 49.0F | 75<br>7•1 | 7AF | | 0.10 | | | 0.01 | 0.2 | ** | 0.01 | 0.03 | | 03/27/84<br>1325 | 5050<br>5050 | | 54.0F | 100<br>7.3 | | | 0.08 | | | 0.00 | 0.1 | | 0.00 | 0.04 | | 05/01/84<br>1010 | 5050<br>5050 | | 56.0F | 112<br>7•4 | | | 0.10 | | | 0.02 | 0.2 | | 0.02 | 0.06 | | | | AO 211 | 2.00 | SAC | RAMENTO F | R A ELKHOI | RN FERRY | | , | 10280 | | | | | | 06/16/83<br>1045 | 5050<br>5050 | | 18.00 | 110<br>7.1 | | | 0.10 | | | 0.01 | 0.3 | | 0.02 | 0.06 | | 08/16/83<br>1045 | 5050<br>5050 | | 21.70 | 150<br>7.4 | 13AF | • | 0.08 | | | 0.01 | 0.1 | | 0.01 | 0.06 | | 09/20/ <b>6</b> 3<br>1200 | 5050<br>5050 | | 18.90 | 175<br>7.4 | | | 0.12 | | | 0.01 | 0.4 | | 0.01 | 0.06 | | | | | | | | FIELD | | CONSTITU | ENTS IN MI | LLIGRAMS | PER LITER | | | |--------------------|-----------------------|----------|---------------|--------------|---------------|----------------------------|----------------|--------------------|----------------|-----------|----------------|--------------------|------------------------| | TIME | LAB | G.H. | TEMP<br>DEPTH | F EC<br>F PH | TURB<br>F CD2 | P ALK D NO2 +<br>T ALK NO3 | D NO2<br>D NO3 | D ORG N<br>T ORG N | D NH3<br>T NH3 | | DIS<br>A.H.P04 | 0 0-P04<br>T 0-P04 | D TOT P<br>T TOT P REM | | * * * * * | * • | | | | • • • • | • • • • • • • • | | | | • • • • • | * * * * * | | * * * * * * * | | | | AO 2230. | 02 | SACE | RAMENTO ! | R AB COLUSA BASIN D | R | A | 07 A O | | | | | | 04/28/83<br>1010 | 5050<br>5050 | 31.44 | 12.50 | 148<br>7.5 | 33AF | 0.18 | | | | 0.3 | | 0.00 | 0.08 | | 07/14/83<br>1200 | 5050<br>5050 | | 20.60 | 128<br>7.4 | | 0.12 | | | 0.01 | 0.2 | | 0.01 | 0.06 | | 09/16/83<br>. 1130 | 5050<br>5050 | | 21.70 | 130<br>7•5 | 12AF | 0.08 | | | 0.00 | 0.1 | *- | 0.01 | 0.05 | | 09/20/83<br>1250 | 5050<br>5050 | | 20.60 | 165<br>7.4 | | 0.16 | | | 0.03 | 0.7 | | 0.01 | 0.05 | | 10/19/83<br>1220 | 5050<br>5050 | | 15.30 | 137<br>7.4 | BAF | 0.17 | | | 0.01 | 0.1 | | 0.00 | 0.04 | | 11/29/83<br>1200 | 5050<br><b>5050</b> | | 10.80 | 159<br>7.3 | 46AF | 0.19 | | <br> | 0.01 | 0.4 | | 0.02 | 0.10 | | 01/10/84<br>1130 | 5050<br>5050 | | 48.0F | 158<br>7.3 | 23AF | 0.27 | | | 0.00 | 0.2 | | 0.02 | 0.10 | | 02/22/84<br>1220 | 5050<br><b>50</b> 50 | | 51.0F | 160<br>7.3 | 12AF | 0.26 | | | 0.00 | 0•2 | ** | 0.01 | <br>0.06 | | 03/27/84<br>1230 | 5050<br>5050 | | 56.0F | 150<br>7•4 | | 0.15 | | | 0.01 | 0.1 | | 0.00 | 0.07 | | 05/01/84<br>1120 | 5050<br>5050 | | 58.0F | 160<br>7•5 | | 0.14 | | ~- | 0.01 | 0.6 | | 0.01 | 0.07 | | | | AO 2320. | .00 | SAC | RAMENTO | R A R+D 70 PP NR GR | IMES | | 07A0 | | | | | | 04/28/83<br>1330 | 5050<br>5 <b>0</b> 50 | | 12.80 | 150<br>7.3 | | 0.24 | | | 0.02 | 0 • 2 | | 0.01 | 0.09 | | 07/14/83<br>1245 | 5050<br>5050 | | 20.00 | 115<br>7.5 | 12AF | 0.08 | | | 0.00 | 0.2 | | 0.01 | 0.02 | | 08/16/83<br>1230 | 5050<br>5050 | | 20.6C | 115<br>7•4 | 5AF | 0.07 | | | 0.01 | 0.1 | | 0.01 | 0.04 | | 09/20/83<br>1345 | 5050<br>5050 | | 18.90 | 135<br>7.5 | 7AF | 0.16 | *** | | 0.02 | 0.2 | ** | 0.01 | 0.04 | | 10/19/03<br>1315 | 5050<br>5050 | | 15.0C | 137<br>7.3 | 3AF | 0.16 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 11/29/83<br>1300 | 5050<br>5050 | | 10.60 | 147<br>7.3 | 38AF | 0.17 | | | 0.00 | 0.2 | | 0.02 | 0.13 | | DATE<br>TIME<br>+ + + + | SAMP<br>LAB | G.H. TEMP<br>Q DEPTH<br>+ + + + + + | F EC<br>F PH<br>+ + + + | TURB | FIELD<br>P ALK D NO2 +<br>T ALK NO3<br>• • • • • • • | D NO2<br>D NO3 | D DRG N<br>T DRG N | ENTS IN MI<br>D NH3<br>T NH3 | T NH3 +<br>DRG N | DIS<br>A.H.PO4 | | D TOT P<br>T TOT P REA | |-------------------------|---------------------|-------------------------------------|-------------------------|----------|------------------------------------------------------|----------------|--------------------|------------------------------|------------------|----------------|------|------------------------| | | AO | 2320.00 | SACR | AMENTO R | A R-D 70 PP NR GRI | MES | A | O7AO CONTI | NUED | | | | | 02/22/84<br>1305 | 5050<br>5050 | 51.0F | 153<br>7.3 | 12AF | 0.25 | | | 0.00 | 0+1 | | 0.01 | 0.04 | | 03/27/84<br>1145 | 5050<br>5050 | 55.0F | 140<br>7.4 | | 0.14 | | | 0.01 | 0.1 | | 0.00 | 0.06 | | 05/01/84<br>1200 | 5050<br><b>5050</b> | 58+OF | 150<br>7•4 | | 0.14 | | | 0.00 | 0.2 | | 0.01 | 0.04 | | | AO | 2500.00 | SACR | AMENTO R | A BUTTE CITY | | A | 0700 | | | | | | 04/28/83<br>1430 | 5050<br>5050 | 12.20 | 140<br>7.3 | | 0.20 | | | 0.03 | 0.4 | | 0.01 | 0.22 | | 01/10/84<br>1215 | 5050<br>5050 | 49.0C | 130<br>7.3 | 20AF | 0.23 | | | 0.00 | 0.2 | | 0.01 | 0.09 | | | A0 | 2630.00 | SACR | AMENTO R | A HAMILTON CITY | | A | 1380 | | | | | | 04/28/83<br>1515 | 5050<br>5050 | 11.70 | 120<br>7.3 | | 0.09 | | | 0.04 | 0.4 | | 0.01 | 0.16 | | 05/16/83<br>1445 | 5050<br>5050 | 17.20 | 108<br>7.0 | | 0.10 | | | 0.02 | 0.1 | | 0.00 | 0.03 | | 07/14/83<br>1500 | 5050<br>5050 | 16.90 | 110<br>7.4 | | 0.08 | | | 0.00 | 0.4 | | 0.00 | 0.03 | | 08/16/83<br>1430 | 5050<br>5050 | 17.20 | 105<br>7.4 | 3AF: | 0.06 | | | 0.01 | 0.1 | | 0.01 | 0.03 | | 09/20/83<br>1600 | 5050<br>5050 | 17.20 | 120<br>7.5 | | 0.12 | | | 0.00 | 0.2 | | 0.00 | 0.03 | | 10/19/83<br>1530 | 5050<br>5050 | 14.40 | 119<br>7•3 | 2AF | 0.12 | ~~ | | 0.00 | 0.1 | ** | 0.01 | 0.03 | | 11/29/83<br>1505 | 5050<br>5050 | 11.10 | 120<br>7.3 | 9AF | 0.14 | | | 0.00 | 0.1 | | 0.01 | 0.04 | | 01/10/84<br>1415 | 5050<br>5050 | 48.0F | 124<br>7.3 | 12AF | 0.18 | | | 0.00 | 0.2 | | 0.01 | 0.07 | | 02/22/04<br>1505 | 5050<br>5050 | 49.0F | 127<br>7.2 | 9AF | 0.16 | | | 0.00 | 0.2 | | 0.01 | 0.04 | | 03/27/84<br>1000 | | 51.5F | 135<br>7.3 | | 0.12 | | | 0.00 | 0.1 | | 0.01 | 0.04 | | | | | | | | FIELD | | CONSTITU | ENTS IN MI | LLIGRAMS | PER LITER | | | |------------------|----------------------|-----------|---------------|-------------------------|----------|-------------------------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|---------------------------------|---------------------------------------| | DATE<br>TIME | SAMP<br>LAB | G.H.<br>Q | TEMP<br>DEPTH | F EC<br>F PH<br>* * * * | F CO2 | P ALK D NO2 +<br>T ALK NO3<br>: * * * * * * * * | D NO2<br>D NO3<br>+ + + + | D DRG N<br>T DRG N<br>+ + + + | D NH3<br>T NH3<br>+ + + + | T NH3 +<br>ORG N<br>* * * * * | DIS<br>A.H.PO4<br>+ + + + | D D-PO4<br>T O-PO4<br>* * * * * | D TOT P<br>T TOT P RE4<br>+ + + + + + | | | | A0 2630 | .00 | SACR | AMENTO R | A HAMILTON CITY | | A | 1380 CONTI | NUED | | | | | 05/01/84<br>1410 | 5050<br>5050 | | 57.0F | 130<br>7•4 | | 0.11 | | | 0.00 | 0.4 | | 0.01 | 0.04 | | | | AO 2731 | •00 | SACR | AMENTO R | A TEHANA | | A | 1380 | | | | | | 04/28/83<br>1630 | 5050<br>5050 | | 11.70 | 125<br>7•3 | | 0.08 | | | 0.03 | 0.4 | 40.00 | 0.01 | 0.23 | | 07/14/83<br>1630 | 5050<br>5050 | | 16.10 | 115<br>7.4 | 5AF | 0.08 | | | 0.04 | 0.2 | *** | 0.00 | 0.03 | | 08/16/83<br>1600 | 5050<br>5050 | | 16.70 | 105<br>7.5 | 3AF | 0.05 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 09/20/83<br>1730 | 5050<br>5050 | | 16.10 | 117<br>7.6 | 2AF | 0.10 | | | 0.04 | 0.1 | | 0.01 | 0.03 | | 10/19/83<br>1700 | 5050<br>5050 | | 14.70 | 112<br>7.3 | 2AF | 0.08 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 12/01/83<br>0915 | 5050<br>5050 | | 11.90 | 123<br>7.2 | 5AF | 0.12 | | | 0.01 | 0.1 | | 0.01<br> | 0.03 | | 01/10/84<br>1145 | 5050<br>5050 | | 48.0F | 125<br>7•2 | 11AF | 0.16 | *** | | 0.00 | 0.1 | | 0.01 | 0.04 | | 02/23/84<br>0030 | 5050<br>5050 | | 45.0F | 140<br>7•3 | 6AF | 0.16 | | | 0.00 | 0.2 | | 0.01<br> | 0.03 | | 03/27/84<br>0820 | 5050 | | 51.0F | 137<br>7•4 | | 0.10 | | | 0.00 | 0.1 | | 0.01 | 0.04 | | 05/04/84<br>0815 | 5050<br>5050 | | 54.5F | 138<br>7.4 | | 0.10 | | | 0.01 | 0.2 | | 0.02 | 0.04 | | | | AO 2785 | •00 | SACR | AMENTO R | A BEND BR | | A | 17A0 | | | | | | 05/11/83<br>0825 | 5050<br>5050 | 25.87 | 10.00 | 106<br>7•3 | 12AF | 0.04 | | | | 0.1 | | 0.00 | 0.04 | | 05/11/83<br>1100 | 5050<br><b>50</b> 50 | | 10.00 | 115<br>7•2 | | 0.05 | | | 0.02 | 0.1 | | 0.00 | 0.04 | | 07/15/83<br>0915 | 5050 | | 12.80 | 103<br>7•3 | 4AF | 0.05 | | | 0.02 | 0.1 | ~~ | 0.01 | 0.03 | | 08/17/83<br>0845 | | | 13.10 | 100<br>7.2 | 3AF | 0.06 | | | 0.02 | 0.1 | | 0.00 | 0.02 | | | | | | | | FIELD | | CONSTITU | IENTS IN HI | LLIGRAMS | PER LITER | | | |-------------------------|--------------|------------------------|--------------------------|-----------------------|--------------------------|-------------------------------------------------|---------------------------|--------------------|----------------|------------------|----------------|--------------------|---------------------------------------| | DATE<br>TIME<br>+ + + + | SAMP<br>LAB | G.H.<br>Q<br>+ + + + + | TEMP<br>DEPTH<br>* * * * | F EC<br>F PH<br>+ + + | TURB<br>F CO2<br>+ + + + | P ALK D NO2 +<br>T ALK NO3<br>+ + + + + + + + + | D NO2<br>D NO3<br>• • • • | D DRG N<br>T DRG N | D NH3<br>T NH3 | T NH3 +<br>DRG N | DIS<br>A.H.PO4 | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P RE4<br>+ + + + + + | | | | A0 2785.0 | 0 | SACE | RAMENTO R | A BEND BR | | A | 17AO CONTI | NUED | | | | | 09/21/83<br>0840 | 5050<br>5050 | | 12.80 | 105<br>7.3 | 2AF | 0.05 | | | 0.00 | 0.1 | | 0.00 | 0.03 | | 10/20/83<br>1400 | 5050<br>5050 | | 13.30 | 100<br>7.3 | 3AF | 0.04 | | | 0.01 | 0.1 | | 0.01 | 0.03 | | 11/30/83<br>1430 | 5050<br>5050 | | 12.20 | 122<br>7•2 | 4AF | 0.10 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 01/11/84<br>1015 | 5050<br>5050 | | 47.0F | 110<br>7.1 | 9AF | 0.11 | | | 0.01 | 0.1 | | 0.01 | 0.05 | | 02/23/84<br>1130 | 5050<br>5050 | | 47.0F | 120<br>7•2 | 6AF | 0.10 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 03/28/84<br>1030 | 5050<br>5050 | | 51.0F | 110<br>7•3 | | 0.07 | | | 0.01 | 0.1 | | 0.00 | 0.03 | | 05/02/84<br>1215 | 5050<br>5050 | | 51.5F | 127<br>7.4 | | 0.00 | ** | | 0.00 | 0.2 | | 0.02 | 0.04 | | | | A0 2815.0 | 0 | SACE | RAMENTO R | A BALLS FERRY | | A | 17A0 | | | | | | 04/29/83<br>1130 | 5050<br>5050 | | 11.10 | 90<br>7.0 | | 0.03 | | | 0.00 | 0.1 | | 0.00 | 0.04 | | 07/15/83<br>1030 | 5050<br>5050 | | 12.20 | 98<br>7•3 | 4AF | 0.05 | | | 0.02 | 0.2 | | 0.00 | 0.02 | | 09/18/83<br>1245 | 5050<br>5050 | | 12.20 | 100<br>7•3 | 2AF | 0.05 | | | 0.10 | 0.4 | | 0.01 | 0.03 | | 09/21/83<br>1000 | 5050<br>5050 | | 13.30 | 99<br>7•2 | ZAF | 0.06 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 10/20/83<br>1245 | 5050<br>5050 | | 13.30 | 98<br>7.3 | 3AF | 0.04 | | | 0.01 | 0.1 | | 0.01 | 0.03 | | 12/01/83<br>1330 | | | 12.20 | 118<br>7.2 | 3AF | 0.09 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 01/11/84<br>1030 | 5050<br>5050 | | 48.0F | 109<br>7.2 | 8AF | 0.09 | | | 0.01 | 0.1 | | 0.02 | 0.04 | | 03/05/84<br>1325 | 5050<br>5050 | | 51.0F | 130<br>7.3 | 5AF | 0.19 | | | 0.00 | 0.2 | | 0.02 | 0.04 | | 03/28/84<br>1200 | | | 50.0F | 119<br>7•3 | | 0.17 | | | 0.00 | 0.1 | | 0.00 | 0.03 | | DATE<br>TIME<br>+ + + | SAMP<br>LAB | G.H. TEMP<br>Q DEPTH | F EC<br>F PH<br>* * * * | TURB<br>F CO2<br>+ + + + | FIELD P ALK D NO2 + T ALK NO3 * * * * * * * * * * | D NO2<br>D NO3<br>+ + + | D ORG N<br>T ORG N | CHN C | T NH3 +<br>ORG N | DIS | D G-PG4<br>T G-PG4<br>* * * * * | D TOT P<br>T TOT P RE4 | |-----------------------|---------------------|----------------------|-------------------------|--------------------------|---------------------------------------------------|-------------------------|--------------------|-----------|------------------|------------|---------------------------------|------------------------| | | | AO 2815.00 | SAC | RAMENTO | R A BALLS FERRY | | A | 1740 CDN1 | INUED | | | | | 05/02/84<br>1115 | | 51+0F | 138<br>7•3 | | 0.21 | | | 0.01 | 0.1 | | 0.01 | 0.03 | | | • | 1020.00 | PIT | R NR MO | NTGOMERY C | | A | 2080 | | | | | | 04/27/83<br>0845 | 5050<br>5050 | 9.40 | 123<br>7.4 | | 0.04 | | | 0.00 | 0.1 | <b>-</b> - | 0.02 | 0.04 | | 06/13/83<br>0845 | 5050<br>5050 | 17.20 | 123<br>7•6 | | 0.00 | | | 0.03 | 0.5 | | 0.02 | 0.06 | | 07/13/63<br>0830 | 5050<br>5050 | 17.20 | 130<br>8.0 | | 0.08 | | | 0.02 | 0.2 | | 0.02 | 0.04 | | 08/19/83<br>0715 | 5050<br>5050 | 17•5C | 135<br>7.7 | 1AF | 0.02 | | | 0.02 | 0.2 | - | 0.02 | 0.04 | | 09/19/83<br>0845 | 5050<br><b>5050</b> | 15.30 | 152<br>7•8 | | 0.05 | | | 0.02 | 0.2 | | 0.02 | 0.04 | | 10/18/83<br>0815 | 5050<br>5050 | 12.20 | 140<br>7.4 | | 0.05 | | | 0.01 | 0.2 | | 0.03 | 0.05 | | 11/29/83<br>1000 | 5050<br>5050 | 7.20 | 138<br>7.3 | 4AF | 0.11 | | ** | 0.02 | 0.2 | ** | 0.03 | 0.05 | | 01/09/84<br>1000 | 5050<br>5050 | 42.0F<br>0 | 119<br>7.3 | 16AF | 0.08 | | | 0.01 | 0.3 | | 0.03 | 0.06 | | 02/24/84<br>0955 | 5050<br>5050 | 45.0F | 127<br>7•3 | | 0.13 | | | 0.01 | 0.2 | | 0.02 | 0.06 | | 03/28/84<br>1015 | 5050<br>5050 | 49.0F | 125<br>7.5 | | 0.05 | | | 0.01 | 0.2 | | 0.02 | 0.05 | | 05/03/64<br>0815 | 5050<br>5050 | 51.0F<br>0 | 130<br>7•6 | | 0.04 | | | 0.01 | 0.6 | | 0.02 | 0.05 | | 06/18/84<br>0900 | 5050<br>5050 | 62.0F | 130<br>7.8 | | 0.04 | | | 0.01 | 0.2 | *- | 0.02 | 0.06 | | 07/20/84<br>0930 | 5050<br>5050 | 66.0F | 137<br>8.2 | | 0.02 | | | 0.06 | 0.2 | | 0.01 | 0.05 | | 08/23/64<br>0830 | 5050<br>5050 | 63.0F<br>0 | 140<br>7.7 | | 0.03 | | | 0.00 | 0.1 | | 0.02 | 0.04 | | 09/05/84<br>0930 | 5050<br>5050 | 17.00 | 145<br>7.9 | 2AF | 0.03 | | | | | | 0.02 | | | | | | | | | FIELD | | CONSTITU | ENTS IN MI | SHECOTIS | BED TTCD | | | |------------------|--------------|-----------|------------|------------|---------|-------------------|-------|----------|------------|-----------|------------|---------|------------------------| | DATE | SAMP | G.H. | TEMP | F EC | TURB | P ALK D NO2 + | D NO2 | D DRG N | D NH3 | T NH3 + | DIS | D 0-P04 | 0. 707. 0 | | TIME | LAB | _ | DEPTH | F PH | F CO2 | T ALK NO3 | D NO3 | T DPG N | THUS | OBC N | A 14 DO | | D TOT P<br>T TOT P RE4 | | * * * * | * * * | * * * * * | * * * * | * * * * | * * * * | * * * * * * * * * | | * * * * | * * * * * | * * * * * | * * * * * | * * * * | 1 101 P KET | | | | A1 1020. | 00 | | | NTGBMERY C | | | 2080 CONTI | | | | | | 07/19/84 | 5050 | | 60.0F | 145 | | | | | | | | | | | 0830 | | | 00.05 | 145<br>7.8 | 1AF | 0.04 | | | 0.03 | | | 0.02 | | | 0.00 | ,,,, | | | 7.0 | | | | | | 0.1 | | | 0.05 | | 10/24/84 | 5050 | | 50.5F | 120 | ZAF | 0.08 | | | | | | | | | 0900 | 5050 | | | 7.3 | | 0.00 | | | 0.02 | | | 0.02 | | | | | | | | | | | | | 0.1 | | | 0.05 | | | | A2 L 043. | 2 225.0 | SHAS | TA LK A | DM | | A | 24A0 | | | | | | 05/18/83 | 5050 | | 15.0C | | | 0.02 | | | | | | | | | 0700 | 5050 | | 0 | 7.4 | | 3.02 | | | 0.01 | 0.1 | | 0.00 | | | | | | | | | | | | | 0.1 | | | 0.02 | | 05/18/83 | | | 6.90 | | | 0.10 | | | 0.02 | | | 0.02 | | | 0710 | 5050 | | 427 | 7.2 | | | | | | 0.2 | | | 0.04 | | 06/23/83 | FAFA | | a1 EC | | | | | | | | | | 0007 | | 0830 | 5050 | | 21.5C<br>0 | 7.5 | | 0.02 | ~~ | | 0.00 | | | 0.00 | | | 0000 | ,,,, | | Ū | 1.5 | | | | ~~ | | 0.1 | | | 0.01 | | 06/23/83 | 5050 | | | | | 0.11 | | | | | | | | | 0640 | 5050 | | 469 | 7.1 | | 0111 | | | 0.01 | | | 0.02 | | | | | | | | | | | | | 0.1 | | | 0.04 | | 07/29/83 | | | 23.50 | 85 | | 0.01 | | | 0.00 | | | 0.00 | | | 0830 | 5050 | | 0 | 7.6 | | | | | | 0.2 | | | 0.01 | | 07/29/83 | 6050 | | | | | | | | | | | | 0.01 | | 0840 | 5050 | | 486 | 100 | | 0.12 | | | 0.02 | | | 0.01 | | | 0010 | 2020 | | 400 | 7.3 | | | | | | 0.1 | | | 0.04 | | 08/26/83 | 5050 | | | 106 | 11AF | 0.11 | | _ | | | | | | | 0810 | 5050 | | 472 | 7.1 | ••~, | J.11 | | | 0.00 | | | 0.01 | | | | | | | | | | | | | 0.2 | | | 0.04 | | 09/27/83 | | • | 20.5C | | | 0.02 | | | 0.00 | | | 0.00 | | | 0900 | 5050 | | 0 | 7.6 | | | | | | 0.1 | | | 0.01 | | 09/27/83 | 5050 | | | | | | | | | | | | 0.01 | | 0910 | 5050 | | 459 | 7.0 | | 0.12 | | | 0.00 | | | 0.01 | | | | ,,,, | | 424 | 7.0 | | | | | | 0.2 | | | 0.04 | | 12/21/83 | 5050 | | 11.90 | | | 0.06 | | | 0.00 | | | | | | 0945 | 5050 | | 0 | 7.3 | | 0.00 | | | 0.02 | | | 0.02 | | | | | | | | | | | | | 0.2 | | | 0.02 | | 12/21/83 | | | B • 6 C | | | 0.11 | | | 0.01 | | | 0.02 | | | 0955 | 5050 | | 427 | 6.9 | | | | | | 0.1 | | | 0.04 | | 01/26/84 | 5050 | | 9.50 | 04 | 1 4 5 | | | | | - | | | V I V I | | 0715 | 5050 | | 0 | 96<br>7•2 | 1AF | 0.06 | | | 0.00 | _ | | 0.01 | | | - • | | | • | | | | | | | 0.1 | | | 0.02 | | 01/26/84 | | | 45.5F | 114 | 9AF | 0.08 | | | 0.01 | | | | | | 0915 | 5050 | | 426 | 7.2 | | ••• | | | 0.01 | 0.5 | | 0.02 | | | 03/01/0: | - 6 | | | _ | | | ÷ | | | ••• | | | 0.05 | | 03/01/84<br>0930 | 5050<br>5050 | | 9.50 | 96 | 2AF | 0.02 | | | 0.00 | | | 0.00 | | | 0730 | 7070 | | 0 | 7.4 | | | | | | 0.1 | | | 0.02 | | | | | | | | | | | | | | | | | | | | | | | FIELD | | | CONST | ITHENTS IN | MILLIGRAMS | DED 1770 | | | |------------------|--------------|-----------|-------------|-------|----------|---------|----------------|-------------|---------|------------|-------------|-------------|--------------------|------------------------| | DATE | SAHP | 6.H. | TEMP | F EC | TURB | P ALK | D NO2 + | D NO | D D DRG | N D NH3 | T NH3 + | DIS | D 0004 | | | TIME | LAB | Q | DEPTH | F PH | F CO2 | T ALK | ND3 | D NO | | | DRG N | | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P RE4 | | * * * * | * * * | * * * * • | | | * * * * | * * * * | * * * * | | | | + + + + + + | * * * * * | | | | | | AZ L 043. | 2 225.0 | SHAS | STA LK A | DM | | | | A24A0 CDI | | | | | | 03/01/84 | 5050 | | 8.00 | 118 | 7AF | | | | | | | | | | | 0930 | 5050 | | 466 | 7.2 | / 85 | | 0.11 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 04/05/84 | 5050 | | 11.70 | 99 | | | 0.01 | _ | | 0.01 | | | | | | 0900 | 5050 | | 0 | 7.7 | | | 0.01 | | - | 0.01 | 0.1 | | 0.00 | 0.01 | | 04/05/84 | | | 9.00 | 128 | | | 0.12 | | | 0.01 | | | | | | 0900 | 5050 | | 479 | 7.3 | | | | | | | 0.1 | | 0.01 | 0.04 | | 05/11/84 | E0E0 | | | | | | | | | | | | | 0.07 | | 0800 | 5050 | • | 15.3C | 94 | | | 0.00 | | | 0.01 | | | 0.00 | | | 0.000 | 7070 | | 0 | 7.7 | | | | | | | 0.1 | | | 0.01 | | 05/11/84 | 5050 | | 8.5C | 119 | | | 0.13 | | | | | | | | | 0800 | 5050 | | 489 | 7.3 | | | 0.13 | ** | | 0000 | | | 0.02 | | | | | | | | | | | | | ~~ | 0.1 | | | 0.04 | | 06/12/84 | | | 19.0C | 100 | | | 0.00 | | | 0.00 | | | 0.00 | | | 0830 | 5050 | | 000 | 7.7 | | | | | | | 0.1 | | 0.00 | 0.01 | | 04 /3 0 / 04 | -050 | | | | | | | | | | *** | | | 0.01 | | 06/12/84<br>0830 | 5050 | | 48.0F | 125 | | | 0.14 | | | 0.01 | | | 0.02 | | | 0030 | 9090 | | 479 | 7.2 | | | | | • | | 0.1 | | ** | 0.04 | | 07/19/84 | 5050 | | 27.20 | 105 | | | | | | | | | | | | 0900 | 5050 | | 0 | 7.7 | | | 0.00 | | | 0.00 | | | 0.00 | | | | | | _ | • • • | | | | | | | 0.0 | | | 0.01 | | 07/19/84 | | | 49.0F | 128 | | | 0.14 | | | 0.01 | | *** | | | | 0900 | 5050 | | 459 | 7.2 | | | | | | | 0.1 | | 0.02 | | | 00414404 | | | | | | | | | | | *** | | | 0.04 | | 08/16/84<br>0830 | 5050<br>5050 | | 25.OC | | | | 0.01 | | | 0.00 | | | 0.00 | <b>*</b> | | 0030 | 2020 | | 0 | 7.8 | | | | | | | 0.0 | | | 0.01 | | 09/16/64 | 5050 | | 48.0F | | | | | | | | | | | , - | | 0830 | 5050 | | 443 | 7.1 | | | 0.14 | | | 0.00 | | | 0.02 | | | | | | | | | | | <del></del> | | | 0.0 | | | 0.05 | | 09/14/84 | | | 22.5C | 114 | 1AF | | 0.01 | | | 0.01 | | | 0.00 | | | 0800 | 5050 | | 0 | 7.6 | | | | - | | | 0.1 | | 0.00 | 0.00 | | 09/14/84 | E060 | | | | | | | | | | ••• | | | 0.00 | | 0800 | 5050 | | 6.9C<br>426 | 131 | 6AF | | 0.16 | | | 0.02 | | | 0.02 | | | 0000 | 2020 | • | 720 | 7.0 | | | | | | | 0.1 | | | 0.03 | | 10/24/84 | 5050 | | 16.4C | | 1AF | | 0.03 | | | | | | | | | 0930 | 5050 | | 0 | 7.4 | ***1 | | V• U3 | | | 9.01 | | | 0.02 | | | | | | | | | | | | | | 0.1 | | | 0.02 | | 10/24/84 | | | | | 7AF | | 0.16 | | | 0.01 | | | 0.02 | | | 0930 | 5050 | | 426 | 7.0 | | | <del>-</del> - | | | | 0.1 | <del></del> | 0.02 | 0.04 | | | | | | | | | | | | | | | | V • U 7 | | D.4.70 | | 4 | | | | FIELD | | | CONSTIT | UENTS IN MI | PHAGRETII | 02771 020 | | | |----------|-------|------------|------------|---------|----------|----------|------------|-------|---------|-------------|--------------|-----------|---------|-----------------| | DATE | SAMP | 6•H• | TEMP | F EC | TURB | P ALK | D NO2 + | D N02 | D DRG N | D NH3 | T NH3 + | DIS | D 0-004 | | | TIME | LAB | Q | DEPTH | F PH | F CO2 | T ALK | ND3 | D NO3 | T DRG N | T NH3 | TRC M | A M BOA | D 0-P04 | D TOT P | | * * * * | * * * | * * * * * | * * * | * * * * | * * * * | | * * * * * | | | | * * * * | * * * * * | T 0-P04 | T TOT P RE4 | | | | | | | | | | | | | | | | * * * * * * * * | | | | AZ L 044.3 | 3 227.3 | SHAS | STA LK A | LITTLE S | SQUAW C IN | ILET | | AZOAO | | | | | | 05/12/83 | ECEC | | | | | | | | | | | | | | | 1415 | | | 14.00 | | | | 0.06 | | | 0.01 | | | 0.00 | | | 1415 | 5050 | | 0 | 7.4 | | | | | | | 0.1 | | | 0.01 | | 05/12/83 | 6050 | | | | | | | | | | <del>-</del> | | | 0.01 | | 1425 | 5050 | | 7.6C | | | | 0.05 | | | 0.01 | | | 0.00 | | | 1423 | 5050 | | 138 | 7.1 | | | | | | | 0.1 | | | 0.02 | | 06/21/83 | 5050 | | 22 20 | | | | | | | | | | | 0.02 | | 1300 | 5050 | | 22.20 | • • | | | 0.02 | | | 0.01 | | | 0.00 | ** | | 2300 | 2020 | | U | 7.4 | | | | | | | 0.1 | | | 0.01 | | 06/21/83 | 5050 | | 9.10 | | | | | | | | | | | | | 1310 | 5050 | | 138 | 7.1 | - | | 0.08 | - | | 0.01 | | | 0.00 | | | | | | | ••• | | | | | | | 0.1 | | | 0.02 | | 07/28/83 | 5050 | | 25.0C | 89 | | | 0.03 | | | | | | | | | 1330 | 5050 | | 0 | 7.7 | | | 0.03 | | | 0.00 | | | 0.00 | | | | | | | | | | | | | | 0.0 | | | 0.00 | | 07/28/83 | | | 10.20 | 82 | | | 0.09 | | | 0.01 | | | | | | 1340 | 5050 | | 157 | 7.3 | | | | | | 0.01 | | | 0.00 | | | | | | | | | | | | | | 0.0 | | | 0.02 | | 08/25/83 | | | 24.4C | 96 | LAF | | 0.00 | | | 0.00 | | | | | | 1130 | 5050 | | 0 | 7.7 | | | | | | | 0.1 | | 0.00 | | | 00/05/00 | | | | | | | | | | | V-1 | | ~~ | 0.00 | | 08/25/83 | | | 11.70 | 84 | 3AF | | 0.07 | | | 0.02 | | | 0.00 | | | 1140 | 5050 | | 148 | 7.1 | | | | | | | 0.0 | | 0.00 | 0.02 | | 10/04/83 | 5050 | | | | | | | | | | | | | 0.02 | | 1200 | 5050 | | 20.20 | • | | | 0.00 | | | 0.00 | | | 0.00 | | | ,1200 | 2030 | | 0 | 7.6 | | | | | | | 0.1 | | | 0.01 | | 10/04/83 | 5050 | | 15.30 | | | | | | | | | | | **** | | 1210 | 5050 | | 108 | 7.1 | | | 0.05 | | | 0.00 | | | 0.00 | | | | | | | , | | | | ~~ | *** | | 0.1 | | | 0.03 | | 10/27/83 | 5050 | | 17.70 | 105 | 1AF | • | 0.00 | | | | | | | | | 0800 | 5050 | | 0 | 7.3 | 101 | | 0.00 | | | 0.00 | | | 0.00 | | | | | | | | | | | | | | 0.1 | | | 0.01 | | 10/27/83 | 5050 | | 15.00 | 102 | 3AF | | 0.05 | | | 0.00 | | | | | | 0810 | 5050 | | 105 | 6.9 | | | ***** | | | | 0.1 | | 0.01 | | | | _ | | | | | | | | | | 0.1 | | | 0.03 | | 12/05/83 | | | 12.2C | 105 | 1AF | | 0.04 | | | 0.00 | | | | | | 1400 | 5050 | | 0 | 7.3 | | | | | | | 0.0 | | 0.01 | | | 12/05/02 | * | | | | | | | | | | 0.0 | | | 0.02 | | 12/05/83 | | | 12.0C | 102 | 3 A F | | 0.04 | | | 0.00 | | | 0.00 | | | 1410 | 5050 | | 105 | 7.3 | | | | | | | 0.0 | | | 0.02 | | 01/25/84 | 5050 | | 10.10 | 04 | 3.45 | | | | | | <del>-</del> | | | V 4 V Z | | 1230 | 5050 | | 10.1C<br>0 | 94 | 1AF | | 0.06 | | | 0.00 | | | 0.00 | | | | -070 | | v | 7.3 | | | | | | | 0.1 | | | 0.02 | | 01/25/84 | 5050 | | 9.20 | 94 | ZAF | | 0.04 | | | | | | | | | 1230 | 5050 | | 101 | 7.2 | CAF | | 0.06 | | | 0.00 | | | 0.00 | | | | | | | | | | | | | | 0.1 | | | 0.01 | | | | | | | | | | | | | | | | | | DATE<br>TIME<br>+ + + + | SAMP<br>LAB | Q DEPTH | F EC<br>F PH<br>+ + + + | TURB<br>F CO2<br>* * * * | FIELD P ALK D ND2 + T ALK ND3 + + + + + + + + + | D NO2<br>D NO3<br>+ + + | D DRG N | D NH3 | T NH3 + | 4 4 004 | D U-PO4<br>T O-PO4 | D TOT P<br>T TOT P RE4 | |-------------------------|-----------------------|------------------|-------------------------|--------------------------|-------------------------------------------------|-------------------------|---------|-----------|---------|---------|--------------------|------------------------| | | | AZ L 044.3 227.3 | SHA | STA LK A | LITTLE SQUAN C INLE | г | A | ZOAO CONT | INUED | | | | | 02/29/84<br>1300 | 5050<br>5050 | | 95<br>7.4 | 2AF | 0.03 | | | 0.00 | 0.1 | | 0.00 | | | 02/29/84<br>1300 | 5050<br>5050 | 8.0C<br>115 | 96<br>7•2 | 3AF | 0.05 | | | 0.00 | 0.0 | | 0.00 | <br>0.02 | | 04/04/84<br>1200 | 5050<br>5050 | 13.2C<br>0 | 98<br>7•8 | | 0.00 | | | 0.00 | 0.0 | | 0.00 | <br>0.01 | | 04/04/84<br>1200 | 5050<br>5050 | 8.5C<br>115 | 99<br>7•3 | | 0.07 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | 05/09/84<br>1100 | 5050<br>5050 | 15.0C<br>0 | 97<br>7•5 | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 05/09/84<br>1100 | 5050<br>5 <b>0</b> 50 | 8.9C<br>131 | 101<br>7.2 | | 0.07 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | 06/08/84<br>0815 | 5050<br>5050 | 18.50<br>00 | 100<br>7.3 | | 0.00 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | 06/08/84<br>0815 | 5050<br>5050 | 9.3C<br>131 | 100<br>7.2 | | 0.06 | | | 0.01 | 0.0 | | 0.00 | 0.02 | | 07/12/84<br>0800 | 5050<br>5050 | 26.0C<br>0 | 103<br>7.6 | | 0.00 | | | 0.00 | 0.0 | •• | 0.00 | 0.01 | | 07/12/64<br>0800 | 5050<br>5050 | 11.00<br>115 | 104<br>7.2 | × | 0.06 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | 08/15/84<br>0830 | 5050<br>5050 | 25.3C<br>0 | 7.5 | | 0.01 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | 08/15/84<br>0830 | 5050<br>5050 | 14.6C<br>98 | 7.0 | | 0.04 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | 09/10/84<br>0900 | 5050<br>5050 | 23.5C<br>0 | 115<br>7.6 | 1AF | 0.02 | | | 0.01 | 0.1 | | 0.00 | 0.00 | | 09/10/84<br>0900 | 5050<br>5050 | 17.0C<br>88 | 116<br>7.0 | 2AF | 0.05 | | | 0.01 | 0.2 | | 0.01 | <br>0.06 | | 10/18/84<br>1100 | 5050<br>5050 | 17.8C<br>0 | 126<br>7•3 | 1AF | 0.01 | | | 0.04 | 0.0 | | 0.00 | <br>0•02 | | 10/18/84<br>1100 | 5050<br>5050 | 17•5C<br>79 | 125<br>7•3 | 1AF | 0.01 | | | 0.00 | 0.0 | | 0.00 | <br>0.02 | | DATE<br>TIME<br>+ + + + | SAMP<br>LAB<br>+ + + | G.H. TEMP<br>Q DEPTH<br>* * * * * * * | F EC<br>F PH<br>* * * | TURB<br>F CO2<br>* * * * | T ALK NO3 | D NO2<br>D NO3<br>+ + + + | D DRG N<br>T DRG N | EHN T | LLIGRAMS<br>T NH3 +<br>DRG N<br>+ * • • • | 210<br>4-H-P04 | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P RE4 | |-------------------------|----------------------|---------------------------------------|-----------------------|--------------------------|---------------------|---------------------------|--------------------|-------|-------------------------------------------|----------------|--------------------|------------------------| | | | AZ L 044.9 212.1 | SHAS | TA LK PI | T R AB JONES VALLEY | | A | 20A0 | | | | | | 05/16/83<br>1120 | 5050<br>5050 | 15.4C<br>0 | 7.5 | | 0.00 | | | 0.01 | 0.1 | <del></del> . | 0.00 | <br>0.02 | | 05/16/83<br>1130 | 5050<br>5050 | 7•2C<br>279 | 7.1 | | 0.09 | | | 0.01 | 0.1 | | 0.01 | <br>0.04 | | 06/24/83<br>1230 | 5050<br>5050 | 23.3C<br>0 | 7.8 | | 0.00 | | | 0.00 | 0.2 | | 0.00 | 0.01 | | 06/24/83<br>1240 | 5050<br>5050 | 8.1C<br>295 | 7.3 | | 0.12 | | | 0.00 | 0.2 | | 0.02 | 0.04 | | 07/26/83<br>0830 | 5050<br>5050 | 23.9C<br>0 | 98<br>8•0 | | 0.00 | | | 0.00 | 0.2 | | 0.00 | 0.01 | | 07/26/83<br>0840 | 5050<br>5050 | 9•0C<br>262 | 114 | | 0.14 | | | 0.00 | 0.1 | | 0.02 | 0.04 | | 08/23/83<br>0815 | 5050<br>5050 | 24.7C<br>0 | 97<br>8.5 | ZAF | 0.00 | | | 0.00 | 0.1 | *- | 0.00 | | | 08/23/83<br>0825 | | 9.5C<br>230 | 116<br>7•1 | 6AF | 0.17 | | | 0.01 | 0.1 | | 0 • 02 | 0.01 | | 09/29/83<br>1130 | 5050<br>5050 | <b>20.</b> 80<br>0 | 7.7 | | 0.00 | | | 0.00 | 0.2 | | 0.00 | 0.04 | | 09/29/83<br>1140 | 5050<br>5050 | 12.2C<br>230 | 6.8 | | 0.21 | | | 0.00 | | | 0.01 | 0.01 | | 11/04/83<br>0915 | 5050<br>5050 | 17.5C | 114<br>7•4 | 1AF | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.04 | | 11/04/83<br>0925 | | 13.6C<br>246 | 124 | 7AF | 0.05 | | | 0.03 | 0.1 | | 0.02 | 0.01 | | 12/19/83 | | 12.0C<br>0 | 112 | 1AF | 0.06 | | | 0.00 | 0 • 2 | *- | 0.00 | 0.06 | | 12/19/83 | 5050 | 8.30 | 7.3<br>119 | 10AF | 0.08 | | | 0.01 | 0.0 | | 0.02 | 0.02 | | 1240 | 5050<br>5050 | 243<br>9.60 | 7.3<br>116 | 7AF | 0.08 | | | 0.02 | 0.2 | | | 0.05 | | 1000 | 5050 | 239<br>9.60 | 7.3 | | | | | | 0.1 | | 0.02 | 0.04 | | 1000 | 5050 | 0 | 100<br>7.3 | 1AF | 0.04 | | | 0.00 | 0.3 | | 0.01 | 0.03 | | | | | | | | FIELD | | | CONSTI | THENTS IN | MILLIGRAMS | 050 11700 | | | |------------------|------|-----------|---------|------------|-----------|---------|------------|---------|--------|--------------|-------------|-----------|---------|-------------| | DATE | SAMP | G.H. | TEMP | F EC | TURB | P ALK | D ND2 + | D ND2 | DORG | N D NH3 | T NH3 + | DIS | D 0-P04 | D TOT P | | TIME | LAB | | DEPTH | F PH | F CO2 | T ALK | NO3 | חוא מ | T DPC | N T MUS | ODC N | A 14 004 | | | | * * * * | | * * * * * | * * * * | * * * | * * * * * | * * * : | | * * * * | | | * * * * * * | * * * * * | * * * * | 1 101 P RE4 | | | | 42 1 0// | | | | | | | | | | | | | | | | A2 L 044. | A 515.1 | 2HY2 | IA LK PL | T R AB | JONES VALL | EY | | AZOAO CON | TINUED | | | | | 02/27/84 | 5050 | | 6.8C | 130 | 10AF | | 0.08 | | | | | | | | | 1200 | 5050 | | 180 | 7.3 | LUAF | | 0.00 | | | 0.02 | | | 0.02 | | | | - | | | | | | | | | | 0.2 | | | 0.06 | | 02/27/84 | | | 10.00 | 107 | 1AF | | 0.00 | | | 0.00 | | | | | | 1200 | 5050 | | 0 | 7.5 | | | | | | | 0.1 | | 0.00 | | | 0 | | | | | | | | | | | *** | | | 0.02 | | 04/02/84 | | | 7.00 | 135 | | | 0.13 | | | 0.00 | | | 0.01 | | | 1030 | 5050 | | 262 | 7.3 | | | | | | | 0.2 | | | 0.05 | | 04/02/84 | 5050 | | 13.0C | 108 | | | | | | | | | | **** | | 1030 | 5050 | | 13.00 | 7.4 | | | 0.00 | | | 0.00 | | | 0.00 | | | | 2020 | | Ū | 117 | | | | | | | 0.5 | | | 0.01 | | 05/07/84 | 5050 | | 8.70 | 118 | | | 0.11 | | | | | | | | | 0830 | 5050 | | 180 | 7.3 | | | 0.11 | | | 0.00 | | | 0.02 | | | | | | | | | | | | | | 0.1 | | | 0.04 | | 05/07/84 | | | 14.5C | 99 | | | 0.01 | | | 0.00 | | ~~ | 0.00 | | | 0830 | 5050 | | 0 | 7.7 | | | | | | | 0.1 | | | 0.01 | | 06/05/84 | E050 | | | | | | | | | | | | | ***** | | 0800 | 5050 | | 8.6C | 126 | | | 0.12 | | | 0.00 | | | 0.02 | | | 0000 | 7070 | | 216 | 7.2 | | | | | | | 0.1 | | | 0.05 | | 06/05/84 | 5050 | | 20.00 | 109 | | | 0.00 | | | | | | | | | 0800 | 5050 | | 0 | 7.6 | | | 0.00 | | | 0.00 | | | 0.00 | | | | | | _ | | | | | | | | 0.1 | | | 0.01 | | 07/10/84 | | | 53.0F | 126 | | | 0.18 | - | | 0.00 | | | | | | 0830 | 5050 | | 243 | 7.0 | | | **** | | | | 0.2 | | 0.02 | 0.06 | | 07410404 | | | | | | | | | | | | | | V. UD | | 07/10/84<br>0830 | | | 26.8C | 108 | | | 0.00 | | | 0.00 | | | 0.00 | | | 0030 | 5050 | | 0 | 7.7 | | | | | | | 0.1 | | | 0.01 | | 08/13/84 | 5050 | | 9.20 | | | | | | | | | | | | | U930 | 5050 | | 233 | 7.0 | | | 0.23 | | | <b>p.</b> 00 | | | 0.02 | | | | | | 200 | | | | | | | | 0.1 | | | 0.07 | | 08/13/84 | 5050 | | 26.00 | | | | 0.03 | | | 0.00 | | | | | | 0930 | 5050 | | 0 | 8.0 | | | | | | | 0.1 | | 0.00 | 0.01 | | 00/-1/0/ | | | | | | | | | | | *** | | | 0.01 | | 09/11/84 | | | 9.10 | 137 | 4AF | | 0.25 | | | 0.01 | | | 0.03 | | | 0815 | 5050 | | 230 | 6.9 | | | | | | | 0.1 | | | 0.05 | | 09/11/84 | 5050 | | 23.60 | 110 | 1 4 5 | | | | | | | | • | • | | 0815 | 5050 | | 23406 | 118<br>7.8 | 1AF | | 0.02 | | | 0.02 | | | 0.01 | | | | | | • | | | | | | | | 0.1 | | | 0.01 | | 10/15/84 | 5050 | | 9.50 | 142 | 6AF | | 0.18 | | | 0.00 | | | • • • | | | 0830 | 5050 | | 230 | 6.8 | | | 0.10 | | | 0.08 | 0.2 | | 0.02 | | | | | | | | | | | | | <del></del> | U+ Z | | | 0.05 | | 10/15/84<br>0845 | | | 17.7C | 129 | ZAF | | 0.08 | | | 0.01 | | | 0.01 | | | 0040 | 5050 | | 0 | 7.3 | | | | | | | 0.1 | | | 0.02 | | | | | | | | | | | | | | | | <del></del> | | | | | | | | FIELD | | CONSTITU | ENTS IN M | PHASSILL | DED ITTED | | | |------------------|--------------|-----------|------------------------|-------------------------|-----------|---------------------------------------------------------------|-------|----------|-----------|------------|-----------|--------------------|------------------------| | DATE<br>TIME | SAMP<br>LAB | Q | TEMP<br>DEPTH<br>* * * | F EC<br>F PH<br>* * * * | F CO2 | P ALK D NO2 + T ALK NO3 + + + + + + + + + + + + + + + + + + + | D NO3 | D DRG N | D NH3 | T NH3 + | DIS | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P REY | | | | | | | | | | | | * * * * * | * * * * * | * * * * | * * * * * * * * | | | | AZ L 045. | 4 225.5 | SHAS | STA LK LI | TTLE BACKBONE C INL | ET | A | 20A0 | | | | | | 05/13/83 | 5050 | | 14.5C | | | 0.04 | | | 0.01 | | | | | | 1300 | 5050 | | 0 | 7.4 | | ••• | | | | 0.1 | | 0.00 | 0.01 | | 05/13/83 | 5050 | | 7.4C | | | 0.07 | | | | | | | 0.01 | | 1310 | 5050 | | 197 | 7.2 | | 0.07 | | | 0.01 | 0.1 | | 0.01 | | | 06/22/83 | 5050 | | 22 -2 | | | | | | | 0.1 | | | 0.02 | | 1300 | 5050<br>5050 | | 22.8C<br>0 | 7.7 | | 0.01 | | | 0.00 | | | 0.00 | | | | | | • | ••• | | • | | | | 0.1 | | | 0.01 | | 06/22/83<br>1310 | | | 8.5C | | | 0.07 | | | 0.00 | | | 0.00 | | | | 5050 | | 230 | 7.3 | | | | | | 0.1 | | | 0.03 | | 07/27/83 | | | 24.8C | 88 | | 0.02 | | | 0.01 | | | 0.00 | ** | | 1200 | 5050 | | 0 | 7.8 | | | | | | 0.1 | | | 0.01 | | 07/27/83 | 5050 | | 10.00 | | | 0.07 | | | 0.00 | | | | | | 1210 | 5050 | | 177 | 7.1 | | <b>0.0</b> 7 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 08/24/83 | 5050 | | 24.50 | 94 | | | | | | | | | 0.02 | | 1145 | 5050 | | 0 | 7.6 | 2 A F | 0.00 | | | 0.00 | | | 0.00 | | | | | | | | | | | | | 0.0 | | | 0.01 | | 08/24/83<br>1155 | 5050<br>5050 | | 9•2C<br>223 | 89 | 4AF | 0.08 | | | 0.01 | | | 0.01 | | | , | ,,,, | | 223 | 7•1 | | | | | | 0.0 | | | 0.02 | | 10/03/83 | | | 19.80 | | | 0.00 | | | 0.01 | | | 0.00 | | | 0810 | 5050 | | 0 | 8.0 | | | | | | 0.1 | | | 0.02 | | 10/03/83 | 5050 | | 13.10 | | | 0.00 | | | 0.00 | | _ | | | | 0820 | 5050 | | 157 | 6.8 | | •••• | | | | 0.3 | | 0.00 | 0.02 | | 10/26/83 | 5050 | | 17.80 | 107 | 1AF | 0.00 | | | | | | | <b>700</b> L | | 0815 | 5050 | | 0 | 7.4 | TWE | 0.00 | | | 0.00 | 0.1 | | 0.00 | | | 10/24/22 | E0 E0 | | | | | | | | | 0.1 | | | 0.01 | | 10/26/83<br>0825 | 5050 | | 13.2C<br>177 | 99<br>6•9 | 2AF | 0.05 | | | 0.00 | | | 0.01 | | | | | | | 0,, | | | | | | 0.1 | | *- | 0.02 | | 12/20/83<br>0845 | 5050<br>5050 | | 12.00 | 107 | 1AF | 0.06 | | | 0.00 | | | 0.01 | | | 0045 | 2020 | | 0 | 7.3 | | | | | | 0.1 | | | 0.02 | | 12/20/83 | | | 10.20 | 113 | 4AF | 0.10 | | | 0.00 | | | 0.01 | | | 0855 | 5050 | | 180 | 7.0 | | | | | | 0.1 | | 0.01 | 0.03 | | 01/24/84 | 5050 | | 8.8C | 98 | ZAF | 0.07 | | | | | | | | | 1100 | 5050 | | 141 | 7.2 | | V• V 1 | | | 0.01 | 0.1 | ~~ | 0.02 | - <u>-</u> - | | 01/24/84 | 5050 | | 9.70 | 04 | | | | | | <b>VII</b> | | <b></b> | 0.03 | | 1100 | 5050 | - | 9.76 | 96<br>7•2 | 1AF | 0.07 | | | 0.00 | | | 0.01 | | | | · · · - | | - | | | | | | | 0.1 | | | 0.02 | | DATE<br>TIME<br>+ + + | SAMP<br>LAB | G.H. TEMP<br>Q DEPTH<br>+ + + + + + | F EC<br>F PH<br>• • • • | TURB<br>F CO2<br>+ + + + + | T ALK NO3 | D NO2<br>D NO3 | CONSTITU<br>D ORG N<br>T ORG N | ENTS IN NI<br>D NH3<br>T NH3<br>+ + + + | T NH3 + | DIS<br>A.H.PO4 | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P RE4 | |-----------------------|----------------------|-------------------------------------|-------------------------|----------------------------|---------------------|----------------|--------------------------------|-----------------------------------------|---------|----------------|--------------------|------------------------| | | | A2 L 045.4 225.5 | SHAS | TA LK LIT | TLE BACKBONE C INLE | T | A | 20AD CONTI | NUED | | | | | 02/28/84<br>1300 | 5050<br>5050 | 9.5¢<br>0 | 94<br>7•3 | 1AF | 0.02 | | *** | 0.00 | 0.1 | | 0.00 | <br>0.02 | | 02/29/84<br>1300 | 5050<br>5050 | 7.9C<br>148 | 95<br>7•2 | 2AF | 0.05 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 04/03/64<br>1230 | 5050<br><b>505</b> 0 | 7.3C<br>197 | 112<br>7.2 | | 0.09 | | | 0.00 | 0.1 | | 0.01 | 0.02 | | 04/03/84<br>1230 | 5050 | 13.0¢<br>0 | 98<br>7•4 | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 05/08/84<br>1130 | 5050 | 8.7C<br>138 | 7•3 | | 0.06 | | | 0.01 | 0.0 | | 0.01 | 0.02 | | 05/08/84<br>1130 | 5050 | 17.3C<br>0 | 93<br>7.6 | | 0.01 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | 06/07/84<br>1130 | 5050 | 9.8C<br>121 | 109<br>7•2 | | 0.07 | | ** | 0.00 | 0.0 | | 0.01 | 0.03 | | 06/07/84 | 5050 | 18.8C<br>0 | 98<br>7•5 | | 0.00 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | 07/11/84 | 5053 | 10.4C<br>148 | 108<br>7.2 | | 0.10 | | | 0.00 | 0.0 | | 0.02 | 0.03 | | 07/11/84 | 5050 | 25.7C<br>0 | 103<br>7.7 | | 0.03 | | | 0.02 | 0.0 | | 0.00 | 0.00 | | 08/14/84 | 5050 | 26.3C<br>0 | 7.2 | | 0.01 | | | 0.00 | 0.1 | | 0.00 | 0.00 | | 08/14/84 | 5050 | 14.0C<br>115 | 7.1 | | 0.08 | | 80 cm | 0.00 | 0.0 | | 0.01 | 0.03 | | 09/13/84 | 5050 | 16.10<br>98 | 121<br>7.0 | ZAF | 0.07 | | | 0.01 | 0.1 | | 0.01 | 0.02 | | 09/13/84 | 5050 | 22.9C<br>0 | 116<br>7•5 | 1AF | 0.01 | | | 0.01 | 0.1 | | 0.00 | 0.00 | | 10/17/84 | 5050 | 15.50<br>98 | 124<br>7•1 | ZAF | 0.08 | | | 0.00 | 0.0 | utio dali | 0.02 | 0.02 | | 10/17/84<br>1100 | 5050<br>5050 | 17.0C<br>0 | 124<br>7.3 | 1AF | 0.02 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | DATE<br>TIME<br>+ + + | SAMP<br>LAB | O DEPTH | F EC<br>F PH<br>+ + + | | FIELD<br>P ALK D NO2 +<br>T ALK NO3<br>+ + + + + + + + | D ND2<br>D ND3<br>+ + + | D DRG N<br>T DRG N | D NH3<br>T NH3 | ILLIGRANS<br>T NH3 +<br>ORG N<br>+ + + + + | DIS<br>A.H.PO4 | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P RE4 | |-----------------------|--------------|------------------|-----------------------|-----------|--------------------------------------------------------|-------------------------|--------------------|----------------|--------------------------------------------|----------------|--------------------|------------------------| | | | AZ L 046.4 212.9 | SHAS | TA LK SQU | IAW C BL ZINC C | | <b>A</b> | 20A0 | | | | | | 05/13/03<br>1045 | 5050<br>5050 | 14.0C<br>0 | 7.4 | | 0.00 | | | 0.02 | 0.1 | | 0.00 | <br>0.02 | | 05/13/83<br>1055 | 5050<br>5050 | 7.6C<br>197 | 7.2 | | 0.05 | | | 0.00 | 0.0 | | 0.01 | 0.03 | | 06/24/83<br>0900 | 5050<br>5050 | 22.3C<br>0 | 7.9 | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 06/24/83<br>0910 | 5050<br>5050 | 8.6C<br>230 | 7.3 | | 0.05 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 07/26/83<br>1155 | 5050<br>5050 | 10.2C<br>171 | 110<br>7.2 | | 0.08 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 07/28/83<br>1145 | 5050<br>5050 | 24•3C<br>0 | 100<br>8.1 | | 0.02 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 09/23/83<br>1045 | 5050<br>5050 | 25.8C<br>0 | 100<br>8.4 | 1AF | 0.00 | | | 0.01 | 0.1 | | 0.00 | <br>0.01 | | 08/23/83<br>1055 | 5050<br>5050 | 10.60<br>164 | 108<br>7•2 | 3AF | 0.08 | | | 0.01 | 0.0 | | 0.01 | <br>0.04 | | 09/29/83<br>0830 | 5050<br>5050 | 20.8C<br>0 | 7.7 | | 0.00 | | | 0.00 | 0.3 | | 0.00 | 0.01 | | 09/29/83<br>0840 | 5050<br>5050 | 12.2C<br>213 | 6.9 | | 0.10 | | | 0.00 | 0.1 | | 0.00 | 0.03 | | 10/28/83<br>0930 | 5050<br>5050 | 17.6C<br>0 | 113<br>7.5 | laf | 0.00 | | | 0.00 | 0.2 | | 0.00 | 0.01 | | 10/28/83<br>0940 | 5050<br>5050 | 12.6C<br>197 | 124<br>6.9 | 4AF | 0.11 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 12/19/83<br>0945 | 5050<br>5050 | 12.1C<br>0 | 112<br>7.3 | 1AF | 0.06 | | | 0.00 | 0.1 | | 0.01 | 0.02 | | 12/19/83<br>0955 | 5050<br>5050 | 8.5C<br>190 | 117<br>7•2 | 6AF | 0.08 | | | 0.01 | 0.1 | | 0.02 | 0.04 | | 01/23/84<br>1300 | 5050<br>5050 | 9.6¢<br>0 | 103<br>7•3 | 1AF | 0.04 | | | 0.00 | 0.1 | | 0.01 | 0.04 | | 01/23/84<br>1300 | 5050<br>5050 | 6.9C<br>243 | 102<br>7.2 | 1AF | 0.04 | | | 0.00 | 0.1 | | 0.01 | 0.04 | | DATE<br>TIME<br>+ + + + | SAMP<br>LAB | G.H. TEMP<br>Q DEPTH<br>+ + + + + + + | F EC<br>F PH<br>+ + + + | | T ALK NO3 | D NO2<br>D NO3 | D DRG N<br>T DRG N | ENTS IN MI<br>D NH3<br>T NH3 | T NH3 +<br>ORG N | DIS | D 0-P04<br>T 0-P04<br>+ + + + + | D TOT P T TOT P PEN + + + + + + + | |-------------------------|--------------|---------------------------------------|-------------------------|-----------|----------------|----------------|--------------------|------------------------------|------------------|-----|---------------------------------|-----------------------------------| | | | A2 L 046.4 212.9 | SHAS | TA LK SQU | AW C BL ZINC C | | A: | ZOAO CONTI | NUED | | | | | 02/27/84<br>1000 | 5050<br>5050 | 9.2C<br>0 | 108<br>7•6 | 1AF | 0.00 | | *- | 0.00 | 0.1 | | 0.00 | 0.02 | | 02/27/84<br>1000 | 5050<br>5050 | 6.9C<br>213 | 126<br>7.3 | 13AF | 0.08 | | | 0.01 | 0.1 | | 0.02 | 0.04 | | 04/02/84<br>1300 | 5050<br>5050 | 12.6C<br>0 | 106<br>7•6 | | 0.01 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | | 5050 | 7.40<br>213 | 129<br>7.3 | | 0+11 | | | 0.00 | 0.1 | | 0.01 | 0.04 | | | 5050 | 15.0C<br>0 | 100<br>7•6 | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | | 5050 | 7.9C<br>230 | 122<br>7.3 | | 0.11 | | | 0.00 | 0.0 | | 0.01 | 0.03 | | | 5050 | 20.20 | 105<br>7.7 | | 0.00 | | | 0.01 | 0.1 | | 0.00 | 0.01 | | | 5050 | 8•2C<br>220 | 125<br>7.2 | | 0.09 | | | 0.00 | 0.0 | | 0.01 | 0.03 | | | 5050 | 27.0C<br>0 | 109<br>7.6 | | 0.00 | | | 0.02 | 0.1 | | 0.00 | 0.01 | | | 5050 | 220 | 120<br>7•2 | | 0.10 | | | 0.00 | 0.0 | | 0.01 | 0.03 | | | 5050 | 27.20 | 8.0 | | 0.01 | | | 0.01 | 0.9 | | 0.00 | 0.01 | | | 5050 | 9.1C<br>226 | 7.1 | | 0.14 | | | 0.00 | 0.3 | | 0.01 | 0.15 | | | 5050 | 24.20 | 120<br>7.9 | 1AF | 0.02 | | | 0.01 | 0.1 | | 0.01 | 0.01 | | | 5050 | 9•3C<br>236 | 136<br>7.0 | 3AF | 0.17 | | | 0.01 | 0.0 | | 0.01 | 0.03 | | | 5050 | 17.7C<br>0 | 131<br>7.3 | 1AF | 0.01 | ~- | | 0.01 | 0.1 | | 0.00 | 0.02 | | 10/15/84<br>1100 | 5050<br>5050 | 9.7C<br>226 | 144<br>6.8 | 3AF | 0.20 | | | 0.01 | 0.0 | | 0.01 | 0.03 | | DATE<br>TIME<br>* * * | SAMP<br>LAB<br>+ + + | G.H.<br>Q<br>* * * * | TEMP<br>DEPTH<br>+ + + + | F EC<br>F PH<br>+ + + | TURB<br>F CO2<br>+ + + + | FIELD<br>P ALK<br>T ALK<br>+ + + + | D NO: | 3 | D MQ2<br>D NO3<br>+ + + + | D ORG N | M NI STNBU<br>CHN D<br>EHN T<br>+ + + + | T NH3 + | DIS | D D-P04<br>T D-P04 | D TOT P<br>T TOT P RE4<br>* * * * * * * | |-----------------------|----------------------|----------------------|--------------------------|-----------------------|--------------------------|------------------------------------|-------|---|---------------------------|---------|-----------------------------------------|---------|-------------|--------------------|-----------------------------------------| | | | A2 L 048.4 | 4 217.6 | SHAS | TA LK MC | CLDUD R | ARM | | | | 12440 | | | | | | 05/12/83<br>1015 | | | 11.50<br>0 | 8.0 | | | 0.01 | ı | | | 0.02 | 0.1 | | 0.01 | 0.03 | | 05/12/83<br>1025 | 5050<br>5050 | | 7.1C<br>223 | 7.2 | | | 0.04 | 4 | | | 0.00 | 0.0 | | 0.00 | 0.03 | | 06/22/83<br>0930 | 5050<br>5050 | | 21.3C<br>0 | 7.7 | | | 0.02 | 2 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 06/22/83<br>0940 | 5050 | | 8.0C<br>279 | 7•3 | - | | 0.05 | 5 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 07/28/83<br>0930 | 5050 | | 23.9C<br>0 | 98 | | | 0.00 | • | | | 0.00 | 0.5 | | 0.00 | 0.01 | | 07/28/83<br>0940 | 5050 | | 9.5C<br>197 | 90<br>7•3 | | | 0.05 | 5 | | | 0.00 | 0.3 | | 0.00 | 0.02 | | 08/24/83<br>0815 | 5050 | | 23•7C<br>0 | 98<br>7.9 | 2AF | | 0.00 | ) | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 08/24/83<br>0825 | 5050 | | 8.1C<br>279 | 90<br>7.1 | 2AF | | 0.07 | 7 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | 10/03/83<br>1100 | 5050 | | 19.8C<br>0 | 7.6 | | | 0.02 | ! | | | 0.00 | 0.1 | ** | 0.00 | 0.01 | | 10/03/83<br>1110 | 5050 | | 8.6C<br>279 | 6.9 | | | 0.09 | • | | | 0.01 | 0.0 | *** | 0.00 | 0.02 | | 10/26/83 | 5050 | | 17.5C<br>0 | 110<br>7•5 | 1AF | | 0.00 | ) | | ** | 0.00 | 0.2 | | 0.00 | 0.01 | | 10/26/83 | 5050 | | 8.1C<br>295 | 102<br>6.9 | 7AF | | 0.12 | ! | | | 0.01 | 0.1 | | 0.00 | 0.03 | | 12/20/83 | 5050 | | 11.8C<br>0 | 110<br>7.3 | 1AF | | 0.06 | • | | | 0.00 | 0.0 | | 0.01 | <br>0.02 | | 12/20/83 | 5050 | | 9.4C<br>197 | 98<br>7.2 | 4AF | | 0.05 | i | | 40 AP | 0.01 | 0.0 | | 0.01 | 0.03 | | 01/24/84<br>0830 | 5050 | | 9.1C<br>0 | 101<br>7.3 | 1AF | | 0.05 | i | | | 0.00 | 0.1 | *** | 0.01 | 0.02 | | 01/24/84<br>0830 | 5050<br>5050 | | 7.5C<br>230 | 115<br>7.2 | BAF | | 0.11 | | | | 0.01 | 0.2 | <del></del> | 0.03 | 0.04 | | | | | | | | FIELD | | CONSTITU | ENTS IN N | ILLIGRAMS | 969 ITTES | | | |------------------|-------------|------------|---------|-------|----------|---------------------|---------|-------------|-----------|-----------|-------------|-----------|---------------| | DATE | SAMP | 6.H. | TEMP | F EC | TURB | PALK DNO2 + | D NO2 | D DRG N | D NH3 | T NH3 + | DIS | | | | TINE | LAB | Q | DEPTH | F PH | F CO2 | T ALK NO3 | D NO3 | TOPCH | TMUS | OBC N | A 14 DO4 | D 0-P04 | D TOT P | | * * * * | * * * | * * * * * | * * * * | * * * | * * * * | * * * * * * * * * * | * * * * | * * • • • | | * * * * * | A 6 7 4 4 4 | T G-PG4 | T TOT P REY | | | | | | | | | | | | | | * * * * * | • • • • • • • | | | | A2 L 048.4 | 4 217.6 | SHAS | TA LK MO | CLOUD R ARM | | <b>A</b> : | 24AO CONT | TMHER | | | | | | | | | | | | | | | THOED | | | | | 02/28/84 | | | 8.20 | 103 | 1AF | 0.02 | | | 0.00 | | | | | | 0930 | 5050 | | 0 | 7.3 | | | | | | 0.1 | | 0.00 | | | | | | | • | | | | | | 0.1 | | | 0.01 | | 02/28/84 | | | 6.3C | 121 | BAF | 0.10 | | | 0.00 | | | 0.02 | | | 0730 | 5050 | | 312 | 7.2 | | | | | | 0.1 | | V.U2 | | | 04 (00 (04 | | | | | | | | | | *** | | | 0.04 | | 04/03/84<br>0900 | | | 12.1C | 103 | | 0.02 | | | 0.00 | | | 0.00 | | | 0400 | 5050 | | 0 | 7.6 | | | | | | 0.1 | | | 0.01 | | 04 (03 (0) | | | | | | | | | | *** | | | 0.01 | | 04/03/84 | | | 6.BC | 134 | | 0.12 | | | 0.00 | | | 0.01 | - | | 0930 | 5050 | | 331 | 7.3 | | | | | | 0.1 | | 0.01 | 0.04 | | 05/09/04 | = 0 = 0 | | ••• | | | | | | | ••• | | | 0.04 | | 05/08/84<br>0900 | 5050 | | 14.6C | 98 | | 0.00 | | | 0.00 | | | 0.00 | | | 0700 | 2020 | | 0 | 7.7 | | | | | | 0.0 | | | 0.01 | | 05/08/84 | <b>EDEA</b> | | 7 00 | | | | | | | | | | 0.01 | | 0900 | 5050 | | 7.0C | 117 | | 0.13 | | | 0.00 | | | 0.02 | | | 0700 | 2030 | • | 292 | 7.2 | | | | | | 0.0 | | | 0.04 | | 06/07/84 | BOEO | | 10 00 | | | | | | | | | | 0104 | | 0830 | 5050 | | 18.8C | 102 | | 0.00 | | | 0.01 | | | 0.00 | | | 4034 | 2020 | | 0 | 7.5 | | | | | | 0-1 | | | 0.01 | | 06/07/84 | 5050 | | 7.5C | 116 | | | | | | | | | | | 0830 | 5050 | | 279 | 7.2 | | 0+11 | | | 0.00 | | | 0.01 | | | | ,,,, | | 214 | 1 • 2 | | | | | | 0.0 | | | 0.04 | | 07/11/84 | 5050 | | 48.0F | 117 | | | | | | | | | | | 1000 | 5050 | | 295 | 7.1 | | 0.16 | | | 0.01 | | | 0.02 | | | | | | 213 | 1 + 7 | | | | | | 0.1 | | | 0.03 | | 07/11/84 | 5050 | | 26.00 | 106 | | | | | | | | | | | 1000 | 5050 | | 0 | 7.6 | | 0.02 | | | 0.00 | | | 0.00 | uni ap | | | | | • | | | | | | | 0.1 | | | 0.01 | | 08/14/84 | 5050 | | 7.5C | | | 0.11 | | | | | | | | | 0920 | 5050 | | 279 | 7.1 | | 0.11 | | | 0.00 | | | 0.01 | | | | | | | | | | | | | 0.0 | | | 0.03 | | 08/14/64 | 5050 | | 25.OC | | | 0.01 | | | 0.00 | | | | | | 0920 | 5050 | | 0 | 7.6 | | 0002 | | | 0.00 | | | 0.00 | <b></b> | | | | | | | | | | <del></del> | | 0.0 | | | 0.01 | | 09/13/84 | | | 7.20 | 131 | 6AF | 0.16 | | | 0.01 | | | | | | 1015 | 5050 | | 295 | 7.0 | | ***** | | | 0.01 | 0.1 | | 0.02 | | | | | | | | | | | | | 0.1 | | | 0.04 | | 09/13/84 | | | 22.8C | 116 | 1AF | 0.02 | | | 0.01 | | | | | | 1015 | 5050 | | 0 | 7.5 | | ~~~ | | | 0.01 | 0.1 | | 0.00 | | | | | | | | | | | - | | 0.1 | | | 0.00 | | 10/17/84 | | | 6.00 | | 7AF | 0.16 | | | 0.02 | | | 0.00 | | | 0830 | 5050 | | 298 | 7.0 | | | | | | 0.1 | | 0.02 | A A4 | | 10/17/54 | | | | | | | | | - | | | | 0.04 | | 10/17/84 | | | 16.9C | | 1AF | 0.02 | | | 0.01 | | | 0.01 | | | 0830 | 5050 | | D | 7.4 | | | | | | 0.1 | | 0.01 | | | | | | | | | | | | | ~~~ | | | 0.02 | | DATE<br>TIME<br>+ + + | SAMP<br>LAB<br>+ + + | | TEMP<br>DEPTH | | TURB<br>F CO2 | T ALK | D NO2 +<br>NO3<br>+ + + | D NO3 | D DRG N<br>T DRG N | ENTS IN P<br>D NH3<br>T NH3 | FILLIGRAMS<br>T NH3 +<br>DRG N | PER LITER<br>DIS<br>A.H.PO4<br>+ + + + | D 0-P04<br>T 0-P04<br>* * * * * | D TOT P<br>T TOT P RE4 | |-----------------------|----------------------|------------|---------------|------------|---------------|-------------|-------------------------|-------|--------------------|-----------------------------|--------------------------------|----------------------------------------|---------------------------------|------------------------| | | | A2 L 048.5 | 222.8 | SHAST | A LK S | ACRAMENTO ( | R ARM | | A | 2440 | | | | | | 05/16/83<br>1330 | 5050<br>5050 | 1 | 3.8C<br>0 | 7.4 | | | 0.00 | | | 0.01 | 0.1 | | 0.00 | <br>0.01 | | 05/16/83<br>1340 | 5050<br>5050 | | 6.8C<br>328 | 7.2 | | | 0.07 | | *- | 0.01 | 0.1 | | 0.02 | 0.04 | | 06/21/83<br>0830 | 5050 | 2 | 0.90 | 8.3 | | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 06/21/83<br>0840 | 5050 | | 344 | 7.2 | | | 0.08 | | | 0.00 | 0.1 | | 0.01 | 0.02 | | 07/27/83<br>0840 | 5050 | 2 | 3.3C<br>0 | 93<br>8•0 | | | 0.01 | | | 0.00 | 0 • 2 | | 0.00 | 0.01 | | 07/27/83<br>0850 | 5050 | | 7.9C<br>312 | 73<br>7•0 | | | 0.12 | | | 0.02 | 0.1 | | 0.00 | 0.02 | | 08/25/83<br>0815 | 5050 | | 3.9C<br>0 | 95<br>7•9 | 1AF | | 0.00 | | | 0.00 | 0.0 | | 0.00 | 0.00 | | 08/25/83 | 5050 | | 7.9C<br>308 | 80<br>7.0 | 3AF | | 0.10 | | ** | 0.00 | 0.0 | 100 100 | 0.00 | 0.02 | | 10/04/83 | 5050 | | 9.8C<br>0 | 7.5 | | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 10/04/83 | 5050 | | 8.3C<br>292 | 6.9 | | | 0.09 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | 10/27/83 | 5050 | | 7.20 | 108<br>7.4 | OAF | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.01 | | 10/27/83 | 5050 | | 7.9C<br>295 | 82<br>6.8 | 4AF | | 0.11 | *** | | 0.00 | 0.1 | | 0.00 | 0.02 | | 12/05/83 | 5050 | | 2.80 | 103 | 1AF | | 0.04 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | | 5050 | | 9.4C<br>279 | 80<br>6.8 | 5AF · | | 0.12 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | | 5050 | | 9.20 | 94<br>7.3 | 1AF | | 0.05 | | | 0.00 | 0.1 | | 0.01 | 0.02 | | 01/25/84<br>0930 | 5050<br>5050 | | 7•6C<br>285 | 108<br>7•2 | BAF | | 0.09 | | | 0.01 | 0.1 | | 0.03 | 0.04 | | | | | | | | FIELD | | | CONSTITU | ENTS IN MI | I I TERANS | PED LITED | | | |----------|-------|------------|---------|-------|----------|----------|-----------|-------|-----------|------------|------------|-----------|---------|---------| | DATE | SAMP | G.H. | TEMP | F EC | TURB | P ALK | D NO2 + | D N02 | D DRG N | D NH3 | T NH3 + | DIS | D 0-P04 | D TOT P | | TIME | LAB | Q | DEPTH | F PH | F CD2 | T ALK | ND3 | D N03 | T ORC N | T NUS | DDC N | A 11 DO4 | T 0 00/ | | | * * * * | * * * | * * * * * | * * * * | * * * | * * * * | * * * * | * * * * * | | * * * * * | * * * * * | * * * * * | * * * * * | | | | | | A2 L 048.5 | 222.8 | SHAS | TA ŁK SA | CRAHENTO | R ARM | | A | 24AO CONTI | NUED | | | | | 02/29/84 | 5050 | | 8.80 | 93 | 1AF | | 0.01 | | | 0.02 | | | | | | 0930 | 5050 | | 0 | 7.4 | | | 0,01 | | | | 0.1 | | 0.00 | 0.01 | | 02/29/84 | | | 6.40 | 118 | 6AF | | 0.10 | | | 0.00 | | | 0.02 | •• | | 0930 | 5050 | | 315 | 7.2 | | | | | | | 0.1 | | | 0.03 | | 04/04/84 | 5050 | | 11.50 | 9Z | | | 0.00 | | | 0.00 | | | 0.00 | | | 0930 | 5050 | | 0 | 7+7 | | | | | | | 0.1 | | | 0.01 | | 04/04/84 | | | 6.5C | 122 | | | 0.12 | | - | 0.00 | | | 0.01 | | | 0930 | 5050 | | 312 | 7.3 | | | | | | | 0.1 | | | 0.04 | | 05/09/84 | 5050 | | 14.80 | 96 | | | 0.00 | | | 0.00 | | | 0.00 | | | 0930 | 5050 | | 0 | 7.6 | | | | - | | | 0.1 | | | 0.01 | | 05/09/84 | 5050 | | 6.60 | 104 | | | 0.09 | | | 0.00 | | | 0.02 | | | 0930 | 5050 | | 308 | 7.2 | | | | | | | 0.1 | | | 0.03 | | 05/08/84 | | | 18.10 | 99 | | | 0.00 | - | | 0.00 | | | 0.00 | | | 1100 | 5050 | | 0 | 7.4 | | | | | | | 0.1 | | | 0.01 | | 06/08/84 | | | 7.3C | 101 | | | 0.08 | | | 0.00 | | | 0.02 | | | 1100 | 5050 | | 262 | 7.2 | | | | | | | 0.0 | | | 0.03 | | 07/12/84 | 5050 | | 25.4C | 101 | | | 0.01 | = | | 0.00 | | | 0.00 | | | 1000 | 5050 | | 0 | 7.6 | | | | | | | 0.0 | | | 0.01 | | 07/12/84 | 5050 | | 48.0F | 103 | | | 0.12 | | | 0.01 | | | 0.02 | | | 1000 | 5050 | | 279 | 7.1 | | | | | | | 0.1 | | | 0.04 | | 00/15/84 | | | 25.8C | | | | 0.01 | | | 0.00 | | | 0.00 | | | 1000 | 5050 | | 0 | 7.5 | | | | | | | 0.0 | | | 0.00 | | 08/15/84 | | | 7.00 | | | | 0.16 | | | 0.00 | | | 0.01 | | | 1000 | 5050 | | 302 | 6.8 | | | | | | | 0.0 | | | 0.03 | | 09/10/84 | | | 23.90 | 116 | 1AF | | 0.03 | | | 0.02 | | | 0.00 | | | 1100 | 5050 | | 0 | 7.6 | | | | | | *** | 0.1 | | | 0.00 | | 09/10/84 | | | 7.QC | 119 | 5AF | | 0.16 | | | 0.01 | | | 0.02 | | | 1100 | 5050 | | 295 | 6.9 | | | | | | | 0.0 | | | 0.03 | | 10/18/84 | | | 16.5C | | 1AF | | 0.02 | | | 0.01 | | | 0.01 | | | 0830 | 5050 | | 0 | 7.3 | | | | | | | 0.1 | | | 0.02 | | 10/18/84 | | | 6.8C | | 1AF | | 0.16 | | | 0.01 | | | 0.02 | | | 0830 | 5050 | | 282 | 6.7 | | | | | | | 0.1 | | | 0.03 | | DATE<br>TIME | SAMP<br>LAB | Q DE | EMP F <br>PTH F <br>* * * * * | PH F C02 | FIELD P ALK D NO2 + T ALK NO3 | D N03 | D ORS N<br>T DRG N | D NH3<br>T NH3 | ILLIGRAMS:<br>T NH3 +<br>ORG N<br>* * * * * | DIS<br>A.H.PG4 | D 0-P04<br>T G-P04<br>* * * * * | D TOT P<br>T TOT P RE4 | |--------------------------|---------------------|------------|---------------------------------|------------|-------------------------------|-------|--------------------|----------------|---------------------------------------------|----------------|---------------------------------|------------------------| | | | A2 1010.00 | : | SACRAMENTO | R A KESWICK | | | 1900 | | | | | | 04/29/83<br>09 <b>40</b> | 5050<br><b>5050</b> | e | | 32<br>• 0 | 0.02 | | | 0.01 | 0.0 | | 0.00 | 0.03 | | 06/17/83<br>1300 | 5050<br>5050 | 11 | | 36<br>.1 | 0.05 | | | 0.00 | 0.1 | | 0.00 | <br>0.02 | | 07/15/83<br>1300 | 5050<br>5050 | 11 | •10 g | 96<br>1 | 0.05 | | | 0.01 | 0.3 | | 0.00 | 0.02 | | 08/17/83<br>1130 | 5050<br>5050 | 11 | .70 ° | 96 2AF | 0.04 | | | 0.00 | 0.0 | | 0.01 | <br>0.0z | | 09/21/83<br>1310 | 5050<br>5050 | 11 | •90 9 | )1<br>.1 | 0.04 | ** | | 0.00 | 0.0 | | 0.01 | 0.02 | | 10/20/83<br>1030 | 5050<br>5050 | 12 | .8C 9 | 95 2AF | 0.05 | | | 0.00 | 0.1 | | 0.01 | <br>0.02 | | 11/30/83<br>1100 | 5050<br>5050 | 12 | •20 11<br>7 | | 0.08 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 01/11/84<br>1245 | 5050<br>5050 | 47 | .OF 10 | | 0.06 | | | 0.00 | 0.1 | | 0.01 | <br>0.03 | | 02/23/84<br>1405 | 5050<br>5050 | 47 | • OF 10 | | 0.07 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 03/28/84<br>1415 | 5050<br>5050 | 47 | •OF 11 | _ | 0.08 | | | 0.00 | 0.0 | | 0.00 | <br>0.03 | | 05/02/84<br>0915 | | 47 | .OF 12 | | 0.08 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | | | A2 1040.00 | S | ACRAMENTO | R A MATHESON | | A | 1900 | | | | | | 04/29/83<br>0820 | 5050<br>5050 | 9 | .40 9 | 16<br>2 | 0.03 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 06/20/83<br>1100 | 5050<br>5050 | 10 | •00 10<br>7. | | 0.07 | | | 0.00 | 0.1 | | 0.01 | 0.03 | | 07/15/83<br>1415 | 5050<br>5050 | 10 | .00 10<br>7. | _ | 0.07 | | | 0.00 | 0.2 | | 0.01 | <br>0.02 | | 08/17/83<br>1245 | 5050<br>5050 | 10 | .6C 9 | 7 2AF | 0.05 | | | 0.00 | 0.1 | ** | 0.01 | 0.02 | | 09/21/83<br>1340 | 5050<br>5050 | 12 | •5C 9 | )7<br>.3 | 0.04 | | | 0.00 | 0.1 | , <b></b> | 0.01 | 0.02 | | DATE<br>TIME<br>+ + + | SAMP<br>LAB<br>+ + + | 6.H.<br>0<br>+ + + + + | TEMP<br>DEPTH<br>+ + + | F EC<br>F PH<br>* * * * | TURB<br>F CO2<br>* * * * | FIELD P ALK D NO2 + T ALK NO3 + + + + + + + + + + + + + + + + + + + | D NO2<br>D NO3<br>+ + + + | D DRG N | D NH3 | ILLIGRAMS<br>T NH3 +<br>DRG N | DIS | D 0-P04<br>T 0-P04<br>+ + + + | D TOT P<br>T TOT P RE4 | |---------------------------|-----------------------|------------------------|------------------------|-------------------------|--------------------------|---------------------------------------------------------------------|---------------------------|---------|-----------|-------------------------------|-----|-------------------------------|------------------------| | | | A2 1040.0 | 00 | SACR | ANENTO | R A MATHESON | | A | 19CO CONT | INUED | | | | | 10/20/83<br>0 <b>9</b> 00 | | | 12.50 | 96<br>7•1 | 2AF | 0.06 | | | 0.00 | 0.1 | | 0.01 | 0.02 | | 11/30/83<br>0930 | 5050 | | 12.20 | 118<br>7.1 | 3AF | 0.08 | | | 0.01 | 0.1 | | 0.01 | 0.03 | | 01/11/84<br>1315 | 5050 | | 48.0F | 113<br>7.3 | 7AF | 0.07 | | | 0.01 | 0.1 | | 0.02 | 0.04 | | 02/23/84<br>1515 | 5050 | | 49.0F | 105<br>7•3 | 5AF | 0.06 | | | 0.00 | 0.1 | *** | 0.02 | 0.03 | | 03/28/84<br>1500 | 5050 | | 46.0F | 112<br>7.4 | | 0.08 | | | 0.00 | 0.1 | *** | 0.01 | 0.03 | | 05/02/84<br>0815 | 5050 | | 48.0F | 118<br>7.3 | | 0.08 | | | 0.00 | 0+1 | | 0.02 | 0.03 | | | | A2 1300.0 | 0 | SACR | AMENTO F | R A DELTA | | A | 2080 | | | | | | 04/27/83<br>1630 | | | 7.8C | 77<br>7•2 | | 0.02 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | 06/13/83<br>1445 | 5050 | | 12.80 | 69<br>7•4 | | 0.00 | | | 0.02 | 0.2 | | 0.00 | 0.01 | | - | 5050 | | 16.40 | 87<br>7•4 | | 0.02 | | ** | 0.03 | 0.6 | | 0.00 | <br>0.02 | | 08/19/83 | 5050 | | 18.10 | 115<br>7.8 | 1AF | 0.02 | | | 0.03 | 0.1 | | 0.06 | 0.07 | | 09/19/83<br>1545 | 5050 | | 16.70 | 128<br>8.3 | | 0.00 | | | 0.00 | 0.2 | | 0.00 | 0.02 | | 10/18/83 | 5050 | | 13.3C | 123<br>8.3 | | 0.02 | | | 0.01 | 0.2 | | 0.01 | 0.03 | | 11/29/83 | 5050 | | 6.10 | 102<br>7.3 | 1AF | 0.04 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | 01/09/84 | 5050 | | 45.0F<br>0 | 81<br>7•1 | ZAF | 0.03 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | 02/24/84 | 5050 | | 46.DF | 90<br>7•4 | | 0.02 | <del></del> | | 0.02 | 0.0 | ~~ | 0.01 | 0.01 | | 03/28/84<br>1630 | 5050<br>5 <b>0</b> 50 | | 52.0F | 93<br>7•6 | | 0.01 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | DATE<br>TIME<br>* * * * | SAMP<br>LAB<br>+ + + ( | G.H. TEMP<br>Q DEPTH<br>* * * * * * | F PH | TUR8<br>F CO2 | FIELD P ALK D NO2 + T ALK ND3 + + + + + + + + + | D NO2.<br>D NO3<br>+ + + + | D DRG N | D NH3 | LLIGRANS F<br>T NH3 +<br>ORG N<br>+ + + + | DIS | D 0-P04<br>T 0-P04<br>* * * * * | D TOT P<br>T TOT P RE1 | |-------------------------|------------------------|-------------------------------------|------------|---------------|-------------------------------------------------|----------------------------|---------|---------------|-------------------------------------------|-------------|---------------------------------|------------------------| | | | 1300.00 | SAC | RAMENTO R | A DELTA | | A | 2080 CONT | NUED | | | | | 05/03/84<br>1315 | | 51.0F | 90<br>7•4 | | 0.00 | ** | | 0.01 | 0.1 | | 0.00 | 0.02 | | 06/18/84<br>1330 | 5050<br>5050 | 69.0F | 110<br>8.2 | | 0.00 | | | 0.01 | 0.1 | | 0.00 | 0.02 | | | 5050 | 74.0F | 135<br>8.3 | | 0.01 | | | 0.01 | 0.1 | ~~ | 0.01 | 0.02 | | 09/23/84<br>1330 | 5050 | 64.0F<br>0 | 8.2 | | 0.02 | | | 0.00 | 0.1 | | 0.01 | 0.02 | | 07/19/84 | 5050 | 72.0F | 143<br>8.3 | 1AF | 0.02 | | | 0.01 | 0.1 | | 0.01 | 0.03 | | 10/24/84<br>1400 | 5050 | 50.5F | 7.8 | 1AF | 0.01 | | | 0.01 | 0.1 | | 0.01 | 0.02 | | | • | 2 2150.00 | MCC | LOUD R AB | SHASTA LK | | A | 22 <b>A</b> 1 | | | | | | 04/27/83<br>1430 | | 8.30 | 90<br>7.3 | | 0.02 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | | 5050 | 13.60 | 95<br>7•6 | | 0.00 | | | 0.00 | 0.2 | | 0.00 | 0.02 | | 07/13/83<br>1245 | 5050 | 17.20 | 112<br>8.0 | | 0.03 | | | 0.02 | 0.2 | | 0.00 | 0.02 | | 08/19/83<br>1115 | 5050 | 15.30 | 105<br>7•6 | 1AF | 0.02 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 09/19/83<br>1330 | 5050 | 14.40 | 100<br>8.1 | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 10/18/83<br>1200 | 5050 | 9.20 | 105<br>8.1 | | 0.03 | | | 0.01 | 0.1 | | 0.02 | 0.03 | | 11/29/83<br>1400 | 5050 | 6.10 | 110<br>7.3 | 1AF | 0.03 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | 01/09/84<br>1330 | 5050 | . 44•0F | 99<br>7•3 | 1AF | 0.00 | | | 0.00 | 0.0 | alado digna | 0.00 | 0.01 | | 02/22/84<br>0900 | 5050 | 30.6 | 115<br>7.8 | OAF | 0.02 | | | | 0.2 | | 0.00 | 0.01 | | 02/24/84<br>1320 | 5050<br>5050 | 45.0F | 7.6 | | 0.02 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | DATE<br>TIME<br>+ + + + | SAMP<br>LAB | | TEMP<br>DEPTH<br>+ + + | F EC<br>F PH | TURB<br>F CO2 | T ALK | D NO2 +<br>NO3 | D NDZ | D DRG N | D NH3 | ILLIGRAMS P<br>T NH3 +<br>ORG N<br>+ + + + | DIS | D 0-P04<br>T 0-P04<br>* * * * * | D TOT P<br>T TOT P REM | |-------------------------|--------------|------------|------------------------|--------------|---------------|------------|----------------|-------|---------|------------|--------------------------------------------|--------------|---------------------------------|------------------------| | • | | A2 2150.0 | 0 | | | S SHASTA L | | | | AZZA1 CONT | | | | | | 03/28/84<br>1430 | 5050<br>5050 | | 51.0F | 107<br>7•6 | | | 0.00 | | | 0.00 | 0.2 | <b>20-20</b> | 0.00 | 0.03 | | 05/03/84<br>1120 | 5050<br>5050 | | 52.0F | 118<br>7.8 | | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 05/18/64<br>1330 | 5050<br>5050 | ; | 13.00 | 164 | 1AF | | 0.02 | | | | 0.3 | | 0.00 | 0.01 | | 06/12/84<br>0815 | 5050<br>5050 | ; | 13.00 | 181<br>8.4 | 1AF | | 0.02 | | | | 0.3 | | 0.00 | <br>0.01 | | 06/18/84<br>1200 | 5050<br>5050 | 1 | 60.DF | 110<br>7.8 | | | 0.00 | | | 0.00 | 0.1 | | 0.00 | 0.02 | | 07/20/84<br>1230 | 5050<br>5050 | ( | 64.0F | 107<br>8.1 | | | 0.01 | | | 0.01 | 0.6 | | 0.00 | 0.39 | | 08/23/84<br>1150 | 5050<br>5050 | • | 60•0F<br>0 | 108<br>7.9 | | | 0.02 | | | 0.00 | 0.0 | | 0.01 | 0.02 | | 09/04/84<br>0815 | 5050<br>5050 | 1 | L4.0C | 200<br>7•8 | 1AF | | 0.03 | | | | 0.2 | dis-an- | 0.00 | 0.01 | | 09/19/84<br>1200 | 5050<br>5050 | ! | 58.0F | 110<br>7.8 | 1AF | | 0.02 | | | 0.02 | 0.0 | *** | 0.01 | <br>0.02 | | 10/23/84<br>0830 | 5050<br>5050 | 1 | 11.00 | 205<br>8.0 | ZAF | | 0.02 | | | | 000.3000 | | 0.00 | 0.00 | | 10/24/84<br>1230 | 5050<br>5050 | 4 | 7.0F | 110<br>7.5 | 1AF | | 0.01 | | | 0.01 | 0.0 | | 0.01 | <br>0.02 | | | | AZ 4100.00 | ) | SQUAW | C AB S | HASTA LK | | | A | 2280 | | | | | | 04/27/83<br>1230 | 5050<br>5050 | | 8.30 | 145<br>7•4 | | | 0.00 | | | 0.00 | 0.0 | | 0.00 | 0.02 | | | 5050 | 1 | 14.40 | 195<br>7.7 | | | 0.00 | | | 0.01 | 0.2 | | 0.00 | <br>0.02 | | | 5050 | 1 | 8.30 | 212<br>7.9 | | | 0.01 | | | 0.02 | 1.4 | | 0.00 | 0.04 | | | 5050 | 1 | 9.40 | 220<br>7•9 | DAF | | 0.02 | | | 0.03 | 0.1 | | 0.00 | <br>0.01 | | 09/19/83<br>1100 | 5050<br>5050 | i | 6.10 | 225<br>7.9 | | | 0.00 | | | 0.00 | 0.1 | | 0.00 | <br>0.01 | | DATE<br>TIME<br>+ + + + | SAMP<br>LAB<br>* * * | * * * * * * | EMP F E<br>PTH F P<br>* * * * * | H F CO2 | FIELD PALK D NO2 + T ALK NO3 * * * * * * * * * * * | D NO2<br>D NO3<br>+ + + + | CONSTITU<br>D DRG N<br>T DRG N | D NH3<br>T NH3 | T NH3 +<br>DRG N | PER LITER<br>DIS<br>A.H.PO4 | D 0-P04<br>T 0-P04 | D TOT P<br>T TOT P RE4 | |-------------------------|----------------------|-------------|---------------------------------|-----------|----------------------------------------------------|---------------------------|--------------------------------|----------------|------------------|-----------------------------|--------------------|------------------------| | | | A2 4100.00 | \$ | DUAW C AB | SHASTA LK | | A | 2280 CONT | TINUED | | | | | 10/18/63<br>1000 | 5050<br>5050 | 9 | •7C 23 | | 0.00 | | | 0.03 | 0.1 | <b>**</b> | 0.00 | 0.01 | | 11/29/83<br>1200 | 5050 | 6 | .70 18:<br>7.: | | 0.00 | | | 0.00 | 0.0 | | 0.00 | <br>0.01 | | 01/09/84<br>1100 | 5050 | 48 | 0 6.1 | | 0.01 | | | 0.02 | 0.1 | | 0.00 | 0.02 | | 02/24/84<br>1125 | 5050 | 45 | .OF 17!<br>7.! | | 0.01 | | | 0.00 | 0.0 | | 0.00 | <br>0.00 | | 03/28/84<br>1300 | 5050 | 49 | • OF 182<br>7•8 | | 0.01 | | | 0.01 | 0.0 | | 0.00 | <br>0•02 | | 05/03/84<br>0945 | | 50 | 0F 195<br>0 7.4 | | 0.00 | | | 0.00 | 0.0 | | | | | 06/18/84<br>1015 | 5050 | 62 | .OF 220<br>7.9 | | 0.00 | ~~ | - | 0.00 | 0.1 | | 0.00 | 0.02 | | 07/20/84<br>1100 | 5050 | 70 | 0F 225<br>8.0 | | 0.01 | | | 0.02 | 0.1 | *** | 0.00 | 0.02 | | 1000 | 5050 | 63. | OF 226<br>O 7.8 | | 0.02 | | | 0.00 | 0.0 | | 0.00 | 0.01 | | 1030 | 5050 | 62. | 7.6 | | 0.01 | | | 0.01 | 0.1 | | 0.00 | 0.02 | | 10/24/84<br>1100 | 5050<br>5050 | 47. | .5F 199<br>7•3 | | 0.00 | ## HP | | 0.01 | 0.0 | | 0.00 | 0.02 | #### MINERAL ANALYSES OF SURFACE WATER | DATE<br>Time | SAMPLER<br>LAB | ٥ | DD<br>TA2 | TEMP | FIE<br>LABOR<br>PH | LD<br>ATORY<br>EC | MINE | RAL ( | CONSTITU | ENTS | IN M | ILLIE | RAMS PE<br>QUIVALE<br>T REACT | NTS PE | R LIT | ER | LIGRAM<br>F | S PER | | SAR | RET | |------------------|----------------|---------|-----------|-------|--------------------|-------------------|------------|--------------|----------|----------|------|-------|-------------------------------|--------|-------|-----------|-------------|-------|-----------|-------|-------| | | | DEPTH | | | PH | 26 | CA | MG | NA | ĸ | | CO3 | SD4 | CL V | | B<br>Turb | | SUM | TH<br>NCH | ASAR | KEI | | | | * * * * | * * * | * * * | + + + | * * * | | | | | | | | | | | | | | | * * * | | | AO | 2100.0 | 00 | SA | CRAME | NTO R | A SACT | 0 | | | | | A05A2 | | | | | | | | | | 04/28/83 | 5050 | | 10.6 | 52.0F | 7.2 | 60 | 7.0 | 3.0 | 4.0 | •7 | 2 | 9 | 3.0 | 2.0 | | •1 | | | 30 | 0.3 | | | 1000 | 5050 | | | 11.10 | | | •35<br>44 | • 2 !<br>3 ? | .17 | .02<br>3 | | 8 | •06 | •06 | | 15AF | | 37 | 1 | 0 • 2 | \$ | | 06/16/83 | 5050 | | 10.0 | 60.8F | 6.9 | 88 | 6.0 | 3.0 | 5.0 | 1.1 | - | - | 3.0 | 3.0 | | .0 | | | 32 | 0.0 | | | 1000 | 5050 | | | 16.0C | | | •40<br>44 | · 25 | | •03 | | | •06 | .08 | | | | | | - | \$ | | 07/14/83 | 5050 | | 9.2 | 64.9F | 7.2 | 96 | 7.0 | 4.0 | 5.0 | . 8 | _ | _ | 5.0 | 2.0 | | .0 | | | 34 | 0.0 | | | 1040 | 5050 | | | 18.30 | , • • | | •35<br>38 | 33 | 3 .22 | •02<br>2 | | | •10 | .06 | | 8AF | **** | | • | | s | | 08/16/83 | 5050 | | 8.6 | 69.1F | 8.1 | 100 | 8.0 | 4.1 | B 5.0 | . 8 | - | - | 5.0 | 3.0 | | .0 | | | 36 | 0.0 | | | 1000 | 5050 | | | 20.60 | ••• | 200 | •40<br>41 | 3: | 3 .22 | •02 | | | •10 | .08 | | 7AF | | | • | | S | | 09/20/83 | 5050 | | 9.0 | 66.0F | 7.2 | 98 | 7.0 | 4.0 | 0 5.0 | .7 | _ | - | 4.0 | 3.0 | | .0 | | | 34 | 0.0 | | | 1100 | 5050 | | | 18.90 | | ,, | .35 | . 3 | | •02 | | | .08 | .08 | | 12AF | | | • | | | | £ | | | | | | | 38 | 3 | 6 24 | 2 | | | | | | | | | | | 2 | | 10/19/83 | 5050 | | 9.4 | 61.5F | 7.2 | 79 | 6.0 | 3.0 | 0 4.0 | •7 | - | - | 4.0 | 2.0 | | •0 | | | 28 | 0.0 | | | 1100 | 5050 | | 96 | 16.4C | | | •30 | • 2 | | •02 | | | .08 | .06 | | 3AF | | | | | | | | | | | | | | 41 | 3 | 4 23 | 3 | | | | | | | | | | | S | | 11/29/83 | | | | 52.0F | 7.6 | 58 | 5.0 | 2.0 | 0 2.0 | • 7 | | - | 3.0 | 1.0 | | .0 | | | 20 | 0.0 | | | 1100 | 5050 | | 96 | 11.1C | | | •25<br>48 | •1<br>3 | | •02 | | | • 06 | .03 | | 17AF | | | | | S | | | | | | | | | 70 | 3. | 1 17 | • | | | | | | | | | | | , | | 01/10/84 | | | | 48.2F | 7.1 | 85 | 8.0 | 4 . 1 | | . 8 | | - | 4.0 | 3.0 | | . 0 | | | 36 | 0.0 | | | 1100 | 5050 | | 98 | 9.00 | | | .40<br>43 | • 3:<br>3: | | .02 | | | .08 | . 08 | | 13AF | ~~ | | | | s | | | | | | | | | | _ | • | | | | | | | | | | | | | | 02/22/84<br>1110 | 5050<br>5050 | | 11.6 | 49.0F | 7.1 | 75 | 7.0<br>.35 | 3. | | .02 | | - | 5.0<br>.10 | 2.0 | | .0<br>7AF | | | 30 | 0.0 | | | 1110 | 3030 | | | 7.40 | | | 47 | 3 | | 3 | | | *** | • | | | | | | | S | | 04/02/84 | | | | 54.0F | | 100 | 9.0 | 4. | | • 6 | | - | 4.0 | 4.0 | | . 2 | | | 39 | 0.0 | | | 1325 | 5050 | | 100 | 12.20 | | | 44 | • 3 | | •02 | | | •08 | •11 | | | | | | | 2 | | 05/01/84 | 5050 | | 9.8 | 56.0F | 7.4 | 112 | 9.0 | 4. | 0 5.0 | . 8 | , - | - | 6.0 | 4.0 | | .1 | | | 39 | 0.0 | | | 1010 | 5050 | | | 13.3C | | | . 45 | • 3 | 3 .22 | •02 | ! | | .12 | .11 | | 10AF | | | - | | _ | | | | 0 | | | | | 44 | 3 | 2 22 | 2 | | | | | | | | | | | S | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | PH | ATORY<br>EC | C▲ | MG | N.A | ĸ | IN | MILLIEG<br>Percent<br>Acos | AMS PER<br>DUIVALER<br>REACTA | ITS PE | R LIT | ER<br>B | LIGRAMS<br>F<br>SIO2 | TDS | TH | SAR<br>ASAR | REY | |------------------|----------------|--------------------|-------------|----------------|------------|-------------|-----------------|---------------------|------------------|-----------------|-----|----------------------------|-------------------------------|------------|-------|------------|----------------------|-----|---------|-------------|-------| | | | | | | | | | | | * * | * * | • • • • | * * * | * * * | * * | * * * | * * * * | * * | • • • • | • • • | * * * | | | . AO | 2112. | 00 | S A | CRAME | NTO R | ELKH | ORN FE | RRY | | | | A0280 | | | | | | | | | | 06/16/83<br>1045 | 5050<br>5050 | | | 64.4F<br>18.0C | 7.1 | 110 | 10<br>•50<br>47 | 4.0<br>.33<br>31 | 5.0<br>.22<br>21 | .8<br>.02<br>2 | | | 2.0 | 3.0<br>.08 | | .0 | | | 42 | 0.0 | s | | 09/16/83<br>1045 | 5050<br>5050 | | | 71.1F<br>21.7C | 7.4 | 150 | 11<br>•55<br>38 | 6.0<br>.49<br>34 | 9.0<br>.39<br>27 | .9<br>.02<br>1 | | ** | 8.0<br>.17 | 4.0<br>.11 | | .0<br>13AF | | | 52 | 0.0 | s | | 09/20/83<br>1200 | 5050<br>5050 | | | 66.0F<br>18.9C | 7.4 | 175 | 12<br>•60<br>35 | 7.0<br>.58<br>34 | 11<br>.48<br>28 | 1.6<br>.04<br>2 | | <b></b> | 8.0<br>.17 | 8.0<br>.23 | | .0<br>14AF | | | 59 | 0.0 | s | | | AD | 2230• | 02 | SA | CRAME | NTO R A | 8 COL | USA BAS | SIN DR | | | | A07A0 | | | | | | | | | | 04/28/83 | 5050<br>5050 | 31.44 | 12.5<br>117 | 54.5F<br>12.5C | 7.5<br>8.0 | 148<br>148 | 13<br>•65<br>42 | 7.0<br>.58<br>37 | 7.0<br>.30<br>19 | .9<br>.02<br>1 | 1. | 57<br>14 | | 4.0 | | 36A | | | 62<br>5 | 0.4 | S | | 05/25/83<br>1300 | 5050<br>5050 | 29.86 | | 66.2F<br>19.0C | 7.8 | 134 | | | | | | <b>-</b> | | | | 41AF | | | | | - | | 06/16/83<br>1215 | 5050<br>5050 | | | 64.4F<br>18.0C | 7.1 | 128 | 11<br>•55<br>44 | 5.0<br>.41<br>33 | 6.0<br>•26<br>21 | .9<br>.02<br>2 | | | 7.0<br>.15 | 3.0<br>.08 | ** | •0 | | | 48 | 0.0 | \$ | | 06/22/83<br>1345 | 5050<br>5050 | 26.69 | | 66.2F<br>19.0C | 7.5 | 119 | | | | | | <b></b> | | | | 17AF | | | | | | | 07/14/83<br>1200 | 5050<br>5050 | | | 69.1F<br>20.6C | 7•4 | 128 | 10<br>•50<br>42 | 5 • 0<br>• 41<br>34 | 6.0<br>.26<br>22 | .9<br>.02<br>2 | | | 8.0<br>.17 | 3.0<br>.08 | | •1 | | | 46 | 0.0 | S | | 07/26/83<br>1105 | 5050<br>5050 | 23.09 | | 66.0F<br>20.0C | 7.5 | 118 | | | | | | | | | | 12AF | | | | | | | 08/16/83<br>1130 | 5050<br>5050 | | | 71.1F<br>21.7C | 7•5 | 130 | 10<br>•50<br>36 | 6.0<br>.49<br>37 | 7.0<br>.30<br>23 | .9 | , | | 7.0<br>.15 | 4.0<br>.11 | | .0<br>12AF | | | 50 | 0.0 | 5 | | 08/30/83<br>1205 | 5050<br>5050 | 24.86 | | 66.2F<br>19.0C | 7.5 | 137 | | | | | | | | | | 9AF | | | | | - | | DATE<br>TIME | SAMPLER<br>LAB | O<br>DEPTH | SAT | | | EC EC | C.A. | #C | MA | v | | MILLI<br>PERCE | GRAMS PEI<br>EQUIVALEI<br>NT REACTI | NTS PI | VALUE | TER<br>B | LLIGRAMS<br>F | TOS | TH | SAR | REM | |---------------------------|----------------|------------|-------------|----------------|-------|-------|-----------------|------------------|-----------|-----------------|-----|----------------|-------------------------------------|------------|-------|------------|------------------|-----|-----------|------|-----| | * * * * • | • • • • • | * * * * | * * * | * * * | * * * | * * * | *** | + + | * * * * * | *`* | + + | + + + | * * * * | * * : | * + + | TURB | \$102<br>* * * * | MU2 | NCH + + + | ASAR | | | | AO | 2230. | | | | | | | BASIN DR | | | | 407A0 ( | | | | | | | | | | 07/20/83 | 5050 | | 8.9 | 69.1F | | 165 | 12 | 7.0 | | | | | | | | | | | | | | | 1250 | 5050 | | | 20.60 | ,,,, | 103 | •60 | •56<br>36 | 8 .39 | 1.4<br>.04<br>2 | | | .25 | 5.0<br>.14 | | BAF | | | 59 | 0.0 | \$ | | 09/28/83<br>1235 | 5050<br>0000 | 22.64 | | 64.4F<br>18.0C | 7.4 | 120 | | | | | | | | | | | ** | | | | · | | 10/19/83<br>1220 | 5050<br>5050 | | | 59.5F<br>15.3C | 7.4 | 137 | 10<br>•50<br>39 | 6.0<br>•49 | 9 .26 | .8<br>.02<br>2 | | | 6.0<br>.12 | 3.0<br>.08 | | •0<br>3AF | | | 50 | 0.0 | 5 | | 10/26/83<br>0730 | 5050<br>5050 | 20.94 | | 59.9F<br>15.50 | 7.4 | 124 | | ~* | | | | 7-0 | | | | <br>7AF | | | | | • | | 11/29/83<br>1200 | 5050<br>5050 | | 10.7<br>96 | 51.4F<br>10.8C | 7.3 | 159 | 13<br>•65<br>39 | 7.0<br>.58 | 3 .39 | 1.2<br>.03<br>2 | | | 9.0<br>.19 | 5.0<br>.14 | | .0<br>46AF | | | 62 | 0.0 | \$ | | 11/29/83<br>1230 | 5050<br>5050 | 36.68 | 10.8<br>97 | 50.9F<br>10.5C | 7.4 | 165 | *** | | | | | | | enga ngian | | <br>38AF | | | | | · | | 01/03/84<br>1435 | 5050<br>5050 | 38.78 | 11.8<br>103 | 49.1F<br>9.5C | 7.2 | 136 | | | | | | | | | | 50AF | | | | | | | 01/10/84<br>1130 | 5050<br>5050 | | | 48.0F<br>8.9C | 7•3 | 158 | 14<br>•70<br>41 | 7.0<br>.56<br>34 | .39 | 1.1<br>.03<br>2 | | | 12<br>•25 | 5.0<br>.14 | | 0<br>23AF | | | 64 | 0.0 | s | | 01/25/84<br>1330 | 5050<br>5050 | 29.74 | 11.4<br>98 | 48.2F<br>9.0C | 7•4 | 149 | | | | | | | | | | <br>15AF | <u></u> | | | | J | | 02/22/84<br>1220 | 5050<br>5050 | | 11.0<br>98 | 51.0F<br>10.5C | 7.3 | 160 | 13<br>•65<br>38 | 8.0<br>.66<br>39 | • 35 | 1.0<br>.03<br>2 | | | .23 | 5.0<br>.14 | | .0<br>12AF | | | 66 | 0.0 | s | | 02/27/84<br>1120 | 5050<br>5050 | | 11.5 | 50.0F<br>10.0C | 7.7 | 160 | | | | | | | | *- | | 9AF | | | | | • | | 03/27/ <b>8</b> 4<br>1230 | 5050<br>5050 | | 10.7<br>102 | 56.0F<br>13.3C | 7.4 | 150 | 12<br>•60<br>41 | 6.0<br>.49<br>33 | •35 | 1.2<br>.03<br>2 | | | 8.0<br>•17 | 4.0<br>.11 | | .1<br>11AF | | | 54 | 0.0 | 3 | , | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DO<br>SAT | TEMP | FIEI<br>LABOR<br>PH | | MINE | RAL C | CONSTITU | ENTS | IN | MILLI | GRAMS PE<br>Equivale<br>Nt react | NTS P | ER LI | TER | LLIGRAMS | | | | | |---------------------------|----------------|--------------------|-------------|----------------|---------------------|------------|-----------------|------------------|----------|-----------------|-----|-----------|----------------------------------|------------|-------|-----------|-----------------------|------------|-----------|-------------|-------| | | * * * * | | * * * | * * * | | | EA + + | # # | HA | K * | * * | C A C D 2 | 604 | ~ . | 1100 | | F<br>\$102<br>* * * * | TDS<br>SUM | TH<br>NCH | SAR<br>ASAR | RE4 | | | | 2230. | | | | | | | ASIN DR | | | | A07A0 | | | | | | | | • • • | | 03/28/84<br>1240 | 5050<br>5050 | | | 55.4F<br>13.0C | 7.7 | 145 | | | | | | | | *** | | 6AF | | | | | | | 04/24/84<br>1330 | 5050<br>5050 | | | 64.4F<br>18.0C | 7.6 | 164 | | | | | | | <b>*</b> | | | <br>16AF | | | | | | | 05/01/84<br>1120 | 5050<br>5050 | 0 | | 58.0F<br>14.4C | 7.5 | 160 | 13<br>•65<br>44 | 6.0<br>.49<br>33 | .30 | 1.2<br>.03<br>2 | | | 8.0<br>.17 | 4.0 | | .1<br>8AF | | | 57 | 0.0 | \$ | | 05/30/ <b>8</b> 4<br>1055 | 5050<br>5050 | | | 73.4F<br>23.0C | 7.6 | 172 | | | • •- | | | | *** | | | BAF | | | | | - | | 06/18/84<br>1015 | 5050<br>5050 | | | 74.3F<br>23.5C | 7.4 | 151 | <b></b> | , <del></del> | | | | | | | | <br>12AF | | | | | | | 07/24/84<br>1105 | 5050<br>5050 | | | 66.2F<br>19.0C | 7.5 | 142 | | | | | | | | | | SAF | ** | | | | | | 08/21/84<br>0615 | 5050<br>5050 | | | 69.8F<br>21.0C | 7.8 | 160<br>161 | | | .48 | | | | | 5.0<br>.14 | | 10A | | | , | | s | | 08/21/84<br>1125 | 5050<br>5050 | | 8 • 4<br>95 | 71.6F<br>22.0C | 7.5 | 170 | | | | | | | *** | | | -L<br>6AF | | | | | • | | 09/25/84<br>1225 | 5050<br>5050 | | | 64.4F<br>18.0C | 7.7 | 132 | | ~- | | | | | | | | 7AF | | | | | | | 10/30/84<br>1045 | 5050<br>5050 | | | 57.2F<br>14.0C | 7•7 | 147 | | | ** | | | | | | | 3AF | | | | | | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | LD<br>ATORY<br>EC | MINE | ERAL | CONSTIT | UENTS | IN MI | LLIGRAMS PE<br>LLIEQUIVALE<br>RCENT REACT | NTS P | ER LII | ER | LLIGRAMS | | | | | |------------------|----------------|--------------------|-----------|-----------------|-------|-------------------|-----------|-------|-----------------|-------|-------|-------------------------------------------|------------|--------|------------|------------|------------|-----------|-------------|-------| | | | | | | | | CA | He | S NA | ĸ | ~ ~ ~ | ~ ~ ~ . | | | | F<br>\$102 | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REH | | * * * * * | * * * * * | * * * * | * * * * | * * * | * * * | * * * | * * * | * * 4 | * * * * | * * * | * * * | * * * * * • | . * * : | * * * | * * * | * * * * | * * | * * * * | | * * * | | | AO | 2320. | 00 | SA | CRAME | NTO R | A R-D | 70 F | PP NR GR | IMES | | A07A0 | | | | | | | | | | 04 (20 (03 | *** | | | | | | | | | | | | | | | | | | | | | 04/28/83<br>1330 | 5050<br>5050 | | | 55.0F<br>12.8C | 7.3 | 150 | 13 | 7: | | | | 8.0 | 3.0 | | .0 | | | 62 | 0.3 | | | 1330 | 2030 | | 73 | 12.00 | | | •65<br>43 | | 50 •26<br>38 17 | | | •17 | •08 | | 34AF | | 71 | 6 | 0.4 | _ | | 06/16/83 | 5050 | | 0.6 | 64.4F | | | | _ | | _ | | | | | | | | | | S | | 1300 | 5050 | | | 18.0C | / + 3 | 119 | .55 | 5. | | | | 8.0 | 3.0 | | •0 | | | 48 | 0.0 | | | , | | | | 20100 | | | 46 | | 11 .22<br>34 18 | | | .17 | • 08 | | | | | | | _ | | 07/3//02 | | | | | | | | | | _ | | | | | | | | | | 2 | | 07/14/83<br>1245 | 5050<br>5050 | | | 68.0F | 7.5 | 115 | 10 | 5. | | | | 6.0 | 2.0 | | .0 | | | 46 | 0.0 | | | **** | 2020 | | 101 | 20.0C | | | •50<br>43 | • 4 | 1 | | | •12 | • 06 | | 12AF | | | | | | | | | | | | | | 7.5 | 3 | )O TA | 2 | | | | | | | | | | S | | 08/16/83 | | | | 69.1F | 7.4 | 115 | 9.0 | 5. | 0 5.0 | . 9 | | 5.0 | 2.0 | | .0 | | | 43 | 0.0 | | | 1230 | 5050 | | 102 | 20.60 | | | • 45 | • 4 | | | | •10 | • 06 | | SAF | | | 73 | 0.0 | | | | | | | | | | 41 | 3 | 37 20 | 2 | | | | | | | | | | \$ | | 09/20/83 | 5050 | | 9.0 | 66.0F | 7.5 | 135 | 10 | 6. | 0 6.0 | 1.0 | | 5.0 | 3.0 | | | | | | | | | 1345 | 5050 | | | 18.90 | | | •50 | .4 | | | | •10 | •08 | | .1<br>7AF | | | 50 | 0.0 | | | | | | | | | | 39 | 3 | 8 20 | 2 | | | ••• | | | | | | | S | | 10/19/83 | 5050 | | 9.8 | 59.0F | 7.3 | 137 | 10 | 6. | 0 6.0 | . 8 | | 4.0 | | | | | | | | • | | 1315 | 5050 | | 97 | 15.0C | | | .50 | . 4 | | | | 6.0<br>.12 | 3.0<br>.08 | | .O<br>BAF | | | 50 | 0.0 | | | | | | | | | | 39 | | 9 20 | | | •== | ••• | | JAF | | | | | s | | 11/29/83 | 5050 | | 10.8 | 51.1F | 7. 3 | 147 | 13 | 6. | 0 8.0 | | | | | | | | | | | • | | 1300 | 5050 | | 97 | 10.6C | ,,,, | | •65 | • 4 | | | | 8.0<br>.17 | 4.0<br>.11 | | .0<br>38AF | | | 57 | 0.0 | | | | | | | | | | 43 | | 2 23 | | | •11 | •11 | | SOAF | | | | | S | | 01/10/84 | 5050 | | | 120 25 | | • • • | | | | | | | | | | | | | | 3 | | 1215 | 5050 | | 192 | 120.2F<br>49.0C | 1.3 | 130 | 12<br>•60 | 6. | | | | 10 | 3.0 | | .0 | | | 54 | 0.0 | | | | | | | .,,,, | | | 43 | | 6 19 | •03 | | • 21 | .08 | | 23AF | | | | | _ | | 03433464 | | | | | | | | - | • | • | | | | | | | | | | \$ | | 02/22/84<br>1305 | 5050<br>5050 | | 11.0 | | 7.3 | 153 | 13 | 7. | | | | 10 | 4.0 | | .0 | | | 62 | 0.0 | | | 1307 | 3030 | | 99 | 10.5C | | | •65 | .5 | | | | .21 | .11 | | 12AF | | | | ••• | | | | | | | | | | 42 | 3 | 7 19 | 2 | | | | | | | | | | \$ | | 03/27/64 | 5050 | | | | 7.4 | 140 | 12 | 6. | 0 7.0 | 1.2 | | 7.0 | 3.0 | | .1 | | | 54 | • • | | | 1145 | 5050 | | 99 | 12.8C | | - | .60 | . 4 | 9 .30 | | | .15 | .08 | | 9AF | | | 54 | 0.0 | | | | | | | | | | 42 | 3 | 5 21 | 2 | | | | | | | | | | \$ | | 05/01/84 | 5050 | | 10.2 | 58.0F | 7.4 | 150 | 13 | 6. | 0 7.0 | 1.2 | | 7 ^ | | _ | _ | | | | | | | 1200 | 5050 | | 100 | 14.4C | • • • | | •65 | . 4 | | | | 7.0<br>•15 | 4.0<br>.11 | | .0<br>4AF | | | 57 | 0.0 | | | | | 0 | | | | | 44 | 3 | | 2 | | | | | TMF | | | | | 2 | | | | | | | | | | | | | | | | | | | | | | - | | DATE<br>TIME | SAMPLER<br>LAB | | SAT | | FIEL<br>LABORA<br>PH | ATORY | MINER | AL CO | NSTITU | ENTS | IN HILL | IGRAMS PE | NTS PE | R LIT | ER | LIGRAMS | | | | | |------------------|----------------|---------|-------------|----------------|----------------------|-------|-----------|------------|------------|------|---------|--------------|------------|-------|------------|-------------|------------|-----------|-------------|-------| | | | | | | | | CA | NG | NA | K | | ENT REACT | | | | | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REY | | * * * * * • | | * * * * | * * * | * * * | * * * | * * * | * * * | * * * | * * * | * * | * * * * | * * * * * | * * * | * * | * * * | * * * * | * * 1 | | * * * | * * * | | | AO | 2500. | 00 | SA | CRAMEN | NTO R | A BUTTE | CITY | | | | A0700 | | | | | | | | | | 04/28/83<br>1430 | 5050<br>5050 | | 10.3<br>96 | 54.0F<br>12.2C | 7.3 | 140 | 12<br>•60 | 7.0<br>.58 | 6.0<br>.26 | | | 8.0<br>.17 | 3.0<br>.08 | •- | .1<br>62AF | | 70 | 59<br>4 | 0.3 | | | | | | | | | | 41 | 39 | 18 | 2 | | | | | | | | • | ••• | S | | 05/25/83<br>0845 | 5050<br>5050 | 76.74 | 10.0<br>103 | 62.6F<br>17.0C | 7.4 | 113 | | | | *** | | | | | 31AF | | | | | | | 07/26/83<br>0805 | 5050<br>5050 | 73.64 | 9.6<br>99 | 62.6F<br>17.0C | 7.4 | 111 | | | | | | | | | 5AF | | | | | | | 07/28/83<br>0820 | 5050<br>0000 | | 9.6<br>96 | 59.9F<br>15.5C | 7.3 | 114 | | | | | | | | | | | | | | | | 10/25/83<br>0825 | 5050<br>5050 | | 9.8<br>96 | 58.1F<br>14.5C | 7.4 | 128 | | | | | | •• | | | <br>2AF | | | | | | | 11/29/83<br>0835 | | 27800 | 10.8<br>97 | 50.9F<br>10.5C | 7•3 | 147 | | | | | | *** | | | <br>13AF | ~~ | | | | | | 01/03/84<br>1050 | 5050<br>5050 | 48200 | 12.1<br>105 | 48.2F<br>9.0C | 7.1 | 143 | | | *- | | | •• | | | <br>33AF | | | | | | | 01/25/84<br>0950 | | 17300 | 11.3<br>98 | 48.2F<br>9.0C | 7.2 | 156 | | | | | | | | | 9AF | | | | | | | 02/27/84<br>0835 | | 11800 | 11.6<br>100 | 48.2F<br>9.0C | 7.3 | 156 | | | | | | <b>6</b> -ma | | | 6AF | | | | | | | 03/28/84<br>0915 | | 15700 | 10.4<br>99 | 55.4F<br>13.0C | 7.5 | 148 | | | | | | *- | | | 7AF | <del></del> | | | | | | 04/24/84<br>0955 | 5050<br>5050 | | 9.9<br>98 | 59.0F<br>15.0C | 7.6 | 161 | | | - | | | ** | | | <br>22AF | | | | | | | 05/30/84<br>0815 | | 7080 | 9•1<br>99 | 67.1F<br>19.50 | 7.4 | 138 | | | | | | | | | <br>5AF | <br> | | | | | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DO<br>SAT | | FIE<br>LABOR<br>PH | LD<br>ATDRY<br>EC | MINE | RAL C | DNSTIT | JENTS | TAK MITI | LLIGRAMS P<br>LLIEQUIVAL | ENTS P | ER LIT | ER | | | | | | |------------------|----------------|--------------------|-----------|----------------|--------------------|-------------------|------------|------------|------------|--------------------|----------|-----------------------------------|------------|--------|------------|---------|------------|-----------|--------------|-------| | * * * * * | : | | * * * | | | | CA . | MG | NA. | K | | RCENT REAC<br>D3 SO4<br>+ + + + + | | | | \$102 | TDS<br>SUM | TH<br>NCH | SAR<br>AS AR | REM | | | | | | | | | | | | | * * * . | | * * * | * * * | | * * * * | * * | * * * * | * * * | * * * | | | AU | 2500• | 00 | 54 | ACRAME | NTO R | A BUTT | E CIT | Y | | | A07D0 | CONTI | NUED | | | | | | | | 06/18/84 | | | 9.2 | 66.2F | 7.4 | 135 | | | | | | *** | | | | | | | | | | 0735 | 5050 | 7370 | 99 | 19.00 | | | | | | | | | | | 4AF | | | | | | | 07/24/84 | 5050 | | 10.0 | 62.6F | 7.3 | 119 | | | | | | | | | | | | | | | | 0800 | 5050 | 9900 | 103 | 17.0C | | | | - | | | | | | | 17AF | | | | | | | | | | | | | | | | | | | | | | *1 | | | | | | | 08/21/84 | | | | 64.4F | 7.5 | 129 | | | | | | | | | | | | | | | | 0810 | 5050 | 7960 | 98 | 18.00 | | | | | | | | | | | 3AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 09/25/84<br>0925 | 5050<br>5050 | | | 57.2F<br>14.0C | 7.4 | 143 | | | | ~~ | | | | | | | | | | | | 4723 | 3030 | | 77 | 14.00 | | | | | | | | | | | 5AF | | | | | | | | AO | 2630. | 00 | SA | CRAME | NTO R | A HAMI | LTON ( | CITY | | | A1380 | | | | | | | | | | 04/28/83 | | | 10.3 | 53.1F | 7.3 | 120 | 10 | 6.0 | 5.0 | 1.0 | 46 | 7.0 | 2.0 | | | | | | | | | 1515 | 5050 | | 95 | 11.7C | | | •50 | .49 | .22 | .03 | .92 | .15 | | | .0<br>52AF | | 59 | 50<br>4 | 0.3 | | | | | | | | | | 40 | 40 | 18 | 2 | | | | | | | • | • | 0.5 | S | | 06/16/83 | | | 10.2 | 63.0F | 7.0 | 108 | 10 | 5.0 | 5.0 | 1.0 | | 6.0 | 2.0 | | • 0 | | | 46 | 0.0 | | | 1445 | 5050 | | 106 | 17.20 | | | •50 | • 41 | •22 | •03 | | •12 | | | ••• | | | 70 | 0.0 | | | | | | | | | | 43 | 35 | 19 | 3 | | | | | | | | | | \$ | | 07/14/83<br>1500 | 5050<br>5050 | | | 62.4F | 7.4 | 110 | 9.0 | 5.0 | 5.0 | .9 | | 6.0 | 2.0 | | •1 | | | 43 | 0.0 | | | 1700 | 2030 | | 104 | 16.90 | | | •45<br>41 | •41<br>37 | •22<br>20 | •02 | | •12 | •06 | | | | | ,• | | | | | | | | | | | 71 | 31 | 20 | 2 | | | | | | | | | | S | | 07/26/83<br>0715 | 5050<br>5050 | 30.74 | 10.0 | 59.0F<br>15.0C | 7•6 | 105 | | | | | | | | | | | | | | | | •••• | 3030 | | 77 | 19.00 | | | | | | | | | | | 3AF | | | | | | | 08/16/83 | 5050 | | 10.0 | 43.05 | <b>,</b> , | | | | | _ | | | | | | | | | | | | 1430 | 5050 | | 104 | 63.0F<br>17.2C | 1.4 | 105 | 9.0<br>.45 | 5.0<br>.41 | 5•0<br>•22 | • <del>•</del> • • | | 4.0<br>.08 | 2.0<br>.06 | | •0 | | | 43 | 0.0 | | | | | | | | | | 41 | 37 | 20 | 2 | | •00 | • 46 | | 3AF | | | | | s | | 09/20/83 | 5050 | | 10.1 | 63.0F | 7.5 | 120 | 9.0 | 6.0 | 4.0 | | | | | | | | | | | 3 | | 1600 | 5050 | | | 17.2C | , | 120 | •45 | .49 | 6.0<br>.26 | .9<br>.02 | | 4.0<br>.08 | 3.0<br>.08 | | .O<br>BAF | | | 47 | 0.0 | | | | | | | | | | 37 | 40 | 21 | 2 | | ••• | | | JAT | | | | | s | | 09/26/83 | 5050 | 30.69 | 10.0 | 58.1F | 7.4 | 109 | | | | | | | _ | | | | | | | • | | 0745 | 0000 | | | 14.5C | | | | | | | | | | | | | | | | | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | LD<br>Atory<br>EC | MINE | RAL C | ONSTITU | ENTS | IN | MILL | IGRAMS PE<br>IEQUIVALE | NTS PE | R LIT | ER | LLIGRAMS | | | | | |--------------------------|----------------|--------------------|-------------|-----------------|-----|-------------------|------------------------|------------------|------------------|-----------------|-----|-------|-----------------------------|------------|-------|------------|----------------------|-------------------|----------------------|-------------|-----| | * * * * * | | | | | | | * * * | # # | NA | к<br>* * | * 1 | CACDS | ENT REACT<br>504<br>* * * * | ~ 1 | 400 | T110 0 | F<br>SIO2<br>+ + + + | TDS<br>SUM<br>+ + | TH<br>NCH<br>• • • • | SAR<br>ASAR | RE1 | | | AD | 2630. | 00 | | | | A HANI | | | | | | A1380 | | | | | | | | | | 10/19/83<br>1530 | 5050<br>5050 | | | 57.9F<br>14.4C | 7.3 | 119 | 9.0<br>.45<br>39 | 5.0<br>.41<br>36 | | .02<br>20. | | | 6.0<br>.12 | 3.0<br>.08 | | 0.<br>2AF | | | 43 | 0.0 | 5 | | 10/25/83<br>0735 | 5050<br>5050 | 29.76 | 9.8<br>97 | 59.0F<br>15.0C | 7.5 | 116 | | | - | | | | | | | <br>2AF | | | | | - | | 11/29/83<br>0800 | 5050<br>5050 | 33.50 | 11.5<br>103 | 50.9F<br>10.5C | 7.3 | 131 | | | | | | | | | | 6AF | ** | | | | | | 11/29/83<br>1505 | 5050<br>5050 | | | 52.0F<br>11.1C | 7.3 | 120 | 10<br>•50<br><b>40</b> | 5.0<br>.41<br>33 | 7.0<br>.30<br>24 | 1.1<br>.03<br>2 | | | 5.0<br>.10 | 3.0<br>.08 | | •0<br>9AF | * <b></b> | | 46 | 0.0 | s | | 01/03/84<br>1000 | 5050<br>5050 | 35.88 | 12.0<br>104 | 48.2F<br>9.0C | 7.1 | 126 | | | *** | | | | | | | <br>10AF | | | | | | | 01/10/84<br>1415 | 5050<br>5050 | | 11.3<br>194 | 118.4F<br>48.0C | 7.3 | 124 | 12<br>•60<br>46 | 5.0<br>.41<br>32 | 6•0<br>•26<br>20 | 1.1<br>.03<br>2 | | | 7•0<br>•15 | 3.0<br>.08 | | .0<br>12AF | | | 50 | 0.0 | \$ | | 01/25/84<br>0850 | 5050<br>5050 | 31.45 | 11.6 | 47.3F<br>8.5C | 7.2 | 130 | | | | | | *** | | | | 6AF | | | | | | | 02/22/84<br>1505 | 5050<br>5050 | | 11.5 | 49.0F<br>9.4C | 7.2 | 127 | .55<br>41 | 6.0<br>.49<br>37 | 6.0<br>.26<br>20 | 1.0<br>.03<br>2 | | | 8+0<br>•17 | 4.0<br>.11 | •• | •1<br>9AF | | | 52 | 0.0 | s | | 02/27/84<br>0900 | 5050<br>5050 | 30.50 | 12.1 | 48.2F<br>9.0C | 7.2 | 137 | ** | | | | | | | | | 4AF | | | | | | | 03/27/ <b>84</b><br>1000 | 5050<br>5050 | | 11.0 | 51.5F<br>10.8C | 7.3 | 135 | 12<br>•60<br>45 | 5.0<br>.41<br>31 | 7.0<br>.30<br>22 | 1.2<br>.03<br>2 | | | 7.0<br>.15 | 3.0<br>.08 | | .1<br>4AF | | | 50 | 0.0 | \$ | | 03/28/84<br>0830 | 5050<br>5050 | 31.51 | 11.1 | 53.6F<br>12.0C | 7.5 | 134 | | | | | | | *** | | | 4AF | | | | | | | 04/24/84<br>0905 | 5050<br>5050 | 29.21 | | 57.2F<br>14.00 | 7.4 | 140 | | | | | | | *- | | | ZAF | | | | | | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | OO<br>TA2 | TEMP | | LD<br>ATORY<br>EC | MINE | RAL C | ONSTITU | JENTS | IN M | ILLIGRAMS<br>ILLIEQUIV<br>ERCENT RE | ALEN | ITS PE | R LIT | ER | LLIGRAMS | | | | | |------------------|----------------|--------------------|-----------|----------------|-------|-------------------|------------|-------------------|---------|-----------|-------|-------------------------------------|----------|---------|-------|-----------|------------|------------|-----------|-------------|-----| | | | | | | | | CA | MG | NA | K | • | ^~~ | | | | TURB | F<br>\$102 | TDS<br>SUM | TH<br>NCH | SAR<br>ASAR | RE4 | | * * * * . | | | * * * • | * * * | * * * | * * * | * * * | * * | * * * • | * * * | * * * | * * * * | * * | * * * | * * | | * * * * | | | + + + | | | | AO | 2630. | 00 | SA | CRAME | NTO R | I MAH A | LTON | CITY | | | - A13 | B0 C | ONTIN | IUED | | | | | | | | 05/01/84 | 5050 | | 10.0 | 57.0F | 7.4 | 120 | 11 | 5.0 | | | | | | | | _ | | | | | | | 1410 | 5050 | | 106 | 13.9C | ( • 7 | 130 | .55 | • 41 | | 1.2 | | | 12 | 4.0 | | .1<br>4AF | | | 48 | 0.0 | | | | | 0 | | | | | 44 | 33 | | 2 | | • | 46 | • • • • | | TAT | | | | | 5 | | 05/30/84 | 5050 | 29.43 | 9.3 | 64.4F | 7.4 | 120 | | | | | _ | _ | | | | | | | | | • | | 0735 | 5050 | 7270 | | 18.0C | | 120 | | | | | _ | | | | | 2AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 06/18/84 | 5050 | 29.60 | 9.6 | 64.4F | 7.3 | 122 | | | | | - | - | | | | | | | | | | | 0700 | 5050 | 7980 | | 18.0C | | | | | | | | | | | | 4AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 07/24/84 | | 30.45 | | 59.0F | 7.3 | 118 | | | | | _ | - | | | | | | | | | | | 0715 | 5050 | 10800 | 98 | 15.0C | | | | | | | | | | | | 3AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 08/21/84<br>0725 | 5050<br>5050 | 29.23<br>8760 | | 62.6F | 7.8 | 121 | | | | | - | - | | | | | | | | | | | 0123 | 3030 | 0/50 | 47 | 17.0C | | | | | | | | | | | | ZAF | | | | | | | 00/25/0/ | 5050 | | | | _ | | • | | | | | | | | | | | | | | | | 09/25/84<br>0745 | 5050<br>5050 | 29.57<br>7800 | | 57.2F<br>14.0C | 7.3 | 128 | | | | | - | - | | | | | | | | | | | | | | • | 1 | | | | | | | | | | | | 3AF | | | | | | | | <b>≜</b> O | 2731. | 00 | SA | CDAME | WTO 8 | A TENA | | | | | | | | | | | | | | | | | | 2,34 | • | 3. | CKANE | M19 K | A IEHAI | ПА | | | | A13 | ВО | | | | | | | | | | 04/28/83<br>1630 | 5050<br>5050 | | | 53.1F | 7.3 | 125 | 11 | 6.0 | | . 9 | | - | •0 | 2.0 | | • 0 | | | 52 | 0.3 | | | 1630 | 5050 | | AD | 11.70 | | | •55<br>43 | •49<br>38 | | •02<br>2 | | 6 . | 17 | • 06 | | 17AF | | 62 | 4 | 0.3 | | | 04.49.4.40.0 | | | | | | | ,, | 30 | | • | | | | | | | | | | | \$ | | 06/16/83<br>1600 | 5050<br>5050 | | | 60.1F<br>15.60 | 7.2 | 112 | 10<br>•50 | 5.0 | | . 8 | - | | 13 | 2.0 | | .0 | | | 46 | 0.0 | | | | 2020 | | 201 | 13400 | | | 43 | •4 <u>1</u><br>36 | | •02 | | • | 27 | .06 | | | | | | | | | 07/14/83 | 5050 | | 30.4 | | | | | | | _ | | | | | | | | | | | S | | 1630 | 5050 | | | 61.0F<br>16.1C | 1.4 | 115 | 9.0<br>.45 | 5.0<br>.41 | | .02 | - | | •0 | 2.0 | | .0 | | | 43 | 0.0 | | | | | | | | | | 41 | 37 | | 2 | | • | 12 | .06 | | 5AF | | | | | S | | 08/16/83 | 5050 | | 10.5 | 62.1F | 7.5 | 105 | 8.0 | 5.0 | * ^ | _ | | _ | _ | | | _ | | | | | , | | 1600 | 5050 | | 108 | 16.7C | (+) | 103 | •40 | • 41 | | .8<br>.02 | | • | •0<br>10 | 2.0 | | .O<br>SAF | | | 40 | 0.0 | | | | | | | | | | 38 | 39 | | 2 | | • | - • | | | JAF | | | | | s | | 09/20/83 | 5050 | | 10.5 | 61.0F | 7.6 | 117 | 8.0 | 6.0 | 5.0 | . 9 | _ | _ 4 | •0 | 3.0 | | _ | | | | | - | | 1730 | 5050 | | | 16.10 | | | .40 | . 49 | •22 | | | 7 | 06 | .08 | | .0<br>2AF | | | 44 | 0.0 | | | | | | | | | | 35 | 43 | 19 | 2 | | | | | | | | | | | S | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | LD<br>ATORY<br>EC | MINE | RAL C | CONSTITU | ENTS | IN | MILLI | GRAMS PE<br>EQUIVALE<br>NT REACT | NTS PE | R LI | TER | LIGRAMS<br>F | | | 5.1.0 | 5.54 | |------------------|----------------|--------------------|-----------|----------------|--------|-------------------|------------|-----------|----------|----------|-----|-------|----------------------------------|---------|------|-----------|--------------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | K | c | ACD2 | 40.2 | | 403 | B<br>Turb | F 7 0 0 | TDS<br>Sum | TH<br>NCH | SAR<br>ASAR | REM | | * * * * * | * * * * : | * * * * | * * * | * * * | * * * | * * * | * * * | * * | * * * * | * * | * * | * * * | * * * * | * * * | * * | * * * | * * * * | * * * | | * * * | * * * | | | A D | 2731. | 00 | S | ACRAME | NTO R | A TEHA! | HA . | | | | | A1380 | CONTIN | UED | | | | | | | | 10/19/63 | 5050 | | 10.5 | 58.5F | 7 2 | 112 | 9.0 | 5.0 | | | | | | | | _ | | | | | | | 1700 | 5050 | | | 14.70 | 7 . 3 | 112 | • 45 | •41 | | .02 | | | 5.0<br>.10 | 3.0 | | .0<br>2AF | | | 43 | 9.0 | | | | | | | | | | 41 | 37 | | 2 | | | | • • • • | | | | | | | S | | 12/01/83 | 5050 | | 10.7 | 53.4F | 7.2 | 123 | 10 | 6.0 | 7.0 | 1.1 | | | 5.0 | 3.0 | | .0 | | | 50 | | | | 0915 | 5050 | | | 11.90 | | | •50 | . 49 | | •03 | | | •10 | .08 | - | 5AF | | | 20 | 0.0 | | | | | | | | | | 38 | 37 | 23 | 2 | | | | | | | | | | | S | | 01/10/84 | 5050 | | 11.3 | 48.0F | 7.2 | 125 | 12 | 6.0 | 6.0 | 1.0 | | | 7.0 | 3.0 | | .0 | | | 54 | 0.0 | | | 1145 | 5050 | | 98 | 8.90 | | | •60 | .49 | •26 | •03 | | | •15 | .08 | | 11AF | | | 74 | 0.0 | | | | | | | | | | 43 | 36 | 19 | 2 | | | | | | | | | | | \$ | | 02/23/84 | | | | 45.0F | 7.3 | 140 | 12 | 7.0 | 6.0 | .9 | | | 9.0 | 4.0 | | .0 | | | 59 | 0.0 | | | 0830 | 5050 | | 98 | 7.20 | | | -60 | •58 | | .02 | | | •19 | .11 | | 6AF | | | | | | | | | | | | | | 41 | 40 | 18 | 1 | | | | | | | | | | | \$ | | 03/27/84 | | | | 51.0F | 7.4 | 137 | 11 | 6.0 | | 1.2 | | | 6.0 | 3.0 | | •1 | | | 52 | 0.0 | | | 0920 | 5050 | | 99 | 10.50 | | | •55<br>40 | .49<br>36 | | .03 | | | •12 | .08 | | 4AF | | | | | | | | | | | | | | 70 | 30 | 22 | 2 | | | | | | | | | | | S | | 05/04/84<br>0815 | | | | 54.5F | 7.4 | 138 | 11 | 5.0 | | 1.2 | | | 6.0 | 4.0 | | .1 | | | 48 | 0.0 | | | 0815 | 5050 | 0 | 104 | 12.5C | | | •55<br>44 | •41 | | •03<br>2 | | | •12 | •11 | | 4AF | | | | | _ | | | | • | | | | | | | . 21 | ۲. | | | | | | | | | | | 5 | | | AD | 2785. | 00 | S | CRAME | NTO R | A BEND | BR | | | | | A17AD | | | | | | | | | | 04/12/83 | 5050 | 21.21 | 11.0 | 49.1F | 7.3 | 129 | | | | | | | | | | | | | | | | | 0905 | 0000 | | 97 | 9.5C | | | | | | | | | | | | 22AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 05/11/83 | | 25.87 | | | | 106 | 10 | 4.0 | 5.0 | . 8 | | 41 | | 1.0 | | •1 | | | 42 | 0.3 | | | 0825 | 5050 | | 106 | 10.0C | 7.9 | 105 | • 50 | •33 | | •02 | | 8 2 | | .03 | | 114 | | | 1 | 0.3 | | | | | | | | | | 47 | 31 | . 21 | 2 | | | | | | | | | | | \$ | | 05/11/83 | | | | 50.0F | 7.2 | 115 | 10 | 4.0 | | . 8 | | 40 | 7.0 | 1.0 | | .0 | | | 42 | 0.3 | | | 1100 | 5050 | | 103 | 10.00 | | | •50<br>47 | . 33 | | •02 | | 80 | .15 | .03 | | 12AF | | 52 | 2 | 0.3 | | | | | | | | | | 7 ( | 31 | . 21 | 2 | | | | | | | | | | | \$ | | 06/10/83 | | 22.25 | | | 7.3 | 98 | | - | | | | | | | | | | | | | | | 1340 | 5050 | | 105 | 13.0C | | | | | | | | | | | | 11AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 06/17/83<br>0930 | 5050<br>5050 | | | 55.0F<br>12.8C | 7.2 | 97 | 9.0 | 4.0 | | . 8 | | | 4.0 | 2.0 | | • 0 | | | 39 | 0.0 | | | 0730 | 2020 | | 102 | 12.5C | | | • 45<br>46 | •33<br>34 | | •02<br>2 | | | • 08 | • 06 | | | | | | | | | | | | | | | | , • | 24 | | - | | | | | | | | | | | 5 | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DD<br>SAT | TEMP | FIEL<br>LABORA<br>PH | | HINE | RAL C | UTITZNC | ENTS | IN | MILLIE | RAMS PEI<br>Quivalei<br>T reacti | NTS P | ER LIT | MII<br>Er<br>B | LLIGRAMS<br>F | | | 548 | • - 4 | |------------------|----------------|--------------------|-------------|----------------|----------------------|-------|------------------|------------------|-----------------------|-----------------|-----|---------|----------------------------------|---------------|--------|----------------|---------------|-------|-----------|-------------|-------| | * * * * * | | | * * * | * * * | * * * | * * * | CA + + | MG<br>* * * | NA<br>+ + + | ★ * | * * | | | | | | | SUM | TH<br>NCH | SAR<br>ASAR | REY | | | | 2785. | | | CRAMEN | | | | | | | | A17A0 | | | | | * * * | • • • | • • • | • • • | | 07/06/83<br>0715 | 5050<br>5050 | | | 54.5F<br>12.5C | 7.3 | 97 | | | | | | | | | | JAF | | | | | | | 07/15/83<br>0915 | 5050<br>5050 | | 10.3<br>96 | 55.0F<br>12.8C | 7.3 | 103 | 9.0<br>.45<br>44 | 4.0<br>•33<br>32 | 5.0<br>.22<br>22 | .02 | | | 6.0<br>.12 | 2.0 | | •0<br>4AF | | | 39 | 0.0 | 5 | | 08/16/83<br>0740 | 5050<br>5050 | 12.06 | 11.0<br>110 | 59.0F<br>15.0C | 8.2 | 90 | | | | | | | <b>40</b> 0 m/m | | | 3AF | | | | | · | | 08/17/83<br>0845 | 5050<br>5050 | | 10.1<br>97 | 55.6F<br>13.1C | 7.2 | 100 | 8.0<br>.40<br>41 | 4.0<br>.33<br>34 | 5 • 0<br>• 2 2<br>2 3 | .02 | | | 4.0<br>.08 | 2.0<br>.06 | | 0<br>3AF | | | 36 | 0.0 | 5 | | 09/21/83<br>0840 | 5050<br>5050 | | 10.8 | 55.0F<br>12.8C | 7.3 | 105 | 8.0<br>•40<br>40 | 5.0<br>.41<br>41 | 4.0<br>.17<br>17 | •8<br>•02<br>2 | | | 4.0<br>.08 | 2 • 0<br>• 06 | | •1<br>2AF | | | 40 | 0.0 | s | | 09/26/83<br>0700 | 5050<br>5050 | 11.03 | | 55.4F<br>13.0C | 7•2 | 100 | | | | | | | | | | 3AF | | | | | | | 10/20/83<br>1400 | 5050<br>5050 | | | 55.9F<br>13.3C | 7•3 | 100 | 8.0<br>.40<br>40 | 5.0<br>.41<br>41 | 4.0<br>.17<br>17 | •7<br>•02<br>2 | | | 4.0<br>.08 | 2.0 | | .0<br>3AF | | | 40 | 0.0 | s | | 11/15/83<br>0830 | 5050<br>5050 | 13.05 | | 53.6F<br>12.0C | 7.5 | 123 | | | | | | | | | | 5AF | | | | | | | 11/30/83<br>1430 | 5050<br>5050 | | 10.4<br>97 | 54.0F<br>12.2C | 7•2 | 122 | 10<br>•50<br>42 | 5.0<br>.41<br>34 | 6•0<br>•26<br>22 | 1.1<br>.03<br>3 | | *- | 5.0<br>.10 | 2.0 | | •0<br>4AF | | | 46 | 0.0 | s | | 12/21/83<br>0915 | 5050<br>5050 | 19.16 | 11.5<br>101 | 49.1F<br>9.5C | 7.2 | 113 | | | •• | ~- | | <b></b> | | | | 8AF | | | | | | | 01/11/84<br>1015 | 5050<br>5050 | | | 47.0F<br>8.3C | 7.1 | 110 | 10<br>•50<br>42 | 5.0<br>.41<br>34 | 6•0<br>•26<br>22 | 1.0<br>.03<br>3 | | | 7.0<br>•15 | 2.0<br>.06 | *** | •0<br>9AF | | | 46 | 0.0 | s | | 02/23/84<br>1130 | 5050<br>5050 | | 11.5<br>98 | 47.0F<br>8.3C | 7.2 | 120 | 11<br>•55<br>41 | 6.0<br>.49<br>37 | 6.0<br>•26<br>20 | 1.0<br>.03<br>2 | | | 10<br>•21 | 3.0<br>.08 | | •0<br>6AF | | | 52 | 0.0 | S | | DATE<br>Time | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>Sat | TEMP | FIEL<br>LABORA<br>PH | .D<br>Tory<br>EC | MINER | RAL | CONSTITU | ENTS | IN | MILLIE | RAMS PE | NTS PE | R LITE | R | LLIGRAMS | PER | LITER | | | |------------------|----------------|--------------------|-------------|----------------|----------------------|------------------|-----------------|-------------|----------|-----------------|-----|----------------|---------------------------|------------|--------|-----------|----------|-------------------|-------|----------------------|---------| | * * * * * | | | • • • | | | | CA + | #6<br>+ + | NA + + + | <b>K</b><br>• • | • • | | T REACT<br>SU4<br>+ + + + | | | | | TDS<br>SUM<br>+ + | | SAR<br>ASAR<br>+ + + | REH + + | | | AO | 2785. | 00 | SA | CRAMEN | TO R | A BEND | BR | | | | | A17A0 | CONTIN | IUED | | | | | | | | 02/23/84<br>1245 | 5050<br>5050 | 10.32 | 11.8 | 46.4F<br>8.0C | 7.3 | 129 | | - | | | | | | | | 5AF | | | | | | | 03/26/84<br>0750 | 5050<br>5050 | 12.05 | 10.7<br>95 | 50.0F<br>10.0C | 7.3 | 130 | | - | | ** | | | ~. | | | 3AF | | | | | | | 03/28/84<br>1030 | 5050<br>5050 | | 11.2<br>101 | 51.0F<br>10.5C | 7.3 | 110 | 10<br>•50<br>42 | 5.4<br>3 | 1 .25 | | | •• | 7.0<br>.15 | 3.0<br>.08 | | .2<br>4AF | | | 46 | 0.0 | s | | 04/12/84<br>1345 | 5050<br>5050 | 10.49 | 11.8 | 55.4F<br>13.0C | 7.5 | 124 | | - | ~ ~- | | | | | | | 3AF | | | | | - | | 05/02/84<br>1215 | 5050<br>5050 | 0 | | 51.5F<br>10.8C | 7.4 | 127 | 10<br>•50<br>42 | 5.4:<br>-4: | 1 .26 | 1.2<br>.03<br>3 | | | 6.0<br>•12 | 3.0<br>.08 | | .1<br>5AF | | | 46 | 0.0 | s | | 05/25/84<br>0650 | 5050<br>5050 | 10.32 | 10.2<br>97 | 55.4F<br>13.0C | 7.3 | 118 | | | | | | | | | | 3AF | | | | | | | 06/13/84<br>1035 | 5050<br>5050 | 10.52 | | 56.3F<br>13.5C | 7.4 | 124 | | | | | | | | | | <br>44F | | | | | | | 07/20/84<br>0645 | 5050<br>5050 | 11.92 | 10.0<br>97 | 57.2F<br>14.0C | 7.3 | 118 | | | | | | <del>**=</del> | | | 2 | BAF | | | | | | | 09/08/84<br>1040 | 5050<br>5050 | 11.96 | 10.1<br>98 | 57.2F<br>14.0C | 7.3 | 122 | | | | | | | | | | <br>4AF | | | | | | | 09/11/84<br>0645 | 5050<br>5050 | 9.76 | 10.0 | 59.0F<br>15.0C | 7.5 | 114 | | | | | | | | | | ZAF | | | | | | | 10/24/84<br>1125 | 5050<br>5050 | 8.94 | 10.1<br>101 | 59.0F<br>15.0C | 7.4 | 143 | | | | | | *** | | | | 3AF | | | | | | | No. Part P | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DD<br>SAT | TEMP | FIEI<br>LABOR:<br>PH | | MINE | RAL C | ONSTITU | JENTS | IN M | ILLIGRA<br>ILLIEGO<br>EDCENT | JIVALE | NTS PE | R LII | FER | LLIGRAMS | | | • | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------------|-----------|-------|----------------------|-------|--------|--------|---------|-------|-------|------------------------------|--------|--------|-------|-------|----------|-----|---------|-------|-------| | 06/20/63 5050 10.0 52.0F 7.3 98 0.0 4.0 4.0 4.0 7.7 5.0F 7.3 98 0.0 4.0 4.0 4.0 7.7 5.0F 7.3 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | | | | | | | | CA | MG | NA. | K | | COD | 0.04 | | | **** | | | | | REM | | 04/29/83 5050 10.0 52.0F 7.0 90 8.0 4.0 4.0 .77 33 4.0 2.00 42 36 0.3 1110 5050 92 11.1C 90 8.0 4.0 4.0 .77 4.0 1.0 4.0 1.0 42 4 0.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | | | | * * * * | • • • | * * * | * * * | * * * | * * : | | * * * | * * * | * * * | * * * | * * * | * * | * * * | * * * * | * * | * * * * | * * * | * * * | | 1130 5050 | | A D | 2815. | 00 | Si | CRAME | NTO R | A BALL | S FERI | RY | | | | 17A0 | | | | | | | | | | 1130 5050 92 11.1C 4.0 133 17 .02 1.05 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 | 04/29/83 | 5050 | | 10.0 | 52.0F | 7.0 | 90 | R. A | 4 0 | 4.0 | • | • | • | | | | _ | | | | | | | 05/20/63 5050 | 1130 | 5050 | | | | | 70 | | - | | | | - | | | | | | 4.9 | | | | | D5/20/83 D500 D10 D1. D7 S4.0F 7.2 P8 P.0 S.0 | | | | | | | | 43 | 36 | | | | - | ••• | ••• | | 7.441 | | 72 | • | 0.2 | S. | | 0900 5050 100 11.1C | | 5050 | | 10.9 | 52.0F | 7.2 | 98 | 9.0 | 4.0 | 4.0 | . 7 | | _ | A . A | 1 0 | | • | | | | | • | | 07/15/83 5050 10.1 554.0F 7.2 99 8.0 4.0 4.0 4.0 4.0 2.0 4.0 2.0 40 2.4F 36 0.0 10/20/83 5050 10.1 554.0F 7.2 99 8.0 4.0 4.0 4.0 4.0 4.0 4.0 2.0 2AF 36 0.0 10/20/83 5050 10.1 554.0F 7.2 99 8.0 5.0 4.0 4.1 17 2 4.0 2.0 4.0 2.0 40 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 40 0.0 2.0 2.0 40 0.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2. | 0900 | 5050 | | | | | | | | | | | | | | | .0 | | | 39 | 0.0 | | | 1030 5050 101 12.2C | | | | | | | | 46 | 34 | 18 | 2 | | | | | | | | | | | 5 | | 1030 5050 101 12.2C | | | | | | 7.3 | 98 | 8.0 | 4.0 | 4.0 | . 9 | · | _ | 5.0 | 1.0 | | . 0 | | | 24 | | | | 1245 5050 102 12.2C 7.3 100 6.0 4.0 5.0 .9 4.0 2.00 36 0.0 5.0 102 12.2C 7.3 100 6.0 4.0 .33 .22 .02 108 .06 2AF 36 0.0 5.0 100 5.00 100 5.00 97 13.3C 7.2 99 6.0 5.0 4.0 .9 4.0 2.0 2AF 40 0.0 100 5.00 97 13.3C 7.2 99 6.0 5.0 4.0 .9 4.0 2.0 2AF 40 0.0 102 102 102 102 102 102 102 102 102 10 | 1030 | 5050 | | 101 | 12.2C | | | | | | •02 | | | | | | | | | 30 | 0.0 | | | 1245 5050 102 12.2C | | | | | | | | 43 | 36 | 18 | 2 | | | | | | | | | | | S | | 102 12.2C | | | | 10.9 | 54.0F | 7.3 | 100 | 8.0 | 4.0 | 5.0 | . 9 | - | _ | 4.0 | 2.0 | | - 0 | | | 24 | | | | 09/21/83 5050 | 1245 | 5050 | | 102 | 12.20 | | | | | | | | | | | | | | | 30 | 0.0 | | | 1000 5050 | | | | | | | | 41 | 34 | 23 | 2 | | | | | | | | | | | \$ | | 10/20/83 5050 10.7 55.9F 7.3 98 7.0 5.0 4.0 4.0 4.0 4.0 2.0 3.0 38 0.0 1245 5050 103 13.3C 3.3 | | | | | | 7.2 | 99 | 8.0 | 5.0 | 4.0 | . 9 | | - | 4.0 | 2.0 | | .0 | | | 40 | | | | 10/20/83 5050 | 1000 | 5050 | | 97 | 13.3C | | | | | | | | | | | | | | | 70 | 0.0 | | | 1245 5050 103 13.3C | | | | | | | | 40 | 41 | 17 | 2 | | | | | | | | | | | \$ | | 12/01/83 5050 | | | | | | 7.3 | 98 | 7.0 | 5.0 | 4.0 | •6 | | _ | 4.0 | 2.0 | | -0 | | | 20 | 0.0 | | | 12/01/83 5050 | 1245 | 5050 | | 103 | 13.3¢ | | | | | | | | | | | | | | | 36 | 0.0 | | | 1330 5050 97 12.2C | | | | | | | | 37 | 43 | 18 | 2 | | | | | | | | | | | 5 | | 1330 5050 97 12.2C .45 .41 .30 .03 .03 .08 .08 .08 .3AF 5050 01/11/84 5050 11.4 48.0F 7.2 109 9.0 4.0 6.0 1.0 4.0 2.00 39 0.0 1030 5050 99 8.9C .45 .33 .26 .03 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 3 .24 | | | | 10.3 | 54.0F | 7.2 | 118 | 9.0 | 5.0 | 7.0 | 1.1 | | - | 4.0 | 3.0 | | -0 | | | 43 | 0.0 | | | 01/11/84 5050 | 1330 | 5050 | | 97 | 12.2C | | | | | | | | | | | | | | | 7.3 | 0.0 | | | 1030 5050 99 8.9C .45 .33 .26 .03 .08 .06 .8AF 39 0.0 03/05/84 5050 11.8 51.0F 7.3 130 11 5.0 8.0 1.3 9.0 3.00 48 0.0 1325 5050 107 10.5C .55 .41 .35 .03 .19 .08 .5AF 5AF 50 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1 | | | | | | | | 38 | 34 | 25 | 3 | | | | | | | | | | | 2 | | 1030 5050 | | | | | | 7.2 | 109 | 9.0 | 4.0 | 6.0 | 1.0 | | - | 4.0 | 2.0 | | .0 | | | 30 | 0.0 | | | 03/05/84 5050 | 1030 | 2020 | | 99 | 8.9C | | | | | | | | | .08 | •06 | | | - | | • | 0.0 | | | 1325 5050 107 10.5C .55 .41 .35 .03 .03 .19 .08 .5AF 48 0.0 03/28/84 5050 11.4 50.0F 7.3 119 10 5.0 7.0 1.2 6.0 3.0 2 46 0.0 1200 5050 10.0C .50 .41 .30 .03 .24 .2 05/02/84 5050 11.6 51.0F 7.3 138 10 5.0 6.0 1.1 6.0 3.00 46 0.0 1115 5050 10.5C .50 .41 .26 .03 3AF | | | | | | | | 76 | 31 | 24 | 3 | | | | | | | | | | | 2 | | 03/28/84 5050 11.4 50.0F 7.3 119 10 5.0 7.0 1.2 6.0 3.02 46 0.0 1200 5050 11.6 51.0F 7.3 138 10 5.0 6.0 1.1 6.0 3.00 46 0.0 11.5 5050 105 10.5C 50 41 .26 .03 12 .08 3AF | | • | | 11.8 | 51.0F | 7.3 | 130 | | 5.0 | 8.0 | 1.3 | | - | 9.0 | 3.0 | | .0 | | | 48 | 0.0 | | | 03/28/84 5050 | 1325 | 2020 | | 107 | 10.5C | | | | | | | | | .19 | .08 | | | | | *** | ••• | | | 1200 5050 102 10.0C .50 .41 .30 .03 .12 .08 .4F 46 0.0 .05/02/64 5050 11.6 51.0F 7.3 138 10 5.0 6.0 1.1 6.0 3.00 46 0.0 .115 5050 10.5C .50 .41 .26 .03 .12 .08 .3AF | | | | | | | | 41 | 31 | 26 | Z | | | | | | | | | | | S | | 1200 5050 102 10.0C .50 .41 .30 .03 .12 .08 .4F50 .41 .30 .03 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .08 .12 .12 .08 .12 .12 .08 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12 | | | • | | | 7.3 | 119 | | 5.0 | 7.0 | 1.2 | | - | 6.0 | 3.0 | | . 2 | | | 46 | 0.0 | | | 05/02/84 5050 | 1200 | 5050 | | 102 | 10.0C | | | | | | | | | .12 | .08 | | | | | | 0.0 | | | 1115 5050 105 10.5C .50 .41 .26 .03 .12 .08 3AF | | | | | | | | 70 | 33 | 24 | Z | | | | | | | | | | | 3 | | 1115 5050 105 10.5C .50 .41 .26 .03 .12 .08 3AF | | | | | | 7.3 | 138 | - | | 6.0 | 1.1 | | - | 6.0 | 3.0 | | .0 | | | 46 | 0.0 | | | 74 37 42 3 | 1112 | 2020 | o | 105 | 10.5C | | | | | | | | | .12 | | | | | | | ••• | | | | | | J | | | | | 74 | 34 | 22 | 3 | | | | | | | | | | | \$ | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | ATORY | MINER | AL I | CONSTITU | ENTS | IN | MILLI | IGRAMS PEI | ITS PE | R LIT | ER | LLIGRAMS | | | | | |------------------|----------------|--------------------|------------|-------|---------|--------|-----------|------|----------|----------|-----|-------|-------------------|---------------|-------|-----------|-----------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | K | | | ENT REACT/<br>SD4 | | | | F<br>5102 | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | RE4 | | * * * * * * | | * *, * * | | * * * | * * * | * * * | * * * | * * | * * * * | * * | * * | * * 1 | 504 | * * * | * * | * * * | * * * * | * * | * * * * | * * * | * * * | | | Al | 1020. | 00 | P | IT R NE | R MONT | GOMERY | С | | | | | A2080 | | | | | | | | | | 04/27/83 | | | 11.4 | 48.9F | 7.4 | 123 | 11 | 5.0 | 0 7.0 | 1.5 | | 56 | 2.0 | 2.0 | | •0 | | | 40 | | | | 0845 | 5050 | 8300 | 103 | 9.4C | | | • 55 | . 4 | 1 .30 | .04 | 1. | | •04 | .06 | | 4AF | | 62 | 48<br>0 | 0.4 | | | | | | | | | | 42 | 3 | 2 23 | 3 | | | | | | | | | | | S | | 05/18/83<br>0950 | 5050<br>5050 | 74.00 | 10.7 | 54.5F | 7.6 | 129 | | | | | | | | | | | | | | | | | 0070 | 3030 | 1000 | 104 | 12.50 | | | | | | | | | | | | 6AF | | | | | | | 06/13/83 | 5050 | | 0 1 | 63.0F | | | | _ | | | | | | | | | | | | | | | 0845 | 5050 | 7800 | | 17.2C | 7.0 | 123 | 10<br>•50 | 5.0 | | 1.8 | | | 1.0 | 2 • 0<br>• 06 | | •1 | | | 46 | 0.0 | | | | | | | | | | 38 | 31 | | 4 | | | •02 | • • • | | | | | | | s | | 07/13/83 | 5050 | | 9.5 | 63.0F | 8.0 | 130 | 10 | 5.0 | 0 6.0 | 1.8 | | | 1.0 | 2.0 | | .1 | | | 4.6 | | | | 0830 | 5050 | 4500 | 102 | 17.20 | | | • 50 | . 4 | 1 .35 | .05 | | | .02 | .06 | | •1 | | | 46 | 0.0 | | | | | | | | | | 38 | 31 | 1 27 | 4 | | | | | | | | | | | \$ | | 08/19/83<br>0715 | 5050<br>5050 | 2000 | | 63.5F | 7.7 | 135 | 10 | 6.0 | | 1.8 | | | 2.0 | 2.0 | | .0 | | | 50 | 0.0 | | | 0117 | 2020 | 3800 | 49 | 17.5C | | | •50<br>35 | .49 | | •05<br>3 | | | .04 | . 06 | | 1AF | | | | | _ | | 09/13/83 | 5050 | | | | | | | | | • | | | | | | | | | | | 5 | | 0815 | 5050 | 925 | 99 | 60.8F | 7.8 | 144 | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1AF | | | | | | | 09/19/83 | 5050 | | 10.0 | 59.5F | 7.8 | 152 | 9.0 | 6.0 | 9.0 | 2.1 | _ | | 3.0 | | | | | | | | | | 0845 | 5050 | 3900 | 103 | | | | +45 | . 49 | .39 | .05 | | - | •06 | 3.0<br>.08 | | .0<br>1AF | | | 47 | 0.0 | | | | | | | | | | 33 | 36 | 5 28 | 4 | | | | | | _ | | | | | S | | 10/18/83 | | 27.00 | 10.1 | 54.0F | 7.4 | 140 | 9.0 | 6.0 | | 2.2 | | | 2.0 | 2.0 | | .0 | | | 47 | 0.0 | | | 08,15 | 5050 | 3700 | 97 | 12.2C | | | •45<br>31 | .49 | | •06 | | | .04 | • 06 | | ZAF | | | | ••• | | | 11/15/00 | | | | | | | | ٠,٠ | 7 31 | • | | | | | | | | | | | \$ | | 11/15/83<br>0845 | 5050<br>5050 | 6040 | 11.2 | 50.0F | 7.3 | 127 | | | | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | 5AF | | | | | | | 11/29/83 | 5050 | | 11.7 | 45.0F | 7.3 | 138 | 10 | 5.0 | 9.0 | 1.9 | | | 2.0 | | | | | | | | | | 1000 | 5050 | | 100 | 7.2C | | 230 | •50 | .41 | | | • | _ | 3.0<br>.06 | 2.0<br>.06 | | •1<br>4AF | | | 46 | 0.0 | | | | | | | | | | 37 | 30 | 29 | 4 | | | | | | **** | | | | | \$ | | 01/09/84 | | | | 42.0F | 7.3 | 119 | 8.0 | 4.0 | 7.0 | 1.3 | | | 4.0 | 2.0 | | .0 | | | 36 | 0.0 | | | 1000 | 5050 | 8390 | 95 | 5.6C | | | •40 | • 33 | | .03 | | | .08 | .06 | | 16AF | | | 20 | | | | | | | | | | | 36 | 31 | L 28 | 3 | | | | | | | | | | | \$ | | 01/18/84<br>1010 | 5050<br>5050 | 7060 | 12.1<br>99 | 41.9F | 7.3 | 128 | | | | | • | | | | | | | | | | | | 1910 | 2070 | 1000 | 44 | 2.76 | | | | | | | | | | | | 7AF | | | | | | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | D D<br>S A T | TEMP | FIE<br>LABOR<br>PH | | MINE | RAL C | ONSTITU | ENTS | IN | MILLI | GRAMS PE<br>Equivale<br>Nt react | NTS PE | R LIT | ER | LLIGRAMS | | | | | |------------------|----------------|--------------------|--------------|----------------|--------------------|------------|-----------------|------------------|------------------|-----------------|-----|----------|----------------------------------|------------|-------|------------|----------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | K | 1 | | | | | B<br>Turb | | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REH | | * * * * * | • • • • | | | | | * * * | * * * | * * : | * * * * | * * | * * | * * * | * * * * | * * * | * * * | * * * | * * * * | * * * 4 | * * * * | * * * | * * * | | | A1 | 1020 | 00 | P | IT R N | R MONT | GDMERY | C | | | | | A2080 | CONTIN | UED | | | | | | | | 02/24/84 | 5050 | | 12.3 | 45.0F | 7.3 | 127 | 11 | 5.0 | 9.0 | 1.7 | | | 5.0 | 2.0 | | _ | | | | | | | 0955 | 5050 | 7250 | 105 | 7.20 | | | • 55<br>40 | .41 | .39<br>28 | •04<br>3 | | | .10 | •06 | | .0<br>15AF | | | 48 | 0.0 | \$ | | 03/21/84<br>1010 | 5050<br>5050 | 7830 | | 49.1F<br>9.5C | 7.3 | 128 | | | | | | | ** | ** | | 9AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 03/28/84<br>1015 | 5050<br>5050 | | 10.9 | 49.0F<br>9.4C | 7.5 | 125 | 10<br>•50<br>38 | 5.0<br>.41<br>32 | 8.0<br>.35<br>27 | 1.6<br>.04 | | | 5.0<br>.10 | 2.0<br>.06 | | •1<br>9AF | | | 46 | 0.0 | _ | | 05/03/84 | 5050 | | 11.0 | 51.0F | 7.4 | 130 | 10 | E 0 | - | - | | | | | | | | | | | \$ | | 0815 | 5050 | 6850<br>0 | | 10.5C | , | 130 | •50<br>40 | 5.0<br>.41<br>33 | 7.0<br>.30<br>24 | 1.7<br>.04<br>3 | | | 3.0<br>.06 | 2.0<br>.06 | | 4AF | | | 46 | 0.0 | s | | 05/09/84 | | | 11.2 | 55.4F | 8.0 | 120 | | | | | | | | | | | | | | | - | | 0880 | 5050 | 5700 | 110 | 13.QC | | | | | | | | | | | | 4AF | | | | | | | 06/18/84 | | | | 62.0F | 7.8 | 130 | 10 | 5.0 | 9.0 | 2.0 | | | 2.0 | 2.0 | | .0 | | | 46 | 0.0 | | | 0900 | 5050 | | 104 | 16.70 | | | •50<br>37 | .41<br>30 | •39<br>29 | •05 | | | •04 | .06 | | 3AF | | | 70 | 0.0 | s | | 07/11/84<br>0910 | | 2700 | | 68.0F | 7.9 | 138 | ~~ | | | | | | | | | | | | | | | | 0410 | 5050 | 3700 | 121 | 20.00 | | | | | | | | | | | | 1AF | | | | | | | 07/20/84<br>0930 | 5050<br>5050 | | 9.5 | 66.0F | 8.2 | 137 | 10 | 6.0 | 9.0 | 2.0 | | | 2.0 | 2.0 | | .0 | | | 50 | 0.0 | | | | | | 105 | 18.90 | | | •50<br>35 | .49<br>34 | •39<br>27 | •05<br>3 | | | -04 | •06 | | ZAF | | | | | s | | 08/23/84<br>0830 | 5050<br>5050 | | | 63.0F<br>17.2C | 7.7 | 140<br>139 | 10 | 6.0 | 9.0 | 2.0 | | | 2.0 | 2.0 | | • 0 | | | 50 | 0.0 | | | | | 0 | | 11020 | | 134 | •50<br>35 | 34 | •39<br>27 | •05<br>3 | | | •04 | •06 | | 1AF | | | | | S | | 09/05/84<br>0930 | 5050<br>5050 | 4000 | | 62.6F<br>17.0C | | 145<br>137 | 10<br>•50<br>36 | 6•0<br>•49<br>36 | 9.0<br>.39<br>28 | | 1. | 62<br>24 | | 2.0<br>.06 | | •0<br>2Å | | 97 | 50<br>0 | 0.6<br>0.6 | E | | 09/19/84 | | | | 60.0F | 7.8 | 145 | 10 | 6.0 | 10 | 2.1 | | | 2.0 | 2.0 | | •1 | | | 50 | 0.0 | | | 0830 | 5050 | | 105 | 15.5¢ | | | •50<br>34 | .49<br>33 | •44<br>30 | •05<br>3 | | | .04 | •06 | | 1AF | | | 30 | 0.0 | s | | 10/24/84 | 5050<br>5050 | | 11.8 | 50.5F<br>10.3C | 7.3 | 120 | 10 | 6.0 | 10 | 2.2 | | | 1.0 | 2.0 | | .0 | | | 50 | 0.0 | | | U 700 | 3030 | | 109 | | | | •50<br>34 | 33 | 30 | •06 | | | •02 | • 06 | | 2AF | | | | - | s | | DATE<br>TIME | SAMPLER<br>LAR | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | ELD<br>RATORY<br>EC | MINE | RAL | CONSTIT | UENTS | IN | WILLI | GRAMS PE<br>EQUIVALE<br>ENT REACT | NTS PE | R LT | TER | LLIGRAMS | | LITER | | | |------------------|----------------|--------------------|-----------|----------------|------------|---------------------|------------|------------|---------|------------|-----|------------|-----------------------------------|------------|------|-------|------------|------------|-----------|-------------|-----| | * * * * * | | * * * * | * * 4 | | | | CA | MG | NA | K | | CACDS | SD4 | CL CL | NO3 | TURB | F<br>\$102 | TDS<br>Sum | TH<br>NCH | SAR<br>ASAR | RE4 | | * * * * * | | | | | | | | * * | * * * | * * * | * * | * * * | * * * * | * * * | * * | + + + | * * * * | * * | * * * * | | | | | A2 | L 043. | 2 225. | D \$1 | ATZAH | LK A E | H | | | | | | A24A0 | | | | | | | | | | 05/18/83 | 5050 | | 10.0 | 59.0F | 7.4 | 76 | 8.0 | | | | | | | | | | | | | | | | 0700 | 5050 | | 102 | 15.0C | 8.0 | 77 | .40 | 3 · · | | | | 31<br>•62 | 5.0<br>•10 | 2.0 | | .0 | | | 32 | 0.3 | | | | | 0 | | | | | 48 | 3 | | 2 | | •02 | •10 | •06 | | 2AF | | 41 | 2 | 0.2 | _ | | 05/18/83 | 5050 | | 10.3 | 44.4F | 7.2 | 100 | 11 | 4.1 | | | | | | | | | | | | | S | | 0710 | 5050 | | 87 | 6.90 | | 106 | .55 | . 3 | | 1.5 | | 47<br>• 94 | 3.0<br>.06 | 3.0<br>.08 | | •0 | | | 44 | 0.5 | | | | | 427 | | | | | 45 | 2 | | 3 | | ••• | •00 | • 00 | | 14AF | | 58 | 0 | 0.4 | | | 06/23/83 | 5050 | | 8.4 | 70.7F | 7.5 | | 8.0 | 3.0 | | | | | | | | | | | | | \$ | | 0830 | 5050 | _ | 98 | 21.5C | | 88 | .40 | . 2: | | •7<br>•02 | | | 4.0<br>.08 | 1.0<br>.03 | | • 0 | | | 32 | 0.0 | | | | | Đ | | | | | 48 | 30 | 0 20 | 2 | | | ••• | .03 | | | | | | | s | | 06/23/83 | 5050 | | 9.5 | | 7.1 | | 11 | 4.6 | 0 6.0 | 1.2 | | | 2.0 | | | _ | | | | | • | | 0840 | 5050 | 469 | | | | 113 | • 55 | .3 | 3 .26 | .03 | | | 2.0<br>.04 | 1.0<br>.03 | | • 0 | | | 44 | 0.0 | | | | | 707 | | | | | 47 | 26 | 22 | 3 | | | | | | | | | | | \$ | | 07/29/83 | 5050 | | 8.3 | 74.3F | 7.6 | 85 | 9.0 | 3.0 | 5.0 | . 9 | | | 3.0 | | | | | | | | • | | 0830 | 5050 | 0 | 100 | 23.5C | | | •45 | • 2 ! | .22 | •02 | | | •06 | 1.0 | | .0 | | | 35 | 0.0 | | | | | U | | | | | 48 | 27 | 23 | 2 | | | | | | | | | | | S | | 07/29/83<br>0840 | 5050<br>5050 | | | | 7.3 | 100 | 10 | 4.0 | 6.0 | 1.1 | | | 4.0 | 1.0 | | ^ | | | | _ | • | | 0040 | 2030 | 486 | | | | | •50 | • 33 | | •03 | | | .08 | •03 | | • 0 | | | 42 | 0.0 | | | | | | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | S | | 08/26/83<br>08C0 | 5050<br>5050 | | 8.0 | 73.9F | 7.8 | 93 | 9.0 | 4.0 | | . 9 | | | 4.0 | 1.0 | | .0 | | | 39 | | | | 0400 | 7030 | 0 | 40 | 23.3C | | | . 45<br>44 | .33 | | •02 | | | • 08 | .03 | | 1AF | | | 34 | 0.0 | | | 08/26/83 | 5050 | | | | | | ** | 36 | . 22 | 2 | | | | | | | | | | | \$ | | 0810 | 5050 | | | | 7.1 | 106 | 10 | 4.0 | | 1.1 | | | 3.0 | 1.0 | | .0 | | | 42 | 0.0 | | | | | 472 | | | | | •50<br>46 | .33<br>31 | | •03<br>3 | | | • 06 | .03 | | 11AF | | | • | ••• | | | 09/27/83 | 5050 | 5 | | 40.05 | <b>-</b> . | | | - | | • | | | | | | | | | | | S | | 0900 | 5050 | | | 68.9F<br>20.5C | 7.6 | 100 | 9.0<br>.45 | 4.0 | | 1.1 | | | 5.0 | 1.0 | | .0 | | | 39 | 0.0 | | | | | 0 | | | | | 44 | 32 | | •03<br>3 | | | •10 | .03 | | OAF | | | | | | | 07/27/83 | 5050 | | 8.0 | | 7.0 | 100 | | | | - | | | | | | | | | | | \$ | | 0910 | 5050 | | 0.0 | | 7.0 | 104 | 10<br>•50 | 4.0 | | 1.1 | | | 4.0 | 1.0 | | .0 | | | 42 | 0.0 | | | | | 459 | | | | | 45 | 29 | | 3 | | | .08 | • 03 | | BAF | | | | | _ | | 12/21/83 | 5050 | | 9.7 | 53.4F | 7 2 | 106 | | | | | | | | | | | | | | | S | | 0945 | 5050 | | 93 | 11.90 | 14.3 | 100 | 9.0<br>.45 | 4.0<br>.33 | | 1.2<br>.03 | | | 4.0 | | | • 0 | | | 39 | 0.0 | | | | • | 0 | | | | | 42 | 31 | | 3 | | | •08 | •03 | | 1AF | | | | | · | | 12/21/83 | 5050 | | 7.3 | 47.5F | 6.9 | 107 | 10 | 4.0 | | 1 ^ | | | | | | | | | | | S | | 0955 | 5050 | | 65 | 8.6C | | | .50 | .33 | | 1.0 | | | 3.0<br>.06 | 1.0 | | .0 | | | 42 | 0.0 | | | | | 427 | | | | | 46 | 31 | | 3 | | | 100 | • • • | | 8AF | | | | | S | | | | | | | | | | | | | | | | | | | | | | | 3 | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | D D<br>S A T | TEMP | | ELD<br>RATDRY<br>EC | MINE | RAL ( | CONSTITU | IENTS | IN | MILLIE | RAMS PE | NTS P | ER LT | TFR | LIGRAMS | PER | LITER | | | |------------------|----------------|--------------------|--------------|----------------|-------|---------------------|------------|------------|------------|------------|-----|--------|------------|------------|--------------|-----------|---------|-----|---------|-------------|-------| | | | | | | | | CA | NG | NA | K | | CACO3 | T REACT | ANCE | VALUE<br>ND3 | B<br>Tura | F 5102 | TDS | TH | SAR<br>ASAR | REM | | | * * * * | | | | * * . | * * * * | | * * | * * * * | * * | * * | * * * | * * * * | + + | * * * | * * * | * * * * | * * | * * * * | * * * | * * * | | | A2 | L 043. | 2 225 | .0 \$ | HASTA | LK A D | H | | | | | | A24A0 | CONTI | NHED | | | | | | | | 01/26/84 | 5050 | | 11.5 | 45.5F | 7.2 | 114 | 11 | 4.0 | 7.0 | , , | | | | | | | | | | | | | 0915 | 5050 | | 99 | 7.5C | | ••• | •55 | .33 | | 1.5 | | | 4.0<br>.08 | 2.0 | | •0<br>9AF | | | 44 | 0.0 | | | | | 426 | | | | | 45 | 27 | | 3 | | | 100 | •00 | | YAF | | | | | s | | 01/26/84 | | | 10.6 | 49.1F | 7.2 | 96 | 9.0 | 4.0 | 5.0 | 1.0 | | | | | | | | | | | , | | 0915 | 5050 | 0 | 96 | 9.50 | | | . 45 | . 33 | | .03 | | | 4.0<br>.08 | 2.0 | | .0<br>1AF | | | 39 | 0.0 | | | | | U | | • | | | 44 | 32 | 21 | 3 | | | *** | ••• | | AME | - | | | | S | | 03/01/84 | | | 11.1 | 46.4F | 7.2 | 118 | 11 | 5.0 | 7.0 | 1.5 | | | 6.0 | | | _ | | | | | • | | 0930 | 5050 | 466 | 97 | 0.0C | | | •55 | .41 | .30 | .04 | | | .12 | 2.0<br>.06 | | •0<br>7AF | | | 48 | 0.0 | | | | | 700 | | | | | 42 | 32 | 23 | 3 | | | | | | | | | | | s | | 03/01/84<br>0930 | | | | 48.6F | 7.4 | 96 | 9.0 | 4.0 | 5.0 | 1.0 | | | 5.0 | 1.0 | | •0 | | | | | • | | 0430 | 5050 | ٥ | 102 | 9.2C | | | • 45 | • 33 | | .03 | | | .10 | •03 | | ZAF | | | 39 | 0.0 | | | _ | | • | | | | | 44 | 32 | 21 | 3 | | | | | | | | | | | S | | 04/05/84<br>0900 | 5050<br>5050 | | 10.9 | | 7.3 | 128 | 11 | 5.0 | | 1.3 | | | | | | . 2 | | | 48 | | | | 0,00 | 2030 | 479 | 97 | 9.0C | | | •55<br>41 | • 41 | | •03 | | | | | | •• | | | 40 | 0.0 | | | 01.105.101 | | | | | | | 41 | 31 | 26 | 2 | | | | | | | | | | | \$ | | 04/05/84<br>0900 | 5050<br>5050 | | | 53.1F<br>11.7C | 7.7 | 99 | 8.0 | 4.0 | | . 8 | | | | | | • 0 | | | 36 | 0.0 | | | | ,,,, | 0 | 102 | 11.10 | | | •40<br>41 | •33<br>34 | | •02 | | | | | | - | | | 30 | 0.0 | | | 05/11/84 | E0.50 | | | | | | ٠. | 34 | 23 | 2 | | | | | | | | | | | S | | 0800 | 5050<br>5050 | | 92 | 47.3F<br>8.5C | 7.3 | 119 | 11 | 5.0 | | 1.5 | | | 5.0 | 2.0 | | •1 | | | 48 | 0.0 | | | | | 489 | | 0.50 | | | •55<br>41 | .41<br>30 | | •04<br>3 | | | .10 | • 06 | | | | | | ••• | | | 05/11/84 | 5050 | | | | | | | | | , | | | | | | | | | | | S | | 0800 | 5050 | | 102 | 59.5F<br>15.3C | 7.7 | 94 | 9.0<br>.45 | 4.0 | | .9 | | | 5.0 | 2.0 | | • 0 | | | 39 | 0.0 | | | | | 0 | | | | | 44 | 32 | .22 | •02<br>2 | | | .10 | .06 | | | | | | | | | 06/12/84 | 5050 | | 10.0 | 48.0F | 7 2 | 125 | 11 | | | | | | | | | | | | | | S | | 0830 | 5050 | | 89 | 8.9C | | 127 | •55 | 5.0<br>.41 | 8.0<br>.35 | 1.7 | | | 3.0 | 2.0 | | .0 | | | 48 | 0.0 | | | | | 479 | | | | | 41 | 30 | 26 | 3 | | | .06 | •06 | | | | | | | _ | | 06/12/84 | 5050 | | 9.0 | 66.2F | 7.7 | 100 | 9.0 | 4.0 | | | | | | | | | | | | | \$ | | 0830 | 5050 | | | 19.0C | | 101 | •45 | .33 | 5.0<br>.22 | 1.1<br>.03 | | | 3.0<br>.06 | 1.0 | | •0 | | | 39 | 0.0 | | | | | 00 | | | | | 44 | 32 | 21 | 3 | | | | • 43 | | | | | | | S | | 07/19/84 | | | 8.1 | 81.0F | 7.7 | 105 | 10 | 4.0 | 6.0 | | | | | | | | | | | | 3 | | 0900 | 5050 | _ | | 27.2C | | | •50 | •33 | •26 | 1.1<br>.03 | | | 3.0<br>.06 | 2.0<br>.06 | | •0 | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 29 | 23 | 3 | | | *** | ••• | | | | | | | \$ | | 07/19/84 | | | | 49.0F | 7.2 | 128 | 11 | 5.0 | 8.0 | 1.5 | | | 3.0 | 2 6 | | • | | | | | • | | 0900 | 5050 | 459 | 82 | 9.4C | | | .55 | •41 | .35 | .04 | | | •06 | 2.0<br>.06 | | •0 | | | 48 | 0.0 | | | | | 737 | | | | | 41 | 30 | 26 | 3 | | | | | | | | | | | \$ | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO | TEMP | LABO | ELD<br>RATURY<br>EC | | | | | | MILL | IGRAMS PE<br>IEQUIVALE<br>ENT REACT: | NTS P | ER LII | TER | LIGRAMS<br>F | PER<br>TOS | LITER<br>TH | SAR | REY | |------------------|----------------|--------------------|--------|----------------|----------|---------------------|------------|------------|------------|-----------|-----|-----------|-----------------------------------------|------------|--------|-----------|--------------|------------|-------------|-------|-------| | * * * * : | | | | | | | CA | We | NA. | K | | | | | | | | | | | | | | | | | | * * ' | | | * * * | | * * | * * | * * | * * * * * | * * : | * * * | * * * | * * * * | • • | * * * * | * * * | * * * | | | AZ | L 043. | 2 225 | • O S1 | HASTA | LK A D | M | | | | | | A24A0 | CONTI | NUED | | | | | | | | 08/16/84 | 5050 | | | 77.0F | 7 0 | | | | | | | | | | | | | | | | | | 0830 | 5050 | | | 25.0C | | 110 | 10<br>•50 | 4.0<br>.33 | 5.0<br>.22 | 1.0 | | | 5.0<br>.10 | | | •0 | ~- | | 42 | 0.0 | | | | | 0 | | | | | 46 | 31 | 20 | 3 | | | •10 | •03 | | | | | | | S | | 08/16/84 | 5050 | | 3 = | 40.05 | | | | | | | | | | | | | | | | | • | | 0830 | 5050 | | 76 | 48.QF<br>8.9C | | 132 | 12<br>•60 | 5.0<br>.41 | 8.0 | 1.5 | | | 5.0 | 2.0 | | •0 | | | 50 | 0.0 | | | | | 443 | . • | •••• | | 132 | 43 | 29 | •35<br>25 | •04<br>3 | | | .10 | • 06 | | | | | | | _ | | 09/14/64 | | | | | | | | | | • | | | | | | | | | | | \$ | | 0800 | 5050<br>5050 | | 70 | 44.4F<br>6.9C | 7.0 | 131 | 11 | 5.0 | 8.0 | 1.5 | | | 3.0 | 2.0 | | • 0 | | | 48 | 0.0 | | | | 3030 | 426 | ,, | 0.76 | - | | .55<br>41 | •41<br>30 | •35<br>26 | •04<br>3 | | | . 06 | . 06 | | 1AF | | | | | | | | | | | | | | | 30 | 20 | 3 | | | | | | | | | | | \$ | | 10/24/84<br>0930 | 5050<br>5050 | | 7.0 | | 7.0 | 132 | 11 | 5.0 | 8.0 | 1.5 | | | 4.0 | 2.0 | | .0 | | | | 0.0 | | | 0,30 | 7070 | 426 | | | | | •55<br>41 | •41<br>30 | • 35<br>26 | •04<br>3 | | | •08 | •06 | | 7AF | | | | | | | | | - 1- | | | | | 74 | 30 | 20 | 3 | | | | | | | | | | | 2 | | 10/24/84 | 5050<br>5050 | | 8.2 | 61.5F | 7.4 | 126 | 10 | 5.0 | 7.0 | 1.4 | | | 3.0 | 2.0 | | -0 | | | | 0.0 | | | 0430 | 2020 | ٥ | 00 | -16.4C | | | •50<br>40 | •41<br>33 | •30<br>24 | •04<br>3 | | | •06 | • 06 | | 1AF | | | | | | | | | <del>-</del> | | | | | | | | _ | | | | | | | | | | | S | | | AZ | L 044. | 3 227. | 3 SI | ASTA | FK W F | ITTLE | SQUAW | C INLE | T | | | OACSA | | | | | | | | | | 05/12/83 | 5050 | | 10.8 | 57.2F | 7.4 | 71 | 8.0 | 3.0 | 4.0 | | | •• | | | | _ | | | | | | | 1415 | 5050 | | | 14.0C | | 75 | .40 | -25 | .17 | .6<br>.02 | | 29<br>•58 | 4.0<br>.08 | 1.0 | | .0<br>2AF | | 38 | 32 | 0.3 | | | | | 0 | | | | | 48 | 30 | 20 | Ž | | • > 0 | • • • • • • • • • • • • • • • • • • • • | +03 | | 245 | | 30 | 4 | 0.2 | s | | 05/12/83 | 5050 | | 10.8 | 45.7F | 7.1 | 80 | | | | | | | _ | | | | | | | | • | | 1425 | 5050 | | 93 | | | 82 | 7.0 | 3.0<br>.25 | 4.0 | •02 | | 32<br>•64 | •00 | 1.0<br>.03 | | •0<br>5af | | | 30 | 0.3 | | | | | 138 | | | | | 44 | 32 | 22 | 3 | | •04 | •00 | •03 | | JAF | | 35 | 0 | 0.2 | S | | 06/21/83 | 5050 | | 8.4 | 72.0F | 7 4 | | | | | | | | _ | | | | | | | | • | | 1300 | 5050 | | 99 | 22.20 | 1.7 | 82 | 8.0<br>.40 | 3.0<br>.25 | 4.0<br>.17 | •6<br>•02 | | | 5.0<br>.10 | 1.0 | | • 0 | | | 32 | 0.0 | | | | | 0 | | | | _ | 48 | 30 | 20 | 2 | | | •10 | •03 | | | | | | | S | | 06/21/83 | 5050 | | 0.4 | 48.4F | <b>,</b> | | | | | | | | | | | | | | | | • | | 1310 | 5050 | | 84 | 9.10 | 1.1 | 81 | 8.0<br>.40 | 3.0<br>.25 | 4.0<br>.17 | •6<br>•02 | | | 6.0 | 1.0 | | • 0 | | | 32 | 0.0 | | | | | 138 | • • | | | • | 48 | 30 | 20 | 2 | | | •12 | •03 | | | | | | | S | | 07/28/83 | 5050 | | 9.0 | 77 0- | | | | | | | | | | | | | | | | | 3 | | 1330 | 5050 | | 99 | 77.0F<br>25.0C | 7.7 | 89 | 8.0 | 3.0 | 5.0 | . 8 | | | 4.0 | 1.0 | | .0 | | | 32 | 0.0 | | | | | 0 | • • | -2100 | | | 45 | • 25<br>28 | •22<br>25 | •02<br>2 | | | • 06 | • 03 | | | | | | | | | 07/29/9- | EAEA | | | | | | | | | | | | | | | | | | | | S | | 07/28/83<br>1340 | 5050<br>5050 | | | 50.4F | 7.3 | 82 | 8.0 | 3.0 | 4.0 | • 7 | | | 6.0 | 1.0 | | .0 | | | 32 | 0.0 | | | | | 157 | • | 40.20 | | | 48 | •25<br>30 | .17<br>20 | •02 | | | •12 | • 03 | | | | | | | | | | | | | | | | | 24 | 2.0 | 4 | | | | | | | | | | | \$ | | C | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DD<br>SAT | TEMP | | ELD<br>RATORY<br>EC | MIN | ERAL CO | NSTITL | JENTS | IN | MILLI | GRAMS PE<br>Equivale | NTS PI | ER LI1 | rer | LLIGRAMS | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------------|-----------|-------|------------|---------------------|-------|---------|--------------|-------|-----|---------|----------------------|--------|--------|-------|----------|-----|-----------|-------------|-------| | 08/25/83 5050 | | | | | | | | CA | MG | NA | K | | | | | | | | | TH<br>NCH | SAR<br>Asar | RE4 | | 08/25/83 5050 | | | | | | * * . | | * * ' | | * * * | * * | * * | * * * * | * * * * | * * * | * * * | * * * | * * * * | * * | * * * * | * * * | * * * | | 1130 5050 | | ¥2 | L 044. | 3 227. | 3 51 | ATZAH | LK A L | ITTLE | SOUAW | C INLE | T | | | AZOAO | CONTIN | NUED | | | | | | | | 1130 5050 | 08/25/83 | 5050 | | 7.9 | 75.9F | 7.7 | 96 | a . n | 4.0 | <b>8</b> A | | | | | | | | | | | | | | 08/25/83 5050 | 1130 | 5050 | | | | | ,, | | | | | | | | | | | | | 39 | 0.0 | | | 001/27/63 0050 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 | | | | | | | | 44 | 32 | 22 | 2 | | | | | | 171 | | | | | s | | 1140 5050 | | 5050 | | 7.8 | 53.1F | 7.1 | 84 | B . O | 3.0 | 4.0 | . 7 | | | * ^ | | | _ | | | | | - | | 10/04/83 5050 | 1140 | 5050 | | 74 | 11.70 | - | | -40 | | | | | | | | | | | | 32 | 0.0 | | | 1200 5050 | | | 148 | | | | | 48 | 30 | 20 | 2 | | | | | | • | | | | | s | | 10/04/83 5050 | | | | 8 . 2 | 68.4F | 7.6 | 105 | 9.0 | 4.0 | 5 <b>.</b> D | 1.0 | | | 5.0 | 1.0 | | ^ | | | | | | | 10/04/83 5050 | 1200 | 5050 | | 93 | 50.SC | | | | | •22 | .03 | | | | | | | | | 39 | 0.0 | | | 1210 5050 | | | U | | | | | 44 | 32 | 21 | 3 | | | | | | | | | | | S | | 10/27/83 5050 | | | | | | 7.1 | 111 | 10 | 4.0 | 6.0 | 1.3 | | | 4.0 | 1.0 | | . 0 | | | 4.5 | | | | 10/27/83 5050 | 1210 | 5050 | 300 | 59 | 15.3C | | | | | | | | | - | | | | | | •2 | 0.0 | | | 0800 5050 0 69 17.7C | | | 100 | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | S | | 10/27/83 5050 | | | | | | 7.3 | 108 | 9.0 | 4.0 | 6.0 | 1.2 | | | 5.0 | 1.0 | | . 0 | | | 20 | | | | 10/27/83 5050 | 0000 | 5050 | ٥ | 89 | 17.7C | | | | | | | | | | | | | | | 37 | 0.0 | | | 0810 5050 | | | Ü | | | | | 42 | 31 | 24 | 3 | | | | | | | | | | | S | | 12/05/83 5050 | | | | | | 6.9 | 109 | 10 | 4.0 | 6.0 | 1.3 | | | 4.0 | 1.0 | | . 0 | | | 42 | | | | 12/05/83 5050 | 0810 | 2020 | 105 | 57 | 15.0C | | | | | | | | | | | | | | | 76 | 0.0 | | | 1400 5050 | | | 100 | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | \$ | | 12/05/83 5050 | | | | 9.2 | 54.0F | 7.3 | 105 | | | | 1.2 | | | 4.0 | 1.0 | | .1 | | | 30 | ۸.۸ | | | 12/05/83 5050 | 1400 | 5050 | ٥ | 89 | 12.20 | | | | | | | | | • 00 | .03 | | | | | 3, | <b>V.</b> 0 | | | 1410 5050 89 12.0C | | | • | | | | | 72 | 31 | ۷۹ | 3 | | | | | | | | | | | \$ | | 105 12.00 39 32 25 3 .10 .03 3AF 01/25/84 5050 10.4 50.2F 7.3 94 9.0 4.0 5.0 1.0 5.0 2.00 39 0.0 1230 5050 95 10.1C 44.32 21 3 10 .06 2AF 01/25/84 5050 10.5 48.6F 7.2 94 9.0 4.0 5.0 .9 9.0 2.00 39 0.0 1230 5050 10.2 44. 32 22 2 | | | | | | 7.3 | 102 | | | | | | | 5.0 | 1.0 | | • 0 | | | 36 | 0.0 | | | 01/25/84 5050 | 2120 | 3030 | 105 | 09 | 12.00 | | | | | | | | | •10 | •03 | | 3AF | | | | ••• | | | 1230 5050 | 01/25/04 | 5050 | | | | | | | 32 | | 3 | | | | | | | | | | | 2 | | 0 | | | | 10.4 | 50.2F | 7.3 | 94 | | | | | | | | | | • 0 | | | 39 | 0.0 | | | 01/25/84 5050 | | | 0 | • • • | 10110 | | | | | | | | | .10 | •06 | | ZAF | | | | | | | 1230 5050 | 01/25/84 | 5050 | | 10 5 | | | | _ | | | • | | | | | | | | | | | S | | 102 44 32 22 2 19 .06 2AF S 02/29/84 5050 11.3 48.6F 7.4 95 9.0 4.0 5.0 1.0 6.0 1.0 0 39 0.0 1300 5050 102 9.2C .45 .33 .22 .03 .12 .03 .2AF 02/29/84 5050 10.5 46.4F 7.2 96 9.0 4.0 5.0 .9 8.0 1.0 0 39 0.0 1300 5050 92 8.0C .45 .33 .22 .02 .17 .03 3AF 39 0.0 | | | | | | 7.2 | 94 | | | | | | | | | | | | | 39 | 0.0 | | | 02/29/84 5050 | | | 102 | | | | | | | | | | | *14 | • 06 | | ZAF | | | | | _ | | 1300 5050 102 9.2C .45 .33 .22 .03 .12 .03 .2AF 39 0.0 .0 .12 .03 .2AF 39 0.0 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .12 .03 .13 .13 .13 .13 .13 .13 .13 .13 .13 .1 | 02/29/84 | 505N | | 11.2 | 48.45 | <b>7</b> 4 | ^= | | | | _ | | | | | | | | | | | 2 | | 0 44 32 21 3 24F S<br>02/29/84 5050 10.5 46.4F 7.2 96 9.0 4.0 5.0 .9 8.0 1.00 39 0.0<br>1300 5050 92 8.0C .45 .33 .22 .02 .17 .03 3AF | | | | | | 1.4 | 45 | | | | | | | | | | | | | 39 | 0.0 | | | 02/29/84 5050 | | | 0 | · =- | | | | | | | | | | •15 | . 03 | | ZAF | | | | | • | | 1300 5050 92 8.0C .45 .33 .22 .02 .17 .03 3AF 39 0.0 | 02/29/84 | 5050 | | 10.5 | 46.4F | 7.2 | . 04 | 0 0 | | | | | | | | | | | | | | , | | 115 44 32 22 2 **************************** | | | | | | 1 • 2 | 70 | | | | | | | | | | | | | 39 | 0.0 | | | | | | 115 | | | | | | | | | | | # A f | • 43 | | JAP | | | | | , | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DO<br>SAT | TEMP | | LD<br>RATORY<br>EC | MIN | ERAL C | ONSTITE | JENTS | IN M | ILLI | GRAMS PE<br>EQUIVALE<br>NT REACT | NTS P | ER LI1 | ER | LLIGRAMS | | | | | |-----------------------------------------|----------------|--------------------|-----------|----------------|-------|--------------------|------------|------------|------------|-------------|-------|-------|----------------------------------|---------|--------|-----------|----------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | K | | C D 2 | 664 | | *** | B<br>Turb | | TDS<br>Bum | TH<br>NCH | SAR<br>Asar | REM | | * * * * * | * * * * | | * * * | * * * * | * * * | * * * * | * * : | * * * | * * * * | * * * | * * * | * * | * * * * | * * * : | * * * | * * * | * * * * | * * * | * * * | * * * | * * * | | | <b>A</b> 2 | L 044. | 3 227. | <b>3</b> S | HASTA | LK A L | ITTLE | SQUAW | C INLE | ΕT | | | AZDAD | CONTI | NUED | | | | | | | | 04/04/84 | 5050 | | 10.9 | 55.8F | 7. A | 98 | 8.0 | 4.0 | 5.0 | | | | | | | _ | | | | | | | 1200 | 5050 | | | 13.20 | | 75 | .40 | .33 | •22 | . 8<br>. 02 | _ | _ | | | | •1 | | | 36 | 0.0 | | | | | 0 | | | | | 41 | 34 | 23 | 2 | | | | | | | | | | | s | | 04/04/84 | 5050 | | 10.5 | 47.3F | 7.3 | 99 | 9.0 | 4.0 | 5.0 | .9 | | _ | 6.0 | 2.0 | | | | | | | | | 1200 | 5050 | | 93 | 8.5C | | • • | .45 | . 33 | .22 | .02 | | | .12 | .06 | | •1 | | | 39 | 0.0 | | | | | 115 | | | | | 44 | 32 | 22 | 2 | | | | | | | | | | | S | | 05/09/84 | 5050 | | 10.0 | 59.0F | 7.5 | 97 | 9.0 | 4.0 | 5.0 | . 9 | _ | _ | 5.0 | 2.0 | | .0 | | | 39 | 0.0 | | | 1100 | 5050 | a | 102 | 15.0C | | | .45 | .33 | .22 | .02 | | | .10 | .06 | _ | •• | | | 37 | 0.0 | | | | | U | | | | | 44 | 32 | 22 | 2 | | | | | | | | | | | \$ | | 05/09/84 | | | 9.6 | 48.0F | | 101 | 9.0 | 4.0 | 5.0 | . 9 | _ | _ | 5.0 | 2.0 | | .0 | | | 39 | 0.0 | | | 1100 | 5050 | 131 | 86 | 8.9C | | | • 45 | •33 | •22 | •02 | | | .10 | .06 | | | | | ٠. | ••• | | | | | 131 | | | | | 44 | 32 | 22 | 2 | | | | | | | | | | | \$ | | 06/08/84<br>0815 | 5050 | | 9.3 | 48.7F | 7.2 | 100 | 9.0 | 4.0 | 5.0 | 1.1 | - | - | 4.0 | 1.0 | | • 0 | | | 39 | 0.0 | | | 0013 | 5050 | 131 | 84 | 9.3C | 7.7 | 103 | • 45<br>44 | •33<br>32 | •22<br>21 | •03<br>3 | | | .08 | •03 | | | | | | | | | • • • • • • • • • • • • • • • • • • • • | | | _ | | | | 44 | 3£ | 21 | 3 | | | | | | | | | | | S | | 06/08/84<br>0815 | 5050<br>5050 | | | 65.3F<br>18.5C | | 100 | 9.0 | 4.0 | 5.0 | 1.0 | - | - | 4.0 | 1.0 | | .1 | | | 39 | 0.0 | | | <b>V</b> 023 | 7070 | 0 | 77 | 10.50 | 7.2 | 101 | • 45<br>44 | • 33<br>32 | •22<br>21 | •03<br>3 | | | .08 | •03 | | | | | | | _ | | 07437464 | | | | | _ | | | | | • | | | | | | | | | | | \$ | | 07/12/84<br>0800 | 5050<br>5050 | | | 78.8F<br>26.0C | 7.6 | 103 | 9.0 | 4.0 | 5.0<br>.22 | 1.0 | - | - | 4.0 | 1.0 | | .0 | | | 39 | 0.0 | | | | | 0 | *** | 20100 | | | 44 | 32 | 21 | •03<br>3 | | | .08 | .03 | | | | | | | s | | 07/12/84 | 5050 | | o 7 | 51.8F | | 304 | | | | | | | | | | | | | | | , | | 0800 | 5050 | | | 11.00 | | 104 | 9.0 | 4.0 | 6.0<br>.26 | 1.1<br>.03 | - | • | 4.0<br>.08 | 1.0 | | • 0 | | | 39 | 0.0 | | | | | 115 | | | | | 42 | 31 | 24 | 3 | | | •00 | •03 | | | | | | | S | | 08/15/84 | 5050 | | 7.7 | 77.5F | 7.5 | | 10 | 4.0 | 5.0 | 1.0 | _ | | | | | _ | | | | | • | | 0830 | 5050 | | | 25.3C | | 111 | •50 | . 33 | •55 | •03 | _ | | 6.0<br>.12 | 2.0 | | • 0 | | | 42 | 0.0 | | | | | 0 | | | | | 46 | 31 | 20 | 3 | | | | | | | | | | | s | | 08/15/84 | 5050 | | 3.1 | 58.3F | 7.0 | | 10 | 4.0 | 6.0 | 1.2 | _ | _ | 5.0 | 2.0 | | • 0 | | | | | | | 0830 | 5050 | | | 14.6C | | 115 | •50 | • 33 | •26 | •03 | | | .10 | •06 | | •0 | | | 42 | 0.0 | | | | | 98 | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | S | | 09/10/64 | 5050 | | 7.8 | 74.3F | 7.6 | 115 | 10 | 4.0 | 6.0 | 1.1 | - | _ | 4.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 0900 | 5050 | 0 | 94 | 23.5C | | | • 50 | .33 | •26 | .03 | | | .08 | • 03 | | 1AF | | | 72 | ••• | | | | | U | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | \$ | | 09/10/84 | 5050 | | | 62.6F | 7.0 | 116 | 10 | 4.0 | 6.0 | 1.3 | _ | - | 4.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 0900 | 5050 | 88 | 55 | 17.0C | | | •50<br>45 | .33 | •26<br>23 | •03 | | | .08 | .03 | | ZAF | | | | | | | | | • | | | | | 72 | 4 | <i>c</i> 3 | 3 | | | | | | | | | | | S | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DD<br>SAT | TEMP | | ELD<br>RATORY<br>EC | MIN | ERAL ( | CONSTITU | JENTS | IN M | ILLIGRA | IVALE | NTS P | ER LIT | ER | LIGRAMS | | | | | |------------------|----------------|--------------------|-------------|----------------|-------|---------------------|-----------------|---------------------|----------|-----------------|--------------|-----------------|------------|------------|--------|-----------|----------------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | ĸ | CAI | ERCENT 1<br>CD3 | 504 | | | B<br>Turb | F<br>\$102 | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REM | | * * * * | * * * * | * * * * | * * * | * * * | * * : | | * * | * * * | * * * • | * * | * * * | * * * : | * * * | | | | * * * * | | * * * * | + + + | * * * | | | A2 | L 044.3 | 227. | <b>3</b> S | HASTA | LK A L | ITTLE | SQUA | W C INLE | T | | A | 20A0 | CONTI | NUE D | | | | | | | | 10/18/84<br>1100 | 5050<br>5050 | 0 | 9 • 3<br>90 | 64.0F<br>17.8C | 7•3 | 126 | 10<br>•50<br>40 | . 4: | 1 .30 | 1.3<br>.03<br>2 | | - | 5.0<br>.10 | 2.0<br>.06 | | .0<br>1AF | | | | 0.0 | | | 10/18/84<br>1100 | 5050<br>5050 | | 8.1<br>87 | 63.5F | | 125 | 10 | 5.1 | 0 7.0 | 1.3 | | - | 6.0 | 2.0 | | .0 | | | | 0.0 | S | | 1100 | 3030 | 79 | 67 | 17.50 | | | •50<br>40 | | | .03<br>2 | | | •12 | •06 | | 1AF | | | | | \$ | | | <b>A2</b> | L 044.9 | 212.1 | l s | ATZAH | LK PIT | R AB | JONE: | S VALLEY | • | | A | 20A0 | | | | | | | | | | 05/16/83<br>1120 | 5050<br>5050 | | 10.0 | | | 90<br>92 | 11<br>•55<br>56 | | .17 | .02<br>2 | . 8 ( | - | 3.0<br>.06 | 1.0 | | .O<br>BAF | | 47 | 40<br>0 | 0.3 | S | | 05/16/83<br>1130 | 5050<br>5050 | 279 | | 45.0F<br>7.2C | | 106<br>112 | 13<br>•65<br>51 | | 3 .26 | 1.1<br>.03<br>2 | • 90 | | 3.0<br>.06 | 1.0 | | •0<br>9AF | | 57 | 49 | 0.4 | S | | 06/24/83<br>1230 | 5050<br>5050 | 0 | | 73.9F<br>23.3C | | 102 | 11<br>•55<br>52 | | .22 | 1.0<br>.03 | <del>-</del> | - | 3.0<br>.06 | 1.0 | | •0 | | | 40 | 0.0 | s | | 06/24/83<br>1240 | 5050<br>5050 | 295 | | 46.6F<br>8.1C | | 118 | 13<br>•65<br>51 | 4.0<br>•3: | .26 | 1.2 | <b></b> - | - | 2.0 | 1.0 | | •0 | | | 49 | 0.0 | s | | 07/26/83<br>0830 | 5050<br>5050 | 0 | | 75.0F<br>23.9C | 8.0 | 98 | 10<br>•50<br>47 | 4. (<br>• 33<br>31 | 3 .22 | •9<br>•02<br>2 | | - | 3.0<br>.06 | 1.0 | | •0 | | | 42 | 0.0 | \$ | | 07/26/83<br>0840 | 5050<br>5050 | 262 | | 48.2F<br>9.0C | 6.9 | 114 | 12<br>•60<br>49 | 4 • 0<br>• 33<br>27 | .26 | 1.1<br>.03<br>2 | | • | 2.0 | 1.0 | | •0 | | | 46 | 0.0 | s | | 08/23/83<br>0815 | 5050<br>5050 | o | | 76.5F<br>24.7C | | 97 | 12<br>•60<br>49 | 4.0<br>•33<br>27 | • 26 | 1.2<br>.03<br>2 | *- | • | 2.0<br>.04 | 1.0 | | 0.<br>7AS | | | 46 | 0.0 | s | | 09/23/83<br>0825 | 5050<br>5050 | 230 | | 49.1F<br>9.50 | | 116 | 10<br>•50<br>46 | 4.0<br>•33 | •22 | 1.0 | ub-qq | | 2.0<br>.04 | 1.0 | | .0<br>6AF | - <del>-</del> | | 42 | 0.0 | S | | 09/29/83<br>1130 | 5050<br>5050 | 0 | | 69.4F<br>20.8C | 7.7 | 109 | 10<br>•50<br>46 | 4.0<br>• 33<br>31 | •22 | 1.0<br>.03<br>3 | | • | 4.0<br>.08 | 1.0 | | +0<br>14F | | | 42 | 0.0 | s | | | ATE<br>IME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | FII<br>LABO | ELD<br>Ratory<br>EC | HIN | ERAL CI | DNSTITE | JENTS : | IN | MILLIGA<br>MILLIGA | DUIVALE | NTS PE | R LI | TER | | PER LITER | | | |------|--------------|----------------|--------------------|-----------|----------------|-------------|---------------------|-----------------|------------------|------------------|-----------------|----|--------------------|------------|------------|------|------------|-----------|---------------------------|-------------|-------| | • • | | | * * * • | | | | | CA<br>+ + + | MG | NA | K . | | PERCENT | | | | | F<br>SID2 | TDS TH<br>SUM NCH<br>++++ | SAR<br>ASAR | REM | | | | | L 044 | | | | LK PIT | | | | | | | | | | * * * | | • • • • • • | | * * * | | na / | 20/82 | 5050 | | | | | | | | | | | | AZOAO | CUNITA | 1050 | | | | | | | 1 | 140 | 5050 | 230 | | 54.0F<br>12.2C | | 122 | 12<br>•60<br>49 | 4.0<br>.33<br>27 | 6.0<br>•26<br>21 | 1.2<br>.03<br>2 | | | 4.0<br>.08 | 1.0 | | •0<br>74F | | 46 | 0.0 | s | | | 04/63 | 5050 | | 8.3 | 63.5F | 7.4 | 114 | 10 | 4.0 | 6.0 | 1.3 | | | 4.0 | 1.0 | | • | | | | 3 | | 0 | 915 | 5050 | 0 | 89 | 17.5C | | | •50<br>45 | •33 | •26<br>23 | .03 | | | -08 | •03 | | .0<br>1AF | | 42 | 0.0 | | | 117 | 04/83 | 5050 | | 0 . A | 56.5F | 7 2 | 124 | | | | _ | | | | | | | | | | 5 | | 0 | 925 | 5050 | 246 | | 13.6C | | 124 | .50<br>.38 | 5.0<br>.41<br>31 | 8.0<br>.35<br>27 | 1.8<br>.05 | | | 3.0<br>.06 | 2.0<br>.06 | | -0<br>7AF | | 46 | 0.0 | | | 12/ | 19/83 | 5050 | | 9.5 | 53.6F | 7.3 | 112 | 10 | 4.0 | | | | | | | | | | | | S | | 13 | 230 | 5050 | 0 | 91 | 12.00 | ,,,, | *** | •50<br>45 | ·33 | 6.0<br>.26<br>23 | 1.2<br>.03<br>3 | | | 4.0<br>.08 | 1.0<br>.03 | | .O<br>laf | | 42 | 0.0 | s | | | 19/83 | 5050 | | 11.6 | 46.9F | 7.3 | 119 | 11 | 4.0 | 7.0 | 1.4 | | | 4.0 | | | | | | | • | | 1: | .240 | 5050 | 243 | 102 | 8.3C | | | • 55<br>45 | · 33<br>27 | •30<br>25 | .04<br>3 | | | .08 | •03 | | .0<br>10AF | | 42 | 0.0 | S | | | 23/84 | 5050 | - | 10.5 | 49.3F | 7.3 | 100 | 11 | 5.0 | 8.0 | 1.6 | | | 4.0 | 2.0 | | • 0 | | 48 | | _ | | 14 | 000 | 5050 | 239 | 95 | 9.60 | | | •55<br>41 | •41<br>30 | • 35<br>26 | .04 | | | .08 | .06 | | 7AF | | | 0.0 | s | | | 23/84 | 5050 | | 10.5 | 49.3F | 7.3 | 100 | 11 | 4.0 | 6.0 | 1.1 | | | 3.0 | 2.0 | | | | | | • | | 14 | 000 | 5050 | 0 | 95 | 9.60 | | | •55<br>47 | •33<br>28 | •26<br>22 | •03 | | | •06 | •06 | | .0<br>1AF | | 44 | 0.0 | s | | | 27/84 | 5050 | | 11.8 | 44.2F | 7.3 | 130 | 11 | 5.0 | 8.0 | 1.6 | | | 5.0 | 2.0 | | | | | | • | | 12 | 200 | 5050 | 180 | | 6.8C | | | •55<br>41 | •41<br>30 | • 35<br>26 | .04 | | _ | .10 | •06 | | .0<br>10AF | | 48 | 0.0 | s | | | 27/84 | 5050 | | 11.2 | | 7.5 | 107 | 10 | 4.0 | 5.0 | 1.0 | | | 5.0 | 1.0 | | .0 | | 4.5 | | | | 12 | 200 | 5050 | 0 | | 10.00 | | | •50<br>46 | .33<br>31 | •22 | .03 | | | .10 | .03 | | 1AF | | 42 | 0.0 | s | | | 02/84<br>030 | 5050<br>5050 | | | 44.6F<br>7.0C | | 135 | 11 | 5.0 | 9.0 | 1.7 | | | 5.0 | 2.0 | | •1 | | 48 | 0.0 | , | | • | | 2424 | 262 | 70 | 1.06 | | | •55<br>40 | •41<br>29 | .39<br>28 | •04<br>3 | | | •10 | •06 | | | | | | 5. | | | 02/84<br>030 | 5050<br>5050 | | 10.5 | 55.4F | 7.4 | 108 | 11 | 4.0 | 5.0 | 1.1 | | | 5.0 | 2.0 | | • 2 | | 44 | 0.0 | | | - | | 2234 | 0 | 103 | 13.0C | | | +55<br>49 | 29 | •22<br>19 | .03<br>3 | | | .10 | •06 | | | | | | s | | | 07/84<br>830 | 5050<br>5050 | | 10.0 | 47.7F | 7.3 | 118 | 12 | 4.0 | 7.0 | 1.3 | | | 5.0 | 2.0 | | •0 | | 46 | 0.0 | | | 06 | V3 <b>V</b> | 2030 | 180 | 8.7 | 8.7C | | | •60<br>48 | •33<br>26 | •30<br>24 | •03<br>2 | | | •10 | • 06 | | | | .• | | S | | DATE | SAMPLER<br>LAB | G.H.<br>O<br>DEPTH | DO | TEMP | LABOR | LD<br>RATORY<br>EC | | | CONSTITU | | | MILLIE<br>PERCEN | T REACT | NTS P | ER LI<br>Value | TER<br>B | LIGRAM<br>F | S PER ( | LITER<br>TH | SAR | REA | |------------------|----------------|--------------------|-------------|----------------|-------|--------------------|-----------|-------------|----------|----------|---|------------------|------------------|-------|----------------|-----------|-------------|---------|----------------|------|-------| | | | | * * * | | | | CA + | MG<br>* * * | * * * * | , K | | CACD3 | \$ D4<br>* * * * | CL | | TURB | | SUM | NCH<br>* * * * | ASAR | | | | | | | | | | | | | | | | | | | | | * * * . | | | * * * | | | A.C | L 044. | A 515. | T 2 | HASTA | LK PII | RAB | JONE | 2 AVETE | 7 | | | AZDAO | CONTI | DED | | | | | | | | 05/07/84<br>0830 | | | | 58.1F | 7.7 | 99 | 10 | 4.0 | | | | | 4.0 | 2.0 | | • 0 | | | 42 | 0.0 | | | 0630 | 5050 | 0 | 103 | 14.50 | | | •50<br>45 | • 3 | | .03<br>3 | | | -08 | • 06 | | | | | | | _ | | 0 | | | | | | | | | | • | | | | | | | | | | | 5 | | 06/05/84<br>0800 | 5050<br>5050 | | 7 • 1<br>63 | 47.5F<br>8.6C | 7.2 | 126 | 12 | 5. | | 1.4 | | | 3.0 | 2.0 | | • 0 | | | 50 | 0.0 | | | | 2020 | 216 | 03 | 0.00 | | | •60 | • 4:<br>3: | | •04<br>3 | | | •06 | • 06 | | | | | | | | | | | | | | | • | ** | | | 3 | | | | | | | | | | | S | | 06/05/84<br>0800 | 5050<br>5050 | | B • 6 | | | 109 | 10 | 4.1 | | 1.2 | | | 3.0 | 1.0 | | .1 | | | 42 | 0.0 | | | V000 | 2020 | 0 | 97 | 20.00 | 7.8 | 108 | •50<br>45 | • 3:<br>21 | | •03<br>3 | | | •06 | .03 | | | | | | | | | | | • | | | | | 7, | ۲. | 7 23 | 3 | | | | | | | | | | | \$ | | 07/10/84 | | | | 80.2F | 7.7 | 108 | 10 | 4.0 | | 1.2 | | | 3.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 0830 | 5050 | 0 | 104 | 26.80 | | | -50 | • 3 | | .03 | | | .06 | .03 | | | | | | | | | | | • | | | | | 45 | 21 | 9 23 | 3 | | | | | | | | | | | 2 | | 07/10/84 | | | 6.5 | | 7.0 | 126 | 11 | 4. | 0 7.0 | 1.5 | | | 3.0 | 2.0 | | .0 | | | 44 | 0.0 | | | 0830 | 5050 | 243 | 62 | 11.70 | | | • 55 | • 3 | | .04 | | | • 06 | •06 | | | | | • • • | *** | | | | | 243 | | | | | 45 | 2 | 7 25 | 3 | | | | | | | | | | | S | | 08/13/84 | | | 8.3 | 78.8F | 8.0 | | 11 | 4.0 | 0 6.0 | 1.1 | | | 4.0 | 1.0 | | •1 | | | 44 | 0.0 | | | 0930 | 5050 | _ | 105 | 26.0C | | 120 | . 55 | • 3 | | .03 | | | .08 | .03 | | •• | | | 77 | 0.0 | | | | | 0 | | | | | 47 | 21 | 8 22 | 3 | | | | | | | | | | | 5 | | 08/13/84 | 5050 | | 1.3 | 48.6F | 7.0 | | 13 | 5.0 | 0 7.0 | 1.5 | | | 5.0 | 2.0 | | •0 | | | | | | | 0930 | 5050 | | | .9.20 | | 138 | •65 | - 43 | | •04 | | | .10 | •06 | | • • • | | | 53 | 0.0 | | | | | 233 | | | | | 46 | 29 | 9 21 | 3 | | | | | | | | | | | 5 | | 09/11/84 | 5050 | | 0.0 | 48.4F | 6.9 | 137 | 12 | 5.6 | 7.0 | 1.6 | | | 2.0 | | | _ | | | | | | | 0815 | 5050 | | ••• | 9.10 | 347 | 431 | .60 | 4 | | .04 | | | 3.0<br>.06 | 2.0 | | .0<br>4AF | | | 50 | 0.0 | | | | | 230 | | | | | 44 | 30 | | 3 | | | *** | *** | | , | | | | | S | | 09/11/84 | 5050 | | 7.8 | 74.5F | 7.8 | 118 | 10 | 4.0 | 0 6.0 | | | | • • | | | _ | | | | | | | 0815 | 5050 | | | 23.6C | | 110 | .50 | .33 | | 1.3 | | | 3.0<br>.06 | 2.0 | | .0<br>1AF | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 2 | | 3 | | | •00 | ••• | | IAF | | | | | S | | 10/15/84 | 5050 | | 0.0 | 49.1F | 4.0 | 149 | 1.0 | | | | | | | | | | | | | | • | | 0830 | 5050 | | 0.0 | 9.50 | 6.8 | 142 | 13<br>•65 | 5.(<br>.4) | | 1.6 | | | 3.0<br>.06 | 2.0 | | .0 | | | | 0.0 | | | | | 230 | | • | | | 45 | 20 | | 3 | • | | •00 | • 00 | | 6AF | | | | | S | | 10/15/84 | ENEA | | | 45.55 | | • • • | | | | | | | | | | | | | | | 3 | | 0845 | 5050<br>5050 | | | 63.9F<br>17.7C | 7.3 | 129 | 10<br>•50 | 5.(<br>.4] | | 1.4 | | | 2.0 | 2.0 | | .0. | | | | 0.0 | | | | | 0 | ~, | _,,,, | | | 40 | 33 | | 3 | | | .04 | • 06 | | 24F | | | | | s | | | | | | | | | | • | - ' | • | | | | | | | | | | | 2 | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DD<br>SAT | TEMP | FIE<br>LABOR<br>PH | LD<br>RATURY<br>EC | MIN | ERAL CO | INSTITU | JENTS | IN MIL | LIGRAHS PE<br>LIEQUIVALE<br>CENT REACT | NTS PE | R LI | TER | LLIGRAMS<br>F | | | | | |------------------|----------------|--------------------|-----------|----------------|--------------------|--------------------|------------|------------|------------|-----------|---------|----------------------------------------|------------|------|-----------|---------------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | K | *** | | | | | | TDS<br>SUM | TH<br>NCH | SAR<br>Asar | REY | | * * * * * * | | | * * * | * * * | * * 1 | * * * | * * * | * * * * | * * * | * * * | * * * * | | * * * | * * | * * * | * * * * | * * | * * * * | * * * | * * * | | | <b>A2</b> | L 045. | 4 225. | 5 S | ATZAH | LK LIT | TLE BA | CKBONE | C IN | EŢ | | AZOAO | | | | | | | | | | 05/13/83 | | | 10.5 | 58.1F | 7.4 | 73 | 8.0 | 3.0 | 4.0 | • 6 | 30 | 5.0 | 1.0 | | .1 | | | •• | 0.3 | | | 1300 | 5050 | 0 | 106 | 14.5C | | 75 | •40<br>48 | • 25<br>30 | •17<br>20 | •02 | •60 | .10 | .03 | | 3AF | | 40 | 32 | 0.2 | S | | 05/13/83 | 5050 | | 10.3 | 45.3F | 7.2 | 86 | 9.0 | 3.0 | 4.0 | . 8 | 39 | 3.0 | 1.0 | | | | | | | | | 1310 | 5050 | | 88 | 7.4C | | 89 | . 45 | •25 | •17 | •02 | •78 | •06 | •03 | | .O<br>6AF | | 44 | 35<br>0 | 0.3 | | | | | 197 | | | | | 51 | 28 | 19 | 2 | | | | | • | | • • | • | 711 | S | | 06/22/83 | 5050 | | 8.3 | 73.0F | 7.7 | | 8.0 | 3.0 | 4.0 | • 6 | | 4.0 | 1.0 | | •0 | | | 32 | 0.0 | | | 1300 | 5050 | 0 | 99 | 22.6C | | 84 | •40 | • 25 | •17 | •02 | | -08 | •03 | | •• | | | 34 | 0.0 | | | | | U | | | | | 46 | 30 | 20 | 2 | | | | | | | | | | S | | 06/22/83 | | | | 47.3F | | | 9.0 | 3.0 | 4.0 | .7 | | 4.0 | 1.0 | | .0 | | | 35 | 0.0 | | | 1310 | 5050 | 230 | 83 | 8.5C | | 89 | •45<br>51 | •25<br>28 | •17 | •02 | | .08 | .03 | | | | | | | | | _ | | 230 | | | | | 21 | 28 | 19 | 2 | | | | | | | | | | 5 | | 07/27/83<br>1200 | 5050<br>5050 | | | 76.6F | | 88 | 9.0 | 3.0 | 5.0 | • 8 | | 4.0 | 1.0 | | •0 | | | 35 | 0.0 | | | 1200 | 2020 | 3 | 100 | 24.80 | | | .45<br>48 | •25<br>27 | •22<br>23 | .02<br>2 | | .08 | •03 | | | | | | | | | 07/07/00 | | | | | | | ••• | | 23 | _ | | | | | | | | | | \$ | | 07/27/83<br>1210 | 5050<br>5050 | | | 50.0F | 7.1 | | 8.0 | 3.0 | 4.0 | . 8 | | 4.0 | 1.0 | | .0 | | | 32 | 0.0 | | | | ,,,, | 177 | ,, | 10.00 | | | •40<br>48 | •25<br>30 | •17<br>20 | .02 | | .08 | .03 | | | | | | | _ | | 08/24/83 | | | | <b>.</b> | _ | | | • | | | | | | | | | | | | \$ | | 1145 | 5050<br>5050 | | | 76.1F<br>24.5C | 7.6 | 94 | 9.0 | 4.0<br>.33 | 5.0<br>.22 | •02 | | 4.0 | 1.0 | | .0 | | | 39 | 0.0 | | | | | 0 | | | | | 44 | 32 | 22 | 2 | | • 08 | •03 | | 2AF | | | | | s | | 08/24/83 | 5050 | | | 48.6F | 7 4 | | | | | | | | | | | | | | | • | | 1155 | 5050 | | 72 | 9.20 | 7.1 | 89 | 6.0<br>.40 | 4.0<br>.33 | 5.0<br>.22 | .8<br>.02 | | 4.0<br>.08 | 1.0 | | •0<br>4AF | | | 36 | 0.0 | | | | | 223 | | | | | 41 | 34 | 23 | 2 | | •00 | •05 | | 787 | | | | | 5 | | 10/03/83 | 5050 | | 8.2 | 67.6F | 8.0 | 104 | 10 | 4.0 | 6+0 | 1.2 | *- | | | | _ | | | | | - | | 0810 | 5050 | | | 19.8C | | | .50 | .33 | • 26 | .03 | | 6.0<br>.12 | 2.0<br>.06 | | OAF | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 29 | 23 | 3 | | | *** | | • | | | | | 5 | | 10/03/83 | 5050 | | 6.8 | 55.6F | 6.8 | 97 | 9.0 | 4.0 | 5.0 | . 9 | | 5.0 | 1.0 | | | | | | | | | 0820 | 5050 | | | 13.10 | | • • | .45 | .33 | .22 | .02 | | .10 | .03 | | •0<br>2AF | | | 39 | 0.0 | | | | | 157 | | | | | 44 | 32 | 22 | 2 | | | | | | | | | | 5 | | 10/26/83 | | | 8.7 | 64.0F | 7.4 | 107 | 9.0 | 4.0 | 6.0 | 1.2 | | 4.0 | 1.0 | | .0 | | | 39 | 0.0 | | | 0815 | 5050 | 0 | 94 | 17.8C | | | +45 | • 33 | .26 | .03 | | .08 | •03 | | 1AF | | | 37 | <b>V.</b> 0 | | | | | U | | | | | 42 | 31 | 24 | 3 | | | | | | | | | | \$ | | 10/26/83 | | | | 55.8F | 6.9 | 99 | 9.0 | 4.0 | 5.0 | .9 | | 5.0 | 1.0 | | .0 | | | 39 | 0.0 | | | 0825 | 5050 | 177 | 70 | 13.2C | | | • 45<br>44 | • 33 | •22 | •02 | | •10 | .03 | | 2AF | | | _, | | | | | | | | | | | 77 | 32 | 22 | 2 | | | | | | | | | | \$ | | DATE<br>Time | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DG<br>SAT | TEMP | FIE<br>LABOR<br>PH | LD<br>ATORY<br>EC | MINE | ERAL C | ONSTITU | JENTS | IN | MILI | LIGRAMS PE<br>LIEQUIVALE<br>ENT REACT | NTS P | R LIT | MII<br>TER<br>B | LIGRAMS | PER LITER | | | | |---------------------------|----------------|--------------------|------------|---------------|--------------------|-------------------|------------|------------|---------|----------|-----|-------|---------------------------------------|--------|-------|-----------------|---------|-----------|-------|-------|----| | | | | | | | | CA | MG | NA. | K | | CACDO | 604 | | MOS | THEA | | | ASA | R | | | | | | * * * | * * * | * * * | * * * | * * * | * * * | * * * • | * * | * 1 | * * * | * * * * * | * * * | * * * | * * * | * * * • | • • • • • | * * * | * * * | * | | | A2 | L 045. | 4 225. | 5 SI | HASTA | LK LIT | TLE BA | CKBON | E C INL | .ET | | | A 20 A D | CONTIN | IUED | | | | | | | | 12/20/83 | | | 9.6 | 53.6F | 7.3 | 107 | 9.0 | 4.0 | 6.0 | 1.2 | | | 4.0 | 1.0 | | •0 | | 3 | | • | | | 0845 | 5050 | | 92 | 12.00 | | | .45 | . 33 | .26 | • 03 | | | .08 | .03 | | 1AF | | 3 | 9 0. | U | | | | | 0 | | | - | | 42 | 31 | 24 | 3 | | | | | | | | | | ; | S | | 12/20/83 | 5050 | | | 50.4F | 7.0 | 113 | 10 | 4.0 | 7.0 | 1.2 | | | 3.0 | 1.0 | | .0 | | 4 | z 0. | 0 | | | 0655 | 5050 | 180 | 85 | 10.20 | | | •50<br>43 | • 33 | | •03 | | | •06 | .03 | | 4AF | | • | | - | | | | | 100 | | | | | 73 | 28 | 26 | 3 | | | | | | | | | | ! | S | | 01/24/84<br>1100 | 5050<br>5050 | | 10.5<br>95 | 49.5F | 7.2 | 96 | 9.0 | 4.0 | | 1.1 | | | 4.0 | 2.0 | ** | • 0 | | 3 | 9 0. | 0 | | | 1100 | 2020 | 0 | ₹2 | 9.70 | | | •45<br>44 | •33<br>32 | | •03<br>3 | | | •08 | •06 | | 1AF | | | | | _ | | 01/24/84 | 5050 | | | 43.05 | | | | | | | | | | | | | | | | ; | \$ | | 1100 | 5050 | | 90 | 47.8F<br>8.8C | | 98 | 9.0<br>.45 | 4.0 | | 1.0 | | | 4.0<br>.08 | 2.0 | | .0 | - | 3 | 9 0. | 0 | | | | | 141 | _ | | | | 44 | 32 | | 3 | | | •00 | • 06 | | 2AF | | | | | 5 | | 02/28/84 | 5050 | | 11.3 | 49.1F | 7.3 | 94 | 9.0 | 4.0 | 5.0 | | | | | | | _ | | | _ | | • | | 1300 | 5050 | | 102 | 9.5C | . • 3 | 74 | •45 | •33 | | 1.0 | | ~~ | 6.0<br>.12 | 1.0 | | .0<br>1AF | | 3 | 9 0. | 0 | | | | | 0 | | | | | 44 | 32 | 21 | 3 | | | | | | | | | | | S | | 02/28/84 | 5050 | | 10.1 | 46.2F | 7.2 | 95 | 9.0 | 4.0 | 5.0 | 1.0 | | | 5.0 | 1.0 | | .0 | | 3 | 9 0. | ^ | | | 1300 | 5050 | 148 | 89 | 7.90 | | | .45 | • 33 | .22 | .03 | | | .10 | .03 | | ZAF | | | , ,, | · · | | | | | 140 | | | | | 44 | 32 | 21 | 3 | | | | | | | | | | ; | \$ | | 04/03/84<br>1230 | | | | 55.4F | 7.4 | 98 | 9.0 | 4.0 | | . 9 | | | 6.0 | 2.0 | | .1 | | 3 | , o. | o | | | 1230 | 5050 | 0 | 106 | 13.0C | | | • 45<br>44 | •33<br>32 | | .02 | | | •12 | • 06 | | | | | | | | | 0. (00.40) | | - | | | | | | | | | | | | | | | | | | • | 2 | | 04/03/84<br>1230 | 5050<br>5050 | | 10.4 | 45.1F<br>7.3C | 7.2 | 112 | 10<br>•50 | 4.0<br>.33 | | 1.1 | | | 4.0 | 2.0 | | • 1 | | 4. | 2 0. | 0 | | | | | 197 | • • | ,,,,, | | | 45 | 29 | | 3 | | | •08 | •06 | | | *** | | | , | s | | 05/08/84 | 5050 | | 0.6 | 47.7F | 7. 3 | 99 | 9.0 | 4.0 | 5.0 | 1.0 | | | | | | _ | | | _ | | • | | 1130 | 5050 | | 85 | 0.7C | ,,, | ** | .45 | .33 | | .03 | | | 4.0<br>.08 | 2.0 | | • 0 | | 3 | 9 0. | 0 | | | | | 138 | | | | | 44 | 32 | 21 | 3 | | | ••• | | | | | | | 5 | S | | 05/06/84 | 5050 | | 9.8 | 63.1F | 7.6 | 93 | 9.0 | 4.0 | 5.0 | . 9 | | | 6.0 | 2.0 | | •0 | | 3 | 0. | _ | | | 1130 | 5050 | · | | 17.3C | | | .45 | . 33 | •22 | •02 | | | .12 | .06 | | •0 | ~- | 3 | | U | | | | | 0 | | | | | 44 | 32 | 22 | 2 | | | | | | | | | | 9 | S | | 06/07/84 | | | | 65.8F | | 98 | 9.0 | 4.0 | 5.0 | 1.0 | | | 4.0 | 1.0 | | .1 | | 31 | 0. | o | | | 1130 | 5050 | 0 | 99 | 18.8C | 7.7 | 100 | • 45<br>44 | • 33<br>32 | | •03<br>3 | | | • OB | .03 | | | | • | | | | | | | • | _ | | | | | 36 | 41 | 3 | | | | | | | | | | 9 | 5 | | 06/07/ <b>8</b> 4<br>1130 | 5050<br>5050 | | 9.2<br>84 | 49.6F<br>9.8C | | 109<br>108 | 9.0 | 4.0 | | 1.2 | | | 3.0 | 2.0 | | •1 | | 3 | 0. | 0 | | | | | 121 | 04 | 7.00 | 1 4 1 | 100 | •45<br>42 | •33<br>31 | | •03<br>3 | | | •06 | • 06 | | | | | | | s | | | | | | | | | | | - • | • | | | | | | | | | | 3 | , | | DATE | SAMPLER<br>LAB | Q<br>DEPTH | DO<br>SAT | TEMP | LABOI<br>PH | RATORY | | MC | M 4 | | | PERCEN | RAMS PE<br>QUIVALE<br>T REACT | NTS PI<br>Ance | ER LII<br>Value | FER | LIGRAMS<br>F<br>SID2 | S PER<br>TDS<br>SUM | TH | SAR<br>AS AR | RE4 | |---------------------------|----------------|------------|-----------|----------------|-------------|---------|-----------|------------|------------|----------|-----|--------|-------------------------------|----------------|-----------------|-----------|----------------------|---------------------|---------|-----------------------------------------|-------| | * * * * | * * * * : | * * * * | * * * | * * * | + + 1 | * * * * | * * * | * * * | * * * | * * | * * | * * * | * * * * | * * : | * * * | | | | + + + + | | * * * | | | A2 | L 045. | 4 225. | <b>5</b> SI | HASTA | LK LIT | TIF RA | CKRONE | C THI | C T | | | AZOAO | CONTE | MUED | | | | | | | | .= | | | | | | | | 01100112 | U 1.VL | | | | AZUAU | COMIT | NUED | | | | | | | | 07/11/84<br>0800 | 5050<br>5050 | | | 78.3F<br>25.7C | 7.7 | 103 | 9.0 | 4.0 | 6.0 | 1.0 | | | 4.0 | | | .0 | | | 39 | 0.0 | | | 0.00 | 3030 | 0 | 41 | 27.76 | | | •45<br>42 | •33<br>31 | •26<br>24 | •03 | | | .08 | .03 | | | | | | | | | | | | | | | | 7 8- | 3. | 27 | 3 | | | | | | | | | | | 5 | | 07/11/ <b>6</b> 4<br>0800 | 5050<br>5050 | | | 50.7F | 7.2 | 108 | 10 | 4.0 | 6.0 | 1.2 | | | 3.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 0000 | 2020 | 148 | 80 | 10.4C | | | •50<br>45 | •33<br>29 | •26<br>23 | .03 | | | • 06 | • 03 | | | | | | • • • • • • • • • • • • • • • • • • • • | | | | | . 10 | | | | | 70 | 24 | 23 | .3 | | | | | | | | | | | 5 | | 08/14/84<br>1330 | | | | 79.3F | 7.2 | | 10 | 4.0 | 5.0 | 1.0 | | | 6.0 | 2.0 | | .0 | | | 42 | 0.0 | | | 1330 | 5050 | 0 | 98 | 26.3C | | 109 | •50 | • 33 | •22 | •03 | | | •12 | •06 | | | | | `- | | | | | | U | | | | | 46 | 31 | 20 | 3 | | | | | | | | | | | \$ | | 09/13/84 | 5050 | | 7.9 | 73.2F | 7.5 | 116 | 10 | 4.0 | 6.0 | 1.1 | | | 4.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 0830 | 5050 | o | 94 | 22.90 | - | | •50 | .33 | .26 | .03 | | | .08 | .03 | | 1AF | | | 46 | 0.0 | | | | | U | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | \$ | | 09/13/84 | | | 5.3 | 61.0F | 7.0 | 121 | 10 | 5.0 | 7.0 | 1.4 | | | 4.0 | 2.0 | | •0 | | | | | | | 0830 | 5050 | | 55 | 16.10 | | | •50 | .41 | •30 | •04 | | | .08 | .06 | | 2AF | | | 46 | 0.0 | | | | | 98 | | | | | 40 | 33 | 24 | 3 | | | | | | | | | | | S | | 13/17/84 | 5050 | | 7.9 | 62.6F | 7.3 | 124 | 10 | 5.0 | 7.0 | 1.4 | | | 4.0 | 2.0 | | • | | | | | | | 1100 | 5050 | | 84 | 17.0C | | | • 50 | .41 | • 30 | .04 | | | .08 | •06 | | +0<br>1AF | | | | 0.0 | | | | | 0 | | | | | 40 | 33 | 24 | 3 | | | | ••• | | 401 | | | | | 5 | | 10/17/84 | 5050 | | 5.6 | 59.9F | 7.1 | 124 | 10 | 5.0 | 7.0 | | | | | | | _ | | | | | - | | 1100 | 5050 | | | 15.5C | | 264 | .50 | •41 | 7.0<br>.30 | 1.4 | | | 4.0<br>.08 | 2.0 | | .0<br>2AF | | | | 0.0 | | | | | 98 | | | | | 40 | 33 | 24 | 3 | | | ••• | •00 | | ZAF | | | | | . \$ | | | A2 | L 046. | 6 212.0 | 0 CI | ATZA | LK SQU | AU C B | TINC | _ | | | | | | | | | | | | . • | | | | 1 | | , ,, | | LN 340 | -W C D | r STAC | L | | | | OAGSA | | | | | | | | | | 05/13/83<br>1045 | 5050<br>5050 | | | 57.2F | 7.4 | 91 | 11 | 3.0 | 4.0 | •7 | | 40 | 4.0 | 1.0 | | • 0 | | | 40 | 0.3 | | | 1045 | 2030 | ٥ | 103 | 14.0C | | 92 | •55<br>56 | • 25<br>25 | •17<br>17 | •02<br>2 | • | .80 | .08 | •03 | | 5AF | | 48 | Ď | 0.2 | | | | | _ | | | | | 20 | 23 | 17 | ٤. | | | | | | | | | | | \$ | | 05/13/83 | 5050 | | 10.3 | | 7.2 | 111 | 14 | 3.0 | 5.0 | . 9 | | 51 | 4.0 | 1.0 | | .0 | | | 48 | 0.3 | | | 1055 | 5050 | 197 | 89 | 7.60 | | 114 | •70 | • 25 | •22 | •02 | 1 | • 02 | .08 | • 03 | | 5AF | | 58 | ŏ | 0.3 | | | | | 471 | | | | | 59 | 21 | 18 | 2 | | | | | | | | | | | S | | 06/24/83 | 5050 | | | 72.1F | 7.9 | | 11 | 3.0 | 5.0 | 1.0 | | | 2.0 | 1.0 | | • 0 | | | 40 | 0.0 | | | 0900 | 5050 | 0 | 100 | 22.3C | | 104 | • 55 | • 25 | •22 | •03 | | | .04 | •03 | | • • | | | 70 | V-U | | | | | U | | | | | 52 | 24 | 21 | 3 | | | | | | | | | | | S | | 06/24/83 | 5050 | | | 47.5F | 7.3 | | 12 | 3.0 | 5.0 | . 9 | | | 3.0 | 1.0 | | •0 | | | 42 | 0.0 | | | 0910 | 5050 | 220 | 81 | 8.60 | | 105 | •60 | .25 | .22 | •02 | | | •06 | .03 | | • • | | | 74 | 0.0 | | | | | 230 | | | | | 55 | 23 | 20 | 2 | | | | | | | | | | | \$ | | | | | | | | | | | | | | | | | | | | | | | | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | LO<br>ATORY<br>EC | MINE | RAL | CONSTIT | UENTS | IN | MILL | IGRAMS PE<br>IEQUIVALE | NTS PE | R LIT | ÉR | LLIGRAMS | | TER | | | |------------------|----------------|--------------------|-----------|-------|-------|-------------------|-----------|------------|---------|------------|-----|-------|------------------------|--------|-------|------------|----------|------------|-----------|-------------|-----| | | | | | | 7 11 | | | ĦG | NA | K | 1 | CACD3 | ENT REACT | CI | MO2 | B<br>Turb | C T D 2 | TDS<br>SUM | TH<br>NCH | SAR<br>Asar | REY | | * * * * * * | | | • • • | | * * * | * * * | * * * | * * | * * * * | * * * | * * | * * | * * * * * * | * * • | | + + + | * * * * | | * * * | * * * | | | | <b>A2</b> | L 046. | 4 212. | .9 5 | HASTA | LK SQU | AW C B | L ZI | NC C | | | | A20A0 | CONTIN | IUED | | | | | | | | 07/26/83 | 5050 | | | 75•7F | 8.1 | 100 | 10 | 4.6 | 5.0 | 1.0 | | | 3.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 1145 | 5050 | 0 | 98 | 24.30 | | | •50<br>46 | • 3:<br>3: | | •03<br>3 | | | •06 | •03 | | ••• | ~- | | 72 | 0.0 | - | | 07/26/83 | 5050 | | 7.7 | 50.4F | 7 9 | | • • • | | | _ | | | | | | | | | | | 2 | | 1155 | 5050 | | | 10.20 | 1+2 | 110 | 13<br>•65 | 3.6 | | •02 | | | 3.0<br>.06 | 1.0 | | • 0 | | | 45 | 0.0 | | | | | 171 | | | | | 57 | 2 | | 2 | | | • 00 | •03 | | | | | | | \$ | | 08/23/83 | 5050 | | 8.2 | 78.4F | 8.4 | 100 | | | | | | | | | | | | | | | , | | 1045 | 5050 | | | 25.80 | D • 🔻 | 100 | 10<br>.50 | 4.0 | | 1.0 | | | 3.0 | 1.0 | | .0 | | | 42 | 0.0 | | | | | 0 | | | | | 46 | 37 | | 3 | | | •06 | •03 | | 14F | | | | | \$ | | 08/23/83 | 5050 | | 7.5 | 51.1F | 7.2 | 108 | 12 | 4.0 | | | | | | _ | | | | | | | • | | 1055 | 5050 | | | 10.6C | 7.02 | 100 | •60 | . 33 | | •02 | | | 4.0<br>.08 | 1.0 | | .O<br>Baf | | | 46 | 0.0 | | | | | 164 | | | | | 51 | 25 | | 2 | | | | •03 | | JAF | | | | | 5 | | 09/29/83 | 5050 | | 8.9 | 69.4F | 7.7 | 109 | 10 | 4.0 | 6.0 | | | | | | | _ | | | | | • | | 0830 | 5050 | | 102 | | | -4, | • 50 | .33 | | 1.1<br>.03 | | | 4.0<br>.08 | 1.0 | | 0.0<br>OAF | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 29 | | 3 | | | ••• | 103 | | UAT | | | | | S | | 09/29/83 | 5050 | | 6.4 | 54.0F | 6.9 | 120 | 15 | 3.0 | 5.0 | .7 | | | 4.0 | | | _ | | | | | - | | 0840 | 5050 | | 62 | 12.2C | | | •75 | . 2 : | | •02 | | | 6.0<br>.12 | 1.0 | | .O | | | 50 | 0.0 | | | | | 213 | | | | | 60 | 20 | 18 | 2 | | | | | | 7-1 | | | | | S | | 10/28/83 | 5050 | | 8.3 | 63.7F | 7.5 | 113 | 10 | 4.0 | 6.0 | 1.2 | | | 4.0 | | | _ | | | | | - | | 0930 | 5050 | | | 17.6C | | | •50 | • 33 | | •03 | | | 4.0<br>.08 | 1.0 | | +0<br>1AF | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | S | | 10/28/83 | 5050 | | 5.4 | 54.7F | 6.9 | 124 | 12 | 4.0 | 7.0 | 1.4 | | | 4.0 | 2.0 | | | | | | | | | 0940 | 5050 | | 52 | 12.6C | | | .60 | . 33 | .30 | .04 | | | .08 | •06 | | .0<br>4AF | | | 46 | 0.0 | | | | | 197 | | | | | 47 | 26 | 24 | 3 | | | | | | | | | | | S | | 12/19/83 | 5050 | | 9.5 | 53.8F | 7.3 | 112 | 10 | 4.0 | 6.0 | 1.2 | | | 4.0 | 1.0 | | • 0 | | | 42 | | | | 0945 | 5050 | 0 | 91 | 12.1¢ | | | .50 | • 33 | | .03 | | | .08 | .03 | | 1AF | | | 72 | 0.0 | | | | | J | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | \$ | | 12/19/83 | 5050 | | | 47.3F | 7.2 | 117 | 11 | 4.0 | 6.0 | 1.4 | | | 4.0 | 1.0 | | .0 | | | 44 | 0.0 | | | 0955 | 5050 | 190 | 95 | 8.5C | | | - 55 | • 33 | | •04 | | | .08 | •03 | | 6AF | | | 77 | 0.0 | | | | | 140 | | | | | 47 | 28 | 22 | 3 | | | | | | | | | | | S | | 01/23/84 | 5050 | | | 49.3F | 7.3 | 103 | 11 | 4.0 | 6.0 | 1.2 | | | 5.0 | 2.0 | | • 0 | | | 44 | 0.0 | | | 1300 | 5050 | 0 | 97 | 9.60 | | | • 55 | • 33 | | •03 | | | .10 | .06 | | 146 | | | 77 | 0.0 | | | | | J | | | | | 47 | 28 | 2.5 | 3 | | | | | | | | | | | S | | 01/23/84<br>1300 | 5050 | , | 12.0 | | 7.2 | | 11 | 4.0 | | 1.4 | | | 4.0 | 2.0 | | •0 | | | 44 | 0.0 | | | 1300 | 5050 | 243 | 102 | 6.90 | | | •55<br>45 | • 33<br>27 | | •04 | | | •08 | •06 | | | | | • • | | | | • | | | | | | | 43 | | 29 | 3 | | | | | | | | | | | \$ | | DATE | | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | | LD<br>ATORY<br>EC | MINE | RAL CO | NSTITL | IENTS : | IN | WILLIE | RAMS PEI<br>QUIVALEI<br>T REACT: | NTS PE | R LI | TER | LLIGRAMS<br>F | PER LITER | 548 | | |--------------|------|----------------|--------------------|-------------|----------------|-------|-------------------|-----------|------------|------------|------------|-----|--------|----------------------------------|------------|------|-------|---------------|---------------------------------------|-------------|-------| | | | | | | | | | CA | MG | NA . | K | • | **** | | | | | | 11.7. | SAR<br>Asar | R E 4 | | | | • • • | | | | • • • | | • • • | * * * | * * * | * * * ' | • • | | | • • • | + + | * * * | * * * * | * * * * * * * * * * * * * * * * * * * | • • • • | * * * | | | | A2 | L 046. | 4 212. | 9 5 | ATZAH | LK SQU | AW C B | L ZINC | C | | | | A20A0 | CONTIN | UED | | | | | | | 02/27 | 7/84 | 5050 | | 11.4 | 48.6F | 7.6 | 108 | 11 | 4.0 | 5.0 | 1.0 | | | 5.0 | 1.0 | | .1 | | | | | | 100 | 00 | 5050 | | 102 | 9.2C | | | .55 | .33 | •22 | •03 | | | .10 | .03 | | 1AF | | 44 | 0.0 | | | | | | 0 | | | | | 49 | 29 | 19 | 3 | | | | | | | | | | S | | 02/27 | | 5050 | | 11.9 | 44.4F | 7.3 | 126 | 10 | 5.0 | 8.0 | 1.5 | | | 5.0 | 2.0 | | • 0 | | 46 | 0.0 | | | 100 | 00 | 5050 | 213 | 101 | 6.90 | | | •50 | •41 | •35 | .04 | | | •10 | •06 | | 13AF | | 40 | 0.0 | | | | | | 213 | | | | | 36 | 32 | 27 | 3 | | | | | | | | | | S | | 04/02 | | 5050 | | | 55.0F | 7.6 | 106 | 11 | 4.0 | 5.0 | .9 | | | 4.0 | 2.0 | | .1 | | 44 | 0.0 | | | 130 | 00 | 5050 | 0 | 104 | 12.8C | | | •55<br>49 | .33<br>29 | •22<br>20 | •02 | | | .08 | • 06 | | | | • | | | | | | | • | | | | | 47 | 27 | 20 | 2 | | | | | | | | | | \$ | | 04/02<br>130 | | 5050<br>5050 | | 10.2<br>88 | 45.3F | 7.3 | 129 | 13 | 4.0 | 7.0 | 1.3 | | | 5.0 | 2.0 | | .1 | | 49 | 0.0 | | | 130 | ,, | 7070 | 213 | 00 | 7.4C | | | •65<br>50 | •33<br>25 | .30<br>23 | •03<br>2 | | | .10 | .06 | | | | | | | | 25.127 | | | | | | _ | | | | | - | | | | | | | | | | S | | 05/07<br>110 | | 5050<br>5050 | | | 59.0F<br>15.0C | 7.6 | 100 | 10<br>•50 | 4.0<br>.33 | 5.0<br>.22 | 1.0 | | | 5.0 | 2.0 | | .0 | | 42 | 0.0 | | | | | | 0 | | 23100 | | | 46 | 31 | 20 | •03<br>3 | | | •10 | • 06 | | | | | | \$ | | 05/07 | 7/84 | 5050 | | | 46•2F | 7 2 | 122 | | | | | | | | | | | | | | 3 | | 110 | | 5050 | | | 7.90 | 1.3 | 122 | 13<br>•65 | 4.0<br>.33 | 6.0<br>.26 | 1.1<br>.03 | | | 5.0<br>.10 | 2.0 | | .0 | | 49 | 0.0 | | | | | | 230 | | | | | 51 | 26 | 20 | 2 | | | ••• | • • • | | | | | | s | | 06/05 | /84 | 5050 | | 8.7 | 68.4F | 7.7 | 105 | 10 | 4.0 | 6.0 | 1.1 | | | 3.0 | | | | | | | _ | | 093 | 10 | 5050 | | 99 | | | 108 | •50 | •33 | -26 | •03 | | | •06 | 1.0 | | • 0 | | 42 | 0.0 | | | | | | 0 | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | S | | 06/05 | | 5050 | | 8.6 | 46.8F | 7.2 | 125 | 14 | 4.0 | 6.0 | 1.1 | | | 4.0 | 1.0 | | .0 | | 52 | 0.0 | | | 093 | 10 | 5050 | .220 | 75 | 8.2C | 7.8 | 126 | •70 | .33 | .26 | .03 | | | .08 | .03 | | •• | | 32 | 0.0 | | | | | | . 220 | | | | | 53 | 25 | 20 | 2 | | | | | | | | | | 5 | | 07/10 | | 5050 | | 8.7 | | 7.2 | 120 | 15 | 4.0 | 5.0 | 1.0 | | | 5.0 | 1.0 | | •0 | | 54 | 0.0 | | | 113 | ıu | 5050 | 220 | | | | | •75<br>56 | •33<br>25 | .22 | •03 | | | .10 | .03 | | | | | | | | | | | | | | | | 96 | 23 | 17 | 2 | | | | | | | | | | \$ | | 07/10<br>113 | | 5050<br>5050 | | 8.0 | | 7.6 | 109 | 10 | 4.0 | 6.0 | 1.1 | | | 3.0 | 2.0 | | •0 | | 42 | 0.0 | | | 113 | , , | 7070 | 0 | 103 | 27.0C | | | •50<br>45 | •33<br>29 | •26<br>23 | •03<br>3 | | | • 06 | •06 | | | | | | _ | | 08/13 | 144 | E050 | | | | | | | _ | | _ | | | | | | | | | | S | | 120 | | 5050<br>5050 | | 4 • 3<br>39 | 48.4F<br>9.1C | 7.1 | 137 | 16<br>•80 | 4.0<br>.33 | 5.0<br>.22 | .9 | | | 6.0 | 1.0 | ~~ | .0 | | 56 | 0.0 | | | | | | 226 | ٠. | , , , | | 191 | 58 | 24 | 16 | •02<br>1 | | | •12 | •03 | | | | | | s | | 08/13 | 1/R4 | 5050 | | 8.5 | 01 AF | | | • • | | | | | | | | | | | | | 3 | | 120 | | 5050 | | | 81.0F<br>27.2C | 8.0 | 119 | 11<br>•55 | 4.0<br>.33 | 6.0<br>.26 | 1.2<br>.03 | | | 5.0<br>.10 | 2.0<br>.06 | | • 0 | | 44 | 0.0 | | | | | | 0 | | | | | 47 | 28 | 22 | 3 | | | •10 | • •• | | | | | | S | | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | FI<br>LABO<br>PH | ELD<br>RATORY<br>EC | MINE | RAL CO | NSTITU | JENTS | IN | MILLIE | RAMS PE<br>QUIVALE<br>T REACT | NTS P | ER LII | ER | LLIGRAM: | | | | | |---|------------------|----------------|--------------------|-----------|----------------|------------------|---------------------|-----------|------------------|------------------|-----------------|-----|-----------|-------------------------------|------------|--------|-----------|------------------|------------|----|-------------|------------| | | • • • • | • • • • | • • • • | | | * * 1 | | CA + + | #G<br>• • • | NA<br>+ + e | K * * | * * | C 4 C D A | | | | | \$102<br>+ + + + | TDS<br>MU2 | | SAR<br>Asar | RET | | | | A2 | L 046. | | | | LK SQU | | | | | | | A20A0 | | | | | | | | * * * * | | _ | 09/11/84 | 5050 | | 3.0 | 48.7F | | | 16 | | | | | | | | | | | | | | | | | 1045 | 5050 | 236 | 27 | 9.30 | | 130 | .80<br>56 | 4.0<br>•33<br>23 | 6.0<br>•26<br>18 | 1.0<br>•03<br>2 | | | 5.0<br>.10 | •03 | | O<br>BAF | | | 56 | 0.0 | s | | | 09/11/84 | | | | 75.6F | | 120 | 11 | 4.0 | 6.0 | 1.2 | | | 4.0 | 1.0 | | •0 | | | 44 | | | | | 1045 | 5050 | 0 | | 24.20 | | | •55<br>47 | •33<br>28 | •26<br>22 | •03 | | | •08 | •03 | | 1AF | *** | | 11 | 0.0 | s | | | 10/15/84<br>1100 | 5050<br>5050 | | 0.5 | 49.5F | 6.8 | 144 | 16 | 4.0 | 6.0 | 1.0 | | | 5.0 | 1.0 | | .0 | | | | 0.0 | | | | | | 226 | , | 9.70 | | | •80<br>56 | .33<br>23 | •26<br>18 | .03<br>2 | | | •10 | .03 | | 3ÅF | | | | ••• | \$ | | | 10/15/84 | 5050<br>5050 | | 7.8 | 63.9F | 7.3 | 131 | 11 | 5.0 | 7.0 | 1.3 | | | 4.0 | 2.0 | | .0 | | | | 0.0 | | | | 1100 | | 0 | | 17.70 | | | •55<br>43 | •41<br>32 | •30<br>23 | •03 | | | -06 | .06 | | 1AF | | | | 0.0 | \$ | | | | AZ | L 048. | 4 217. | 6 SI | ATZAH | LK HCC | LOUD R | ARM | | | | | A24A0 | | | | | | | | | | | 05/12/83 | | | | 52.7F | 8.0 | 67 | 10 | 3.0 | 4.0 | •6 | | 37 | 3.0 | 1.0 | | .0 | | | 38 | 0.3 | | | | 1015 | 5050 | 0 | 102 | 11.5C | | 86 | •50<br>53 | •25<br>27 | •17<br>18 | •02<br>2 | • | .74 | •06 | •03 | | 2AF | | 44 | 1 | 0.2 | s | | | 05/12/83<br>1025 | 5050<br>5050 | | 11.2 | 44.8F<br>7.1C | 7.2 | 89 | 11 | 3.0 | 4.0 | .7 | | 39 | 2.0 | 1.0 | | .0 | | | 40 | 0.3 | | | | | | 223 | | | | 89 | •55<br>56 | • 25<br>25 | •17<br>17 | •02 | • | .78 | • 04 | •03 | | 5AF | | 45 | 1 | 0.2 | s | | | 06/22/83<br>0930 | 5050<br>5050 | | 8.5 | 70.3F<br>21.3C | 7.7 | | 10 | 3.0 | 5.0 | . 9 | | | 4.0 | 1.0 | | •0 | | | 38 | 0.0 | | | | 0.30 | 7070 | 0 | 79 | 21.36 | | 100 | •50<br>51 | • 25<br>25 | •22 | •02<br>2 | | | .08 | .03 | | | | | | ••• | _ | | | 06/22/83 | 5050 | | 9.4 | 46.4F | 7 2 | | 11 | | | | | | | | | | | | | | \$ | | | 0940 | 5050 | | | 8.0C | 7 . 3 | 90 | .55 | 2.0<br>.16 | 4.0<br>.17 | •7<br>•02 | | | 1.0 | 1.0 | | .0 | | | 36 | 0.0 | | | | | | 279 | | | | | 61 | 18 | 19 | 2 | | | | | | | | | | | <b>S</b> . | | | 07/28/83<br>0930 | 5050<br>5050 | | 8.8 | 75.0F | 8.0 | 98 | 10 | 3.0 | 5.0 | 1.0 | | | 3.0 | 1.0 | | .0 | | | 38 | 0.0 | | | | 0730 | 3030 | 0 | 107 | 23.90 | | | •50<br>50 | • 25<br>25 | •22 | •03 | | | .06 | •03 | | | | | - | ••• | | | | 07/28/83 | 5050 | | 8.4 | 49.1F | 7. 2 | 90 | 11 | - | | | | | | | | | | | | | S | | | 0940 | 5050 | 197 | | 9.5C | , , , | 70 | •55<br>56 | 3.0<br>.25<br>25 | 4.0<br>.17<br>17 | •6<br>•02<br>2 | | | 2.0<br>.04 | 1.0<br>.03 | ~~ | •0 | | | 40 | 0.0 | | | | 08/24/83 | 5050 | | 7 0 | 74 75 | | • | | | - | | | | | | | | | | | | \$ | | | 0815 | 5050 | | 95 | 74.7F<br>23.7C | 7.4 | 98 | 10<br>•50 | 4.0<br>.33 | 5•0<br>•22 | .9 | | | 4.0<br>.08 | 1.0 | | 0.<br>2AF | | | 42 | 0.0 | | | | | | 0 | | | | | 47 | 31 | 21 | 2 | | | • • • • | •03 | | 485 | | | | | \$ | | | | | | | | | | | | | | | | | | | | | | | | | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DO<br>SAT | TEMP | | LD<br>RATORY<br>EC | MINE | RAL | CONSTIT | UENT: | i i n | I MILLIE | GRAMS PI | ENTS P | ER LITE | ER | LLIGRAMS<br>- | | | | | |--------------|----------------|--------------------|-----------|-------|-------|--------------------|-----------|-----------|-------------|-------|-------|----------|------------|------------|---------|------------|---------------|-------|-----------|-------------|-------| | * * * * * | | | * * * | | | | CA + + | MG<br>* * | NA<br>+ + + | * * * | | | T REACT | | | | SIO2 | TDS | TH<br>NCH | SAR<br>ASAR | REY | | | | L 048. | | | | | LOUD R | | | | | | | CONTI | | | * * * * | 7 7 1 | | • • • | * * * | | UB/24/83 | | | 7.6 | 46.6F | 7.1 | 90 | 11 | 3. | 0 4.0 | . ( | | | 2.0 | 1.0 | | ^ | | | | | | | 0825 | 5050 | 279 | 66 | 6.1C | | | •55<br>56 | •2 | 5 .17 | .02 | : | | .04 | •03 | | .O<br>ZAF | | | 40 | 0.0 | s | | 10/03/83 | 5050 | | A . 4 | 67.6F | 7.4 | 107 | 10 | | | | | | | | | | | | | | 3 | | 1100 | 5050 | | 95 | 19.80 | 1.0 | 107 | 10<br>.50 | 4.0 | | | | | 4.0<br>.08 | 1.0 | | .0 | | | 42 | 0.0 | | | • | | 0 | | | | | 45 | 20 | | | | | •00 | .03 | | DAF | | | | | s | | 10/03/83 | 5050 | | 5.0 | 47.5F | 6.0 | 96 | 12 | 3.0 | | | | | | | | | | | | | , | | 1110 | 5050 | | | 8.6C | 0.0 | 70 | .60 | .29 | | .02 | | | 4.0<br>.08 | 1.0<br>.03 | | .0<br>1AF | | | 42 | 0.0 | | | | | 279 | | | | | 58 | 24 | | ž | | | ••• | . 43 | | TAT | | | | | s | | 10/26/83 | 5050 | | 8.4 | 63.5F | 7.5 | 109 | 10 | 4.6 | 0 6.0 | 1.2 | | | | | | _ | | | | | • | | 1045 | 5050 | | | 17.5C | * • • | , | •50 | 3 | | •03 | | | 4.0 | 1.0 | | +0<br>1AF | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 29 | | 3 | | | ••• | •03 | | 141 | | | | | S | | 10/26/83 | 5050 | | 4.2 | 46.6F | 6.9 | 102 | 12 | 3.0 | 9 4.0 | | | | | | | | | | | | _ | | 1055 | 5050 | | | 8.10 | 0., | 102 | .60 | • 2: | | .02 | | | 3.0<br>.06 | 1.0 | | •0<br>7AF | | | 42 | 0.0 | | | | | 295 | | | | | 58 | 24 | | 2 | | | ••• | •03 | | FAF | | | | | 5 | | 12/20/83 | 5050 | | 9.7 | 53.2F | 7. 2 | 110 | 10 | 4.0 | | | | | | | | | | | | | • | | 1130 | 5050 | | | 11.8C | | 110 | •50 | • 33 | | 1.1 | | ~~ | 4.0<br>.08 | 1.0 | | .0 | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 29 | | 3 | | | •00 | •03 | | 1AF | | | | | s | | 12/20/83 | 5050 | | 10.5 | 48.QF | 7.2 | 98 | 10 | 3.0 | | | | | | | | | | | | | • | | 1140 | 5050 | | 95 | 9.4C | | 70 | •50 | . 2: | | .02 | | | 3.0<br>.06 | 1.0 | | . 0<br>4AF | | | 38 | 0.0 | | | | | 197 | | | | | 51 | 25 | | 2 | | | ••• | •03 | | 785 | | | | | S | | 01/24/84 | 505D | | 10.8 | 48.4F | 7.2 | 101 | 10 | 4.0 | | | | | | | | | | | | | • | | 0830 | 5050 | | | 9.10 | | 101 | .50 | .33 | | 1.0 | | - | 3.0<br>•06 | 2.0 | | .0<br>1AF | | | 42 | 0.0 | | | | | 0 | | | | | 46 | 31 | | 3 | | | ••• | •00 | | THE | | | | | s | | 01/24/84 | 5050 | | 11.6 | 45.5F | 7.2 | 115 | 11 | 5.0 | 7.0 | 1.5 | | | | | | | | | | | • | | 0830 | 5050 | | | 7.5C | | *** | •55 | .41 | | .04 | | | 4.0<br>.08 | 2.0<br>.06 | | BAF | | | 48 | 0.0 | | | | | 230 | | • | | | 42 | 32 | | 3 | | | ••• | •00 | | DAT | | | | | 5 | | 02/28/84 | 5050 | | 11.0 | A6.RE | 7.2 | 103 | 11 | | | | | | | | | | | | | | , | | 0930 | 5050 | | 96 | 8.20 | 1 | 103 | .55 | 4.0 | | 1.0 | | | 4.0<br>.08 | 1.0 | | .0 | | | 44 | 0.0 | | | | | 0 | | | | | 49 | 29 | | 3 | | | ••• | •05 | | 1AF | | | | | 5 | | 02/28/84 | 5050 | | 10.5 | 43.3F | 7.2 | 121 | | | | | | | | | | | | | | | , | | 0930 | 5050 | | 68 | 6.30 | 102 | 121 | 12<br>•60 | 4.0 | | 1.6 | | | 5.0<br>.10 | 2.0<br>.06 | | .0 | | | 46 | 0.0 | | | | | 312 | | | | | 45 | 25 | | 3 | | | •10 | • 00 | | BAF | | | | | s | | 04/03/84 | 5050 | | 10.6 | 53.RF | 7.6 | 103 | 10 | 4.0 | 5.0 | _ | | | | | | _ | | | | | , | | 0930 | 5050 | | 102 | | | 103 | •50 | • 33 | | .02 | | | 4.0<br>.08 | 2.0<br>.06 | | .0 | | | 42 | 0.0 | | | | | 0 | | | | | 47 | 31 | | 2 | | | ••• | • 00 | | | | | | | s | | | | | | | | | | | | | | | | | | | | | | | , | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DD<br>SAT | TEMP | | LD<br>RATORY<br>EC | MINE | RAL | CONSTIT | JENTS | IN | MILLIG | QUIVALE | NTS PE | R LIT | ER | LIGRAMS | – . | | | | |------------------|----------------|--------------------|-----------|----------------|-------|--------------------|-----------|----------|---------|----------|-----|-----------------|------------|---------|-------|-----------|--------------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | K | | PERCEN<br>CACD3 | 2.02 | C. | NO 2 | B<br>Turb | F<br>S 1 0 2 | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REY | | * * * * * | | • • • • | * * * | * * * | * * * | * * * | * * * | * * | * * * : | * * * | * : | * * * * | * * * * | * * * * | * * | * * * | * * * * | * * * | • • • • | • • • | • • • | | | <b>A2</b> | £ 048. | 4 217. | 6 \$1 | ATZAH | LK MCC | LOUD R | ARM | | | | | AZ4AO | CONTIN | IUED | | | | | | | | 04/03/84 | | | | 44.2F | 7.3 | 134 | 11 | 5. | 0 8.0 | 1.6 | | | 5.0 | 2.0 | | .0 | | | 48 | 0.0 | | | 0930 | 5050 | 331 | 90 | 6.8C | | | • 55 | • 4 | | •04 | | | •10 | •06 | | • | | | 10 | 0.0 | | | | | 331 | | | | | 41 | 3 | 0 26 | 3 | | | | | | | | | | | 2 | | 05/08/84 | 5050 | | | 58.3F | 7.7 | 98 | 10 | 4. | | . 9 | | | 4.0 | 2.0 | | .0 | | | 42 | 0.0 | | | 0900 | 5050 | 0 | 102 | 14.6C | | | •50<br>47 | • 3 | | •02 | | | • 08 | • 06 | | | | | | | | | | | • | | | | | • | , | 1 21 | - | | | | | | | | | | | \$ | | 05/06/84<br>0900 | 5050<br>5050 | | | 44.6F | 7.2 | 117 | 12 | 4. | | 1.4 | | | 3.0 | 2.0 | | •1 | | | 46 | 0.0 | | | 0400 | 9090 | 292 | 84 | 7.0C | | | •60<br>45 | .3 | | .04 | | | . 06 | • 06 | | | | | | | _ | | | | | | | | | _ | _ | , | 3 | | | | | | | | | | | \$ | | 06/07/84<br>0830 | 5050<br>5050 | | | 65.8F | | 102<br>107 | 10<br>•50 | 4. | | 1.1 | | | 3.0 | 1.0 | | • 0 | | | 42 | 0.0 | | | 0030 | 2070 | 0 | 70 | 10100 | 7.0 | 107 | 46 | • 3 | | •03 | | | •06 | •03 | | | | | | | 5 | | 04.407.494 | 5050 | | | | | | | | | _ | | | | | | | | | | | 3 | | 05/07/84<br>0530 | 5050<br>5050 | | 73 | 45.5F<br>7.5C | | 116<br>120 | 11<br>•55 | 4.<br>•3 | | 1.4 | | | 2.0 | 2.0 | | •0 | | | 42 | 0.0 | | | | | 279 | | ,,,, | | | 45 | 2 | | 3 | | | •04 | • 00 | | | | | | | S | | 07/11/84 | 5050 | | 7 0 | 78.8F | 7.4 | 104 | | | | | | | | | | | | | | | • | | 1000 | 5050 | | | 26.0C | ( • 0 | 106 | 10<br>•50 | 4.<br>•3 | | 1.1 | | | 3.0<br>.06 | 1.0 | | • 0 | | | 42 | 0.0 | | | | | 0 | _ | | | | 45 | 2 | | 3 | | | ••• | .03 | | | | | | | s | | 07/11/84 | 5050 | | 8.9 | 48.0F | 7.1 | 117 | 111 | 4. | 0 7.0 | 1.3 | | | 2.0 | | | | | | | | | | 1000 | 5050 | | 79 | 8.9C | | **' | .55 | .3 | | .03 | | | 3.0 | 2.0 | | •1 | | | 44 | 0.0 | | | | | 295 | | | | | 45 | 2 | 7 25 | 2 | | | | , - | | | | | | | S | | 08/14/84 | 5050 | | 7.8 | 77.0F | 7.6 | | 10 | 4. | 0 6.0 | 1.1 | | | 4.0 | 1.0 | | •0 | | | | | | | 0920 | 5050 | _ | | 25.0C | | 114 | • 50 | .3 | 3 .26 | .03 | | | .08 | .03 | | •0 | | | 42 | 0.0 | | | | | 0 | | | | | 45 | 2 | 9 23 | 3 | | | | | | | | | | | \$ | | 08/14/84 | | | 5.1 | 45.5F | 7.1 | | 12 | 4. | 0 6.0 | 1.1 | | | 4.0 | 1.0 | *- | •0 | | | 46 | 0.0 | | | 0920 | 5050 | 279 | 44 | 7.5C | | 120 | •60 | . 3 | | •03 | | | .08 | •03 | | | | | 10 | ••• | | | | | 214 | | | | | 49 | 2 | 7 21 | 2 | | | | | | | | | | | 2 | | 09/13/84 | | | | 73.0F | 7.5 | 116 | 10 | 4. | | 1.2 | | | 3.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 1015 | 5050 | 0 | 95 | 22.80 | | | •50<br>45 | • 3<br>2 | | •03 | | | • 06 | .03 | | 14F | | | | | | | | | · | | | | | 72 | 2 | 4 23 | 3 | | | | | | | | | | | \$ | | 09/13/84<br>1015 | 5050 | | 4.0 | 45.0F | 7.0 | 131 | 12 | 5. | | 1.4 | | | 3.0 | 2.0 | | .0 | - | | 50 | 0.0 | | | 1012 | 5050 | 295 | 34 | 7.20 | | | •60<br>44 | • 4 | | •04<br>3 | | | •06 | • 06 | | 6AF | | | | | | | | | | | | | | | | | 3 | | | | | | | | | | | \$ | | 10/17/84 | 5050<br>5050 | | 8.1<br>86 | 62.4F<br>16.9C | 7.4 | 125 | 12<br>•60 | 5.<br>.4 | | 1.4 | | | 4.0 | 2.0 | | .0 | | | | 0.0 | | | •••• | ,,,, | 0 | | 20076 | | | 44 | 3 | | 3 | | | .08 | • 06 | | 1AF | | | | | s | | | | | | | | | | | | - | | | | | | | | | | | , | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DD<br>SAT | TEMP | | ELD<br>RATORY<br>EC | HINE | RAL CO | NSTITU | ENTS | IN | MILLIGA<br>MILLIEC<br>PERCENT | RVIVAL | ENTS I | PER LI | TER | LLIGRAMS | | | | | |------------------|----------------|--------------------|-----------|----------------|-------|---------------------|--------------|------------|------------|----------|-----|-------------------------------|------------|---------|----------|-----------|--------------|------------|-----------|-------------|-------| | * * * * * | | | | | | | CA | MG | NA | K | | | | | | | F<br>S I O 2 | ZOT<br>Muz | TH<br>NCH | SAR<br>Asar | RE4 | | * * * * * | | | * * * | * * * | * * : | * * * ( | | * * * | * * * | * * | * • | * * * * | * * * | * * * | * * * | * * * | * * * * | * * | * * * * | | * * * | | | A2 | L 048.4 | 217. | 6 51 | HASTA | LK MC | CLOUD R | ARM | | | | | A24A0 | CONT | INUED | | | | | | | | 10/17/84 | 5050 | | 3.7 | 42.8F | 7.0 | 136 | 11 | 4.0 | 7.0 | 1.3 | | | | | | | | | | | | | 0830 | 5050 | 298 | 31 | 6.00 | | 130 | •55<br>45 | •33<br>27 | 30 | •03<br>2 | | | 4.0<br>.08 | • 06 | | •0<br>7AF | | | | 0.0 | S | | | | L 048.5 | | | | | RAMENT | D R AR | Ħ | | | | A24A0 | | | | | | | | • | | 06/21/83<br>0830 | 5050<br>5050 | | 8.9 | 69.6F | 8.3 | | 9.0 | 3.0 | 4.0 | • 7 | | | 4.0 | 1.0 | <b>)</b> | .0 | | | 35 | 0.0 | | | | 3030 | 0 | 102 | 20.90 | | 87 | •45<br>51 | • 25<br>28 | •17<br>19 | •02<br>2 | | | .08 | • 03 | 3 | | | | - | | S | | 06/21/83<br>0840 | 5050 | | | | 7.2 | | 7.0 | 4.0 | 4.0 | .6 | | | 2.0 | 1.0 | | •0 | | | 34 | 0.0 | | | 0840 | 5050 | 344 | | | | 83 | •35<br>40 | • 33<br>38 | .17 | •02 | | | .04 | . 03 | | ••• | | | 34 | 0.0 | | | 67/37/00 | | - , , | _ | | | | 70 | 30 | 20 | 2 | | | | | | | | | | | S | | 07/27/83<br>0840 | 5050<br>5050 | | | 73.9F<br>23.3C | 8.0 | 93 | 8.0 | 4.0 | 5.0 | 1.0 | | | 4.0 | 1.0 | | • 0 | | | 36 | 0.0 | | | | | 0 | *0 | 23630 | | | •40<br>41 | •33<br>34 | •22<br>22 | •03<br>E | | | .08 | •03 | 1 | | | | | | _ | | 07/27/83 | 5050 | | 7 6 | 46.2F | | | | | | - | | | | | | | | | | | \$ | | 0850 | 5050 | | | 7.90 | 7.0 | 73 | 6.0<br>.30 | 4.0<br>.33 | 3.0<br>.13 | •6 | | | 2.0 | 1.0 | | • 0 | | | 32 | 0.0 | | | | | 312 | | | | | 38 | 42 | 17 | 3 | | | •07 | • • • • | , | | | | | | \$ | | 08/25/83 | 5050 | | 8.1 | 75.0F | 7.9 | 95 | 9.0 | 4.0 | 5.0 | . 9 | | | 2 4 | | | _ | | | | | • | | 0815 | 5050 | 0 | 99 | 23.90 | | ••• | .45 | . 33 | .22 | .02 | | | 3.0<br>.06 | 1.0 | | .0<br>1AF | | | 39 | 0.0 | | | | | Ū | | | | | 44 | 32 | 22 | 2 | | | | | | • | | | | | S | | 08/25/83<br>0825 | 5050 | | | 46.2F | 7.0 | 80 | 6.0 | 4.0 | 3.0 | . 5 | | | 2.0 | 1.0 | | .1 | | | 32 | 0.0 | | | 0025 | 5050 | 308 | 57 | 7.9C | | | •30<br>39 | • 33<br>43 | •13<br>17 | .01 | | | • 04 | •03 | • | 3AF | | | 72 | 0.0 | | | 10404400 | | | | | | | 34 | 73 | 1.6 | 1 | | | | | | | | | | | S | | 10/04/83<br>0830 | 5050<br>5050 | | | 67.6F<br>19.8C | 7.5 | 104 | 9.0 | 4.0 | 5.0 | 1.0 | | | 4.0 | 1.0 | | .0 | | | 39 | 0.0 | | | | | 0 | • • | 1.400 | | | • 4 5<br>4 4 | • 33<br>32 | •22<br>21 | •03 | | | •08 | •03 | l | OAF | | | | | | | 10/04/63 | 5050 | | 6.0 | 46.9F | 4 0 | | | | | | | | | | | | | | | | S | | 0840 | 5050 | | | 8.30 | 0.4 | 82 | 6.0<br>.30 | 5.0<br>.41 | 3.0<br>.13 | .01 | | | 2.0 | 1.0 | | .0<br>2AF | | | 36 | 0.0 | | | | | 292 | | | | | 35 | 48 | 15 | ī | | | ••• | •03 | | ZAF | | | | | S | | 10/27/83 | 5050 | | 8.1 | 63.0F | 7.4 | 108 | 9.0 | 4.0 | 6.0 | 1.1 | | | | • • | | _ | | | | | • | | 0930 | 5050 | _ | | 17.20 | | | .45 | .33 | .26 | .03 | | | 4.0 | 2.0 | | OAF | | | 39 | 0.0 | | | | | 0 | | | | | 42 | 31 | 24 | 3 | | | | | | ¥• | | | | | S | | 10/27/83<br>0940 | 5050 | | 5.7 | 46.2F | 6.6 | 82 | 6.0 | 5.0 | 3.0 | .5 | | | 3.0 | 1.0 | | .0 | | | 36 | 0.0 | | | 0440 | 5050 | 295 | 50 | 7.90 | | | .30 | •41 | .13 | .01 | | | .06 | .03 | | 4AF | | | 30 | U • U | | | | | | | | | | 35 | 48 | 15 | 1 | | | | | | | | | | | 5 | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DO<br>SAT | TEMP | | LD<br>ATORY<br>EC | MINE | RAL C | ONSTITU | IENTS | IN | MILL | IGRANS PE<br>IEQUIVALE | NTS PE | R LIT | MIL<br>ER | LIGRAMS | PER L | .ITER | | | |------------------|----------------|--------------------|------------|----------------|-------|-------------------|------------|-----------|-----------|----------|-----|-------|------------------------|--------|-------|-----------|------------|------------|-----------|-------------|-------| | | | | | | | | CA | NG | NA. | K | | CACDA | ENT REACT | C.L | NOS | 8<br>Turb | F<br>\$102 | TDS<br>Sum | TH<br>NCH | SAR<br>ASAR | REN | | , , , , , | | | | | | * * * | * * * | | | * * | * ( | | * * * * * | * * * | * * | * * * | * * * * | * * * | | * * * | * * * | | | 42 | L 048. | 5 222. | . 8 SI | ATZAL | LK SAC | RAMENT | O R AF | RM | | | | A24A0 | CONTIN | IUED | | | | | | | | 12/05/83 | 5050 | | | 55.0F | 7.5 | 103 | 8.0 | 5.0 | 6.0 | 1.1 | | | 3.0 | 1.0 | | .0 | | | 40 | 0.0 | | | 1120 | 5050 | 0 | 92 | 12.8C | | | •40 | - 41 | • 26 | •03 | | | • 06 | .03 | | 1AF | | | 40 | 0.0 | | | | | U | | | | | 36 | 37 | 24 | 3 | | | | | | | | | | | \$ | | 12/05/83 | 5050 | | 6.5 | | 6.8 | 80 | 6.0 | 5.0 | 3.0 | . 5 | | | 2.0 | 1.0 | | .0 | | | 36 | 0.0 | | | 1130 | 5050 | 279 | - 59 | 9.4C | | | .30 | •41 | .13 | .01 | | | .04 | .03 | | SAF | | | 30 | 0.0 | | | | | 614 | | | | | 35 | 48 | 15 | 1 | | | | | | | | | | | \$ | | 01/25/84 | | | 11.6 | 45.7F | 7.2 | 108 | 11 | 4.0 | 7.0 | 1.4 | | | 4.0 | 2.0 | | .0 | | | 44 | 0.0 | | | 0930 | 5050 | 285 | 100 | 7.6C | | | • 55 | • 33 | • 30 | .04 | | | .08 | •06 | | BAF | | | 77 | 0.0 | | | | | 207 | | | | | 45 | 27 | 25 | 3 | | | | | | | | | | | S | | 01/25/84 | 5050 | | | 48.6F | 7.3 | 94 | 8.0 | 4.0 | 5.0 | . 9 | | - | 3.0 | 2.0 | | .0 | | | 36 | 0.0 | | | 0930 | 5050 | 0 | 95 | 9.2C | | | •40 | • 33 | •22 | .02 | | | •06 | .06 | | 1AF | | | 55 | 3.0 | | | | | • | | | | | 41 | 34 | 23 | 2 | | | | | | | | | | | \$ | | 02/29/84 | 5050 | | 10.7 | | 7.2 | 118 | 11 | 5.0 | 8.0 | 1.5 | | | 5.0 | 2.0 | | •0 | | | 48 | 0.0 | | | 0930 | 5050 | 315 | 90 | 6.4C | | | • 55 | •41 | •35 | -04 | | | •10 | .06 | | 6AF | | | | ••• | | | | | 323 | | | | | 41 | 30 | 26 | 3 | | | | | | | | | | | \$ | | 02/29/84<br>0930 | 5050 | | | 47.8F | 7.4 | 93 | 8.0 | 4.0 | 5.0 | . 9 | | | 4.0 | 1.0 | | .1 | | | 36 | 0.0 | | | 0430 | 5050 | 0 | 99 | 8.8C | | | •40<br>41 | •33<br>34 | •22 | •02 | | | • 08 | •03 | | 1AF | | | | ••• | | | | | • | | | | | 71 | 34 | 23 | 2 | | | | | | | | | | | 2 | | 04/04/84<br>0930 | 5050<br>5050 | | | 52.7F | 7.7 | 92 | 9.0 | 4.0 | 5.0 | . 9 | | | 4.0 | 2.0 | | . 1 | | | 39 | 0.0 | | | 0730 | 2020 | ٥ | 102 | 11.5¢ | | | •45<br>44 | •33<br>32 | •22<br>22 | .02 | | | .08 | . 06 | | | | | • | | | | | | _ | | | | | 77 | 32 | 22 | 2 | | | | | | | | | | | \$ | | 04/04/84<br>0930 | 5050<br>5050 | | 10.4<br>87 | | 7.3 | 122 | 11 | 5.0 | 8.0 | 1.5 | | | 5.0 | 2.0 | | .0 | | | 48 | 0.0 | | | 0730 | 2070 | 312 | 01 | 6.5C | | | •55<br>41 | •41<br>30 | •35<br>26 | •04<br>3 | | | •10 | • 06 | | | | | | • | | | 05.400.40. | | | | | | | | 50 | 20 | - | | | | | | | | | | | \$ | | 05/09/84<br>0930 | 5050<br>5050 | | 10.0 | 58.6F<br>14.8C | 7.6 | 96 | 9.0 | 4.0 | 5.0 | . 9 | | | 4.0 | 2.0 | | .0 | | | 39 | 0.0 | | | ,5756 | ,,,, | 0 | 102 | 14.00 | | | • 45<br>44 | • 33 | •22<br>22 | •02<br>2 | | | .08 | • 06 | | | | | | | _ | | 05 (00 (0) | | | | | | | | | | • | | | | | | | | | | | \$ | | 05/09/84<br>0930 | 5050<br>5050 | | 9.6<br>81 | 43.9F<br>6.6C | 7.2 | 104 | 10 | 4.0 | 6.0 | 1.1 | | | 4.0 | 2.0 | | .0 | | | 42 | 0.0 | | | | 2020 | 308 | ٧. | 0.00 | | | 50<br>45 | •33<br>29 | •26<br>23 | •03 | | | •08 | • 06 | | | | | | | _ | | | | | | | | | | | | - | | | | | | | | | | | S | | 06/08/84<br>1100 | 5050<br>5050 | | | 64.6F<br>18.1C | | 99<br>102 | 9.0 | 4.0 | 5.0 | 1.0 | | | 3.0 | 1.0 | | .0 | | | 39 | 0.0 | | | | | 0 | 77 | 10416 | 1 • 1 | 104 | •45<br>44 | •33<br>32 | •22<br>21 | •03 | | | • 06 | •03 | | | | | | | _ | | 04409494 | E050 | | | | | | | | | | | | | | | | | | | | 2 | | 06/08/84<br>1100 | 5050<br>5050 | | 8.5<br>73 | 45.1F<br>7.3C | | 101<br>102 | 8.0<br>.40 | 5.0 | 5.0 | .9 | | | 2.0 | 2.0 | | •0 | | | 40 | 0.0 | | | | | 262 | | | | IVE | 38 | •41<br>39 | •22<br>21 | •02<br>2 | | | •04 | .06 | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | S | | TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DO<br>SAT | TEMP | | LD<br>RATORY<br>EC | MINE | RAL C | ONSTITU | JENTS | IN | HILLI | GRAMS PE<br>Equivale<br>Nt react | NTS PI | ER LIT | ER | LLIGRAMS | | | | | |------------------|----------------|--------------------|-----------|-------|-------|--------------------|-----------|------------|--------------------|------------|-----|----------|----------------------------------|--------|--------|------|------------|------------|--------------|------|-------| | | | | | | | | CA | MG | NA | ĸ | • | . VLU3 | 482 | CL | ND3 | TURB | F<br>\$102 | TDS<br>MUZ | TH | SAR | RE4 | | * * * * * | * * * * | * * * * | | | * * * | * * * | * * * | * * | * * <del>*</del> * | • • • | * * | * * * | + + + + | | | | * * * * | | NCH<br>* * * | ASAR | | | | 12 | L 048. | 5 222. | a 9 | 4724 | LK SAC | DAMENT | | | | | | | | | | | | | | , , , | | | , | . 510 | 7 666 | 0 31 | 1431A | LK 3AC | KARENI | UKA | KM | | | | A24A0 | CONTI | NUED | | | | | | | | 07/12/84 | | | 7.8 | 77.7F | 7.6 | 101 | 9.0 | 4.0 | 5.0 | 1.0 | | | 3.0 | 1.0 | | • 0 | | | 20 | | | | 1000 | 5050 | | 98 | 25.4C | | | . 45 | .33 | | .03 | | | .06 | .03 | | •0 | | | 39 | 0.0 | | | | | 0 | | | | | 44 | 32 | 21 | 3 | | | | | | | | | | | 3 | | 07/12/84 | 5050 | | 8.9 | 48.0F | 7.1 | 103 | 9.0 | 5.0 | | | | | | | | | | | | | | | 1000 | 5050 | | 79 | 8.90 | **1 | 103 | •45 | •41 | | 1.0<br>.03 | | | 2.0<br>.04 | 2.0 | | •1 | | | 43 | 0.0 | | | | | 279 | | | | | 39 | 36 | 23 | 3 | | | •04 | •06 | | | | | | | | | 00 /3 5 / 0 / | **** | | | | | | | | | - | | | | | | | | | | | \$ | | Q8/15/84<br>1000 | 5050<br>5050 | | 7.9 | 78.4F | 7.5 | | 10 | 4.0 | | 1.0 | | | 5.0 | 2.0 | ++ | • 0 | | | 42 | 0.0 | | | 1000 | 3030 | ۵ | 100 | 25.8C | | 110 | •50<br>46 | • 33<br>31 | •22 | •03 | | | .10 | - 06 | | | | | | | | | | | • | | • | | | 70 | 31 | 20 | 3 | | | | | | | | | | | S | | 09/15/84 | | | 3.7 | 44.6F | 6.8 | | 10 | 5.0 | 6.0 | 1.1 | | | 4.0 | 2.0 | | .0 | | | 46 | 0.0 | | | 1000 | 5050 | | 31 | 7.0C | | 119 | .50 | .41 | .26 | .03 | | | .08 | .06 | | •• | | | 70 | 0.0 | | | | | 302 | | | | | 42 | 34 | 22 | 3 | | | | | | | | | | | S | | 09/10/84 | 5050 | | R . 1 | 75.0F | 7 4 | 116 | 9.0 | | | | | | | | | | | | | | - | | 1100 | 5050 | | | 23.90 | | 110 | .45 | 5.0<br>.41 | 6.0<br>•26 | 1.1 | | | 3.0 | 2.0 | | .0 | | | 43 | 0.0 | | | | | 0 | | | | | 39 | 36 | 23 | 3 | | | •06 | •06 | | 1AF | ~- | | | | | | 00110101 | | | | | | | | | | • | | | | | | | | | | | S | | 09/10/84<br>1100 | | | 3.9 | 44.6F | 6.9 | 119 | 10 | 5.0 | 6.0 | 1.2 | | | 3.0 | 2.0 | | .0 | | | 46 | 0.0 | | | 1100 | 5050 | 295 | 33 | 7.0C | | | •50 | .41 | •26 | .03 | | | .06 | .06 | | 5AF | | | | | | | | | .,, | | | | | 42 | 34 | 22 | 3 | | | | | | | | | | | \$ | | 10/18/84 | | | 8.1 | 61.7F | 7.3 | 127 | 10 | 5.0 | 7.0 | 1.4 | | | 3.0 | 2.0 | | •0 | | | | | | | 0830 | 5050 | | 85 | 16.5C | | | •50 | .41 | •30 | •04 | | | .06 | .06 | | 145 | | | | 0.0 | | | | | 0 | | | | | 40 | 33 | 24 | 3 | | | | | | • | | | | | 5 | | 10/18/84 | 5050 | | 4.1 | 44.2F | | 133 | | | | | | | | | | | | | | | • | | 0830 | 5050 | | 35 | 6.80 | 0.7 | 133 | 9.0 | 5.0<br>.41 | 6.0 | 1.0 | | | 3.0 | 2.0 | | .0 | | | | 0.0 | | | | | 282 | | •••• | | | 39 | 36 | 23 | 3 | | | .06 | • 06 | | 1AF | | | | | _ | | | | | | | | | | | | - | | | | | | | | | | | \$ | | | A2 | 1010. | 00 | SA | CRAME | NTO R | A KESW | ICK | | | | | A1900 | | | | | | | | | | 04/12/83 | 5050 | | 12.0 | 50 F | 7.0 | 81 | 7.0 | | | _ | | | | | | | | | | | | | 1220 | 5050 | 6750 | | 10 C | | 81 | .35 | 4.0 | 3.0<br>.13 | •6<br>•02 | | 31<br>62 | | 1.0 | | | | | 34 | 0.2 | | | | | | | | ,,, | •• | 42 | 40 | 16 | 2 | • | 02 | | .03 | | 234 | | | 3 | 0.1 | | | 04 430 435 | | | | | | | | . • | | - | | | | | | | | | | | s | | 04/29/83<br>0940 | 5050<br>5050 | | 11.6 | 48.0F | 7.0 | 62 | 6.0 | 5.0 | 3.0 | . 5 | | 34 | 5.0 | 1.0 | | • 0 | | | 36 | 0.2 | | | 0770 | 7070 | | 101 | 8.9C | | | •30 | •41 | •13 | .01 | • | 68 | •10 | .03 | | 11AF | | 41 | 2 | 0.1 | | | | | | | | | | 35 | 48 | 15 | 1 | | | | | | | | | | | \$ | | 05/11/83 | | | 12.4 | 51.8F | 7.2 | 89 | | | | | | | | | | | | | | | | | 1325 | 5050 | 25000 | 114 | 11.0C | | | | | | | | | | | | 9AF | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DATE<br>Time | SAMPLER<br>LAR | G.H.<br>Q<br>DEPTH | DD<br>SAT | TEMP | FIE<br>LABOR<br>PH | | MINE | RAL C | DNSTITU | ENTS | IN | MILLI | GRAMS PE<br>Equivale<br>Nt react | NTS P | ER LII | ER | LLIGRAM | | | | | |---------------------------|----------------|--------------------|-------------|----------------|--------------------|-------|------------------|------------------|------------------|-----------------|-----|------------|----------------------------------|--------------|--------|-----------|---------------|------------|-----------|-------------|-------| | * * * * * | * * * * | | | | | | CA * * | MG<br>+ + | NA . | K<br>* * | ſ | ACD2 | SD4<br>* * * * | | 1100 | TURB | \$102<br>F | TDS<br>SUM | TH<br>NCH | SAR<br>ASAR | REY | | | 42 | 1010. | 00 | | | NTO R | | | | • | , , | | A19C0 | | | | * * * | * * * | * * * * | • • • | • • • | | 06/10/83 | 5050 | | | | | | | | | | | | ~**** | C 5 11 11 1 | 1060 | | | | | | | | 1000 | 5050 | 14500 | 100 | 50.9F<br>10.5C | 7.2 | 92 | *** | *** | | | | | | | | 6AF | | | | | | | 05/17/83<br>1300 | 5050<br>5050 | | | 52.0F<br>11.1C | 7.1 | 86 | 8.0<br>.40<br>43 | 4.0<br>•33<br>36 | .17 | •7<br>•02<br>2 | | | 4.0<br>.08 | 1.0 | | •0 | | | 36 | 0.0 | S | | 07/06/83<br>1015 | 5050<br>5050 | 14000 | 10.9 | 51.8F<br>11.0C | 7.1 | 90 | | | | | | | | | | 5AF | <del></del> . | | | | • | | 07/15/83<br>1300 | 5050<br>5050 | | | 52.0F<br>11.1C | 7•1 | 96 | 8.0<br>.40<br>43 | 4.0<br>.33<br>36 | .17 | .8<br>.02<br>2 | | | 5.0<br>.10 | 1.0 | | •0 | | | 36 | 0.0 | 5 | | 08/16/83<br>0945 | 5050<br>5050 | 10500 | | 55.4F<br>13.0C | 7.2 | 84 | | | | | , | | | | | 4AF | | | | | | | 08/17/83<br>1130 | 5050<br>5050 | | | 53.1F<br>11.7C | 7.1 | 96 | 8.0<br>.40<br>43 | 4.0<br>.33<br>36 | .17 | .9<br>20. | | | 4.0<br>.08 | 1.0 | | .0<br>2AF | | | 36 | 0.0 | S | | 09/21/83<br>1310 | 5050<br>5050 | | | 53.4F<br>11.9C | 7•1 | 91 | 6.0<br>•40<br>43 | 4.0<br>.33<br>36 | .17 | .02<br>2 | | | 4.0<br>.08 | 1.0<br>.03 | | .0<br>ZAF | | | 36 | 0.0 | S | | 09/26/83<br>11 <b>0</b> 5 | 5050<br>5050 | 10000 | | 55.4F<br>13.0C | 7.1 | 88 | *= | | | | • | | | | | 3AF | ** | | | | | | 10/20/83<br>1030 | 5050<br>5050 | | 9.1<br>87 | 55.0F<br>12.8C | 7.1 | 95 | 8.0<br>.40<br>43 | 4.0<br>•33<br>36 | 4.0<br>.17<br>18 | .6<br>.02<br>2 | • | · <b>-</b> | 4.0<br>.08 | 1.0 | | .0<br>2AF | | | 36 | 0.0 | S | | 11/15/83<br>1205 | 5050<br>5050 | 14500 | 8 • 8<br>85 | 55.4F<br>13.0C | 7.2 | 107 | | | | | • | - | ** | | | 3AF | | | | | | | 11/30/83<br>1100 | 5050<br>5050 | | 9.6<br>91 | 54.0F<br>12.2C | 7.1 | 110 | 9.0<br>•45<br>39 | 5.0<br>.41<br>36 | 6.0<br>.26<br>23 | 1.1<br>.03<br>3 | • | · <b>-</b> | 4.0<br>.08 | 1.0 | | •0<br>3AF | | | 43 | 0.0 | S | | 12/21/83<br>1110 | 5050<br>5050 | | | 50.9F<br>10.5C | 7.1 | 106 | | | | | • | •= | ** | <del>-</del> | | 6AF | | | | | • | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DD<br>SAT | TEMP | LABORA | | MINE | RAL CO | DNSTITU | ENTS | IN | MILL | IGRAMS PER | NTS PE | R LITE | R | LLIGRAMS | | ITER | | | |------------------|----------------|--------------------|-------------|----------------|--------|-------|------------------|------------------|------------------|-----------------|-----|---------------|-------------------|----------------|---------------|-----------|----------|------------|-----------|-------------|-------| | | | | | | | - | CA | MG | NA. | ,K | | C 1 C A 4 | ENT REACT/<br>SO4 | | | | | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REY | | | | • | | | | | | | | * * | * * | * * * | * * * * * | * * • | * * • | * * | * * * * | * * * | * * * | + + + | * * * | | | A2 | 1010. | 00 | SA | CRAMEN | ITO R | A KESWI | LCK | | | | | A1900 ( | CONTIN | IUED | | | | | | | | 01/11/84<br>1245 | 5050<br>5050 | | 11.5<br>99 | 47.0F<br>8.3C | 7.0 | 107 | 9•0<br>•45<br>44 | 4.0<br>.33<br>32 | 5.0<br>.22<br>21 | | | | 5.0<br>.10 | 2.0 | | .0<br>9AF | | | 39 | 0.0 | s | | 02/23/84<br>1030 | 5050<br>5050 | 6000 | 12.2<br>104 | 46.4F<br>8.0C | 7.2 | 107 | *** | ** | | | ٠ | | | | | 5AF | | | | | • | | 02/23/84<br>1405 | 5050<br>5050 | | 11.5 | 47.0F<br>8.3C | 7.2 | 103 | 10<br>•50<br>43 | 4.0<br>.33<br>28 | 7.0<br>.30<br>26 | 1.2<br>.03<br>3 | | *- | 6.0<br>.12 | 2.0<br>.06 | ## <b>#</b> # | +0<br>6AF | ~~ | | 42 | 0.0 | s | | 03/26/84<br>1115 | | 12000 | 11.7 | 48.2F<br>9.0C | 7.3 | 119 | ** | | | | | | | | | ZAF | | | | | | | 03/28/84<br>1415 | 5050<br>5050 | | 11.4<br>98 | 47.0F<br>8.3C | 7.0 | 112 | 10<br>•50<br>•2 | 5.0<br>.41<br>34 | 6•0<br>•26<br>22 | 1.2<br>.03<br>3 | | | 8.0<br>.17 | 2 • 0<br>• 06 | | •0<br>5AF | | | 46 | 0.0 | \$ | | 1100 | 5050<br>5050 | 6000 | 11.7<br>105 | 50.0F<br>10.0C | 7.3 | 112 | | <b></b> | | | | ** | | | | 3AF | | | | | | | 05/02/84<br>0915 | 5050<br>5050 | 0 | 10.6<br>91 | 47.0F<br>8.3C | 7.3 | 120 | 10<br>•50<br>46 | 4.0<br>.33<br>31 | 5.0<br>.22<br>20 | 1.2<br>.03<br>3 | | <del>,-</del> | 4.0<br>.08 | 2.0<br>.06 | | .0<br>2AF | | | 42 | 0.0 | s | | 05/25/84<br>0940 | 5050<br>5050 | 9000 | 10.9 | 51.8F<br>11.0C | 7.3 | 107 | | | *** | | | | | | •• | 3AF | | | | | | | 06/13/84<br>0915 | 5050<br>5050 | | 10.7<br>103 | 55.4F<br>13.0C | 6.9 | 112 | | | *** | | | | | | | 3AF | | | | | | | 07/20/84<br>1000 | 5050<br>5050 | 14000 | 10.5<br>101 | 55.4F<br>13.0C | 7.3 | 115 | | | | | | | | | | <br>27AF | | | | | | | 03/08/84<br>0925 | 5050<br>5050 | 14000 | 10.0<br>98 | 57.2F<br>14.0C | 7.1 | 111 | | | | | | | | <del>-</del> - | | ZAF | | | | | | | 09/11/84<br>1025 | 5050<br>5050 | 8000 | 9.9<br>97 | 57.2F<br>14.0C | 7•1 | 99 | | | | | | | | | | 2AF | | | | | | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | FIE<br>LABOR<br>PH | LD<br>ATORY<br>EC | MINE | RAL C | ONSTITE | JENTS | : IN | MILLI | GRAMS PE | NTS F | PER LI | TER | | MS PER | LITER | | | |------------------|----------------|--------------------|-----------|----------------|--------------------|-------------------|------------|------------|------------|----------|------|-------|----------------|-------|--------|-----------|------------|-------------|---------|------|--------------| | | | | | | | - • | CA | MG | NA | ¥ | | | NT REACT | | | | F \$ 1 1 2 | 2 OT<br>Muz | TH | SAR | REM | | • • • • | | • • • • | * * * | | * * * | • • • | * * * | * * | | * * * | * * | | 504<br>* * * * | | + + + | + + + | * * * | * * * | * * * * | ASAR | | | | <b>A</b> 2 | 1010.0 | | | | | A KESH | | | | | | A1900 | | | | | | | | • | | 10/23/84 | 5050 | | | | | | | - | | | | | ***** | CUNTI | NUED | | | | | | | | 0930 | 5050 | 5000 | | 57.2F<br>14.0C | 7.3 | 133 | - | | | | • | | | | | 3AF | | | | | | | | | 1040.0 | 00 | 5.4 | CRAME | NTO R | HTAR A | ESDN | | | | | A19C0 | | | | | | | | | | 04/29/83<br>0820 | | | | 48.9F | 7.2 | 96 | 10 | 4.0 | | . 9 | | 38 | 4.0 | 1.0 | | • 0 | | | 42 | 0.3 | | | 0620 | 5050 | | 95 | 9.4C | | | •50<br>47 | •33<br>31 | | •02<br>2 | | •76 | .08 | •03 | | 12AF | | 48 | 4 | 0.3 | s | | 06/20/83<br>1100 | | | 10.4 | 50.0F | 7.2 | 100 | 10 | 4.0 | 4.0 | . 8 | | | 2.0 | 1.0 | | .0 | | | 42 | 0.0 | | | 1100 | 5050 | | 94 | 10.0C | | | •50<br>49 | •33 | | -02 | | | • 04 | •03 | | ••• | | | 72 | 0.0 | | | | | | | | | | 77 | 32 | 17 | 5 | | | | | | | | | | | 5 | | 07/15/83<br>1415 | 5050<br>5050 | | 10.7 | 50.0F | 7.2 | 100 | 9.0 | 4.0 | 4.0 | . 8 | | | 4.0 | 1.0 | | .0 | | | 39 | 0.0 | | | 2423 | 9090 | • | 40 | 10.00 | | | • 45<br>46 | • 33<br>34 | •17 | •02 | | | • 08 | •03 | | | | | 3, | 0.0 | | | | | | | | | | 70 | 34 | 18 | 2 | | | | | | | | | | | S | | 08/17/83<br>1245 | 5050<br>5050 | | 10.1 | 51.1F<br>10.6C | 7.2 | 97 | 9.0 | 4.0 | 4.0 | . 9 | | | 4.0 | 1.0 | | .0 | | | 39 | 0.0 | | | | 3030 | | 72 | 10.00 | | | •45<br>46 | • 33<br>34 | •17<br>18 | •02 | | | .00 | •03 | | 2AF | | | • . | | | | 09/21/83 | 5050 | | | | | _ | | | | _ | | | | | | | | | | | S | | 1340 | 5050 | | | 54.5F<br>12.5C | 7.3 | 97 | 8.0<br>.40 | 4.0 | 4.0 | • 7 | | | 4.0 | 1.0 | | .0 | | | 36 | 0.0 | | | | | | | | | | 43 | 36 | .17<br>18 | .02<br>2 | | | •08 | .03 | | 2AF | | | | | _ | | 10/20/83 | 5050 | | 0.1 | 54.5F | 7 1 | 96 | | | | | | | | | | | | | | | \$ | | 0900 | 5050 | | 87 | 12.5C | 7.4.1 | 70 | 8.0<br>.40 | 4.0<br>.33 | 4.0<br>.17 | •7 | | | 3.0<br>.06 | 1.0 | | .0 | | | 36 | 0.0 | | | | | | | | | | 43 | 36 | 18 | S | | | •00 | •03 | | 2AF | | | | | s | | 11/30/83 | 5050 | | 9.7 | 54.0F | 7.1 | 118 | 9.0 | 5.0 | 6.0 | 1.2 | | | | | | | | | | | , | | 0930 | 5050 | | 92 | 12.20 | | | .45 | .41 | .26 | .03 | | | 3.0<br>.06 | 2.0 | | .0<br>3AF | | | 43 | 0.0 | | | | | | | | | | 39 | 36 | 23 | 3 | | | | ••• | | 301 | | | | | S | | 01/11/84 | 5050 | | 11.4 | 48.OF | 7.3 | 113 | 10 | 4.0 | 6.0 | 1.2 | | | 3.0 | | | | | | | | <del>-</del> | | 1315 | 5050 | | 100 | 8.90 | | | .50 | .33 | -26 | .03 | | | • <b>0</b> 6 | 2.0 | | •0<br>74F | | | 42 | 0.0 | | | | | | | | | | 45 | 29 | 23 | 3 | | | | | | | | | | | 5 | | 02/23/84 | 5050 | | | 49.0F | 7.3 | 105 | 10 | 4.0 | 7.0 | 1.3 | | | 5.0 | 2.0 | | • 0 | | | | | | | 1515 | 5050 | | 110 | 9.4C | | | •50 | .33 | •30 | .03 | | | •10 | .06 | | 5AF | | | 42 | 0.0 | | | | | | | | | | 43 | 28 | 26 | 3 | | | | | | | | | | | 5 | | 03/28/64<br>1500 | 5050 | | 11.6 | | 7.4 | 112 | 10 | 4.0 | 7.0 | 1.3 | | | 4.0 | 2.0 | | •1 | | | 42 | 0.0 | | | 1200 | 5050 | | 99 | 7.BC | | | •50 | •33 | •30 | | | | .08 | .06 | | 3AF | | | 74 | 0.0 | | | | | | | | | | 43 | 28 | 26 | 3 | | | | | | | | | | | S | | DATE | SAMPLER<br>LAB | DEPTH | DO<br>SAT | | PH | ATORY<br>EC | C.A. | MC. | COMSTITU<br>NA | v | | PERCEN' | QUIVALE<br>T REACT | NTS P | VALUE | TER<br>B | LLIGRAMS<br>F<br>Sio2 | TDS | TH | SAR<br>ASAR | RE4 | |------------------|----------------|--------------|-------------|----------------|-------|-------------|------------------|----------------------------------|----------------|-----------------|-----|-----------|--------------------|-----------------|-------|--------------------|-----------------------|-----|---------|-------------|-------| | | | | * * * * | * * * | * * * | * * * | * * * | * * | * * * * | * * | * * | | | * * | * * * | * * * | * * * * | * * | * * * * | * * * | * * * | | | AZ | 1040. | 00 | SA | CRAME | NTO R | A HATHI | ESON | | | | | A19C0 | CONTI | NUED | | | | | | | | 05/02/84<br>0815 | 5050<br>5050 | , | 10.9<br>96 | 48.0F<br>8.9C | 7.3 | 118 | 10<br>•50<br>46 | 4.1<br>•3: | 3 .22 | | | | 4.0<br>.08 | 2.0<br>.06 | | .0<br>3AF | | | 42 | 0.0 | s | | | A2 | 1300. | 00 | SA | CRAME | NTO R | A DELT | A | | | | | A2080 | | | | | | | | | | 04/25/83<br>0923 | 5050<br>0000 | | 13.0<br>111 | 44.6F<br>7.0C | 7•4 | <u>7</u> 6 | | | <b></b> | | | | | | | <br>4AF | | | | | | | 04/27/83<br>1630 | 5050<br>5050 | 3450 | 11.5<br>100 | 46.0F<br>7.8C | 7.2 | 77 | 5.0<br>.25<br>28 | 6 • 6<br>• 4 <sup>6</sup><br>5 ( | 9 .13 | •4<br>•01<br>1 | | 36<br>•72 | 1.0<br>.02 | 1.0 | | •0<br>2 <b>A</b> F | | 30 | 37<br>1 | 0.2 | S | | 05/17/83<br>0850 | 5050<br>5050 | | 12.3<br>110 | 48.2F<br>9.0C | 7.5 | 81 | | | | | | | ** | | | ZAF | | | | | , | | 06/13/83<br>1445 | 5050<br>5050 | 2740 | 10.6<br>103 | 55.0F<br>12.8C | 7•4 | 69 | 3+0<br>+15<br>20 | 6.6 | 9 .09 | .01 | | | •0<br>•00 | 1.0 | | •0 | | | 32 | 0.0 | s | | 07/13/83<br>1430 | 5050<br>5050 | 1280 | 9.6<br>103 | 61.5F<br>16.4C | 7.4 | 87 | 4.0<br>.20<br>26 | 5 • 6<br>• 41<br>5 4 | 1 .13 | .6<br>.02<br>3 | | | 1.0 | 3.0<br>.08 | | •1 | | | 30 | 0.0 | \$ | | 08/19/83<br>1300 | 5050<br>5050 | 392 | 9.2<br>100 | 64.6F<br>18.1C | 7.8 | 115 | 6.0<br>.30<br>27 | 6 • (<br>• 4 9<br>4 4 | 9 .30 | .02<br>2 | | | 3.0<br>.06 | 4.0<br>•11 | | .1<br>1AF | | | 40 | 0.0 | S | | 09/12/83<br>0830 | 5050<br>5050 | 4•29<br>385 | | 62.6F<br>17.0C | 7.8 | 125 | | | | | | | | <del>-</del> ;- | | 1AF | | | | | | | 09/19/83<br>1545 | 5050<br>5050 | 363 | 9.9<br>105 | 62.1F<br>16.7C | 8.3 | 128 | 7.0<br>.35<br>27 | 7.0<br>•58 | 8 .35 | 1.0<br>.03<br>2 | | | 3.0<br>.06 | 5.0<br>.14 | | 0AF | | | 46 | 0.0 | S | | 10/18/83<br>1345 | 5050<br>5050 | 332 | 10.0 | 55.9F<br>13.3C | 8.3 | 123 | 7.0<br>.35<br>28 | 7.0<br>.56 | • 30 | .8<br>.02<br>2 | | | 2.0 | 4.0<br>.11 | | .1<br>1AF | | | 46 | 0.0 | s | | 11/14/63<br>0930 | 5050<br>5050 | 7.32<br>2580 | | 47.3F<br>8.5C | 7•3 | 90 | | | | | | *- | | | | 4AF | | | | | - | | DAT <del>e</del><br>Time | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>TA2 | TEMP | | LD<br>ATORY<br>EC | MINE | RAL CO | NSTITU | ENTS | IN | MILLIE | RAMS PE<br>QUIVALE | NTS P | ER LI | TER | LLIGRAM: | | LITER | | | |--------------------------|----------------|--------------------|-------------|----------------|-----|-------------------|------------------|-----------------------|------------------|----------------|----|-----------|---------------------------|------------|-------|-----------|-----------------------|---------------------|-----------|-------------|-----| | • • • • | * * * * * | - | * * * | * * * | | | CA + | MG<br>* * * | NA<br>+ + + | K<br>* * | | C 4 C C C | T REACT<br>SD4<br>* * * * | | | | F<br>\$102<br>+ + + + | TDS<br>SUM<br>+ + + | TH<br>NCH | SAR<br>ASAR | RE4 | | | | 1300. | | | | | A DELT | | | | | | | | | | | | | | | | | | | | | | | | • | | | | | A2080 | r Dail T | MUED | | | | | | | | 11/29/83<br>1600 | 5050<br>5050 | | 12.0 | 43.0F<br>6.1C | 7.3 | 102 | 6.0<br>•30<br>29 | 6 • 0<br>• 4 9<br>4 8 | 5.0<br>.22<br>22 | .01<br>1 | | | 3.0<br>.06 | 3.0<br>.08 | | .0<br>laf | | | 40 | 0.0 | \$ | | 12/15/83<br>1030 | 5050<br>5050 | 7.66<br>3200 | 11.6<br>102 | 47.3F<br>8.5C | 7-1 | 69 | *** | | | | | | ** | | | <br>2AF | | | | | | | 01/09/84 | 5050 | | 11 . B | 45.0F | 7.1 | 81 | 5.0 | 6.0 | 3.0 | | | | | | | | | | | | | | 1415 | 5050 | 0 | | 7.2C | | •• | ·25<br>28 | .49<br>54 | •13<br>14 | .03 | | | 1.0 | •06 | | 2AF | | | 37 | 0.0 | s | | 01/17/84<br>0955 | 5050<br>5050 | 6.88<br>1230 | 12.5<br>98 | 39.2F<br>4.0C | 7.1 | 90 | | | | | | | | | | <br>2AF | | | | | | | 02/22/84<br>1000 | 5050<br>5050 | 6.08<br>1380 | 13.1<br>106 | 41.0F<br>5.0C | 7•4 | 97 | | | | | | | *** | ** | | 1AF | | | | | | | 02/24/84<br>1505 | 5050<br>5050 | | | 46.0F<br>7.8C | 7.4 | 90 | 8.0<br>.40<br>37 | 6.0<br>.49<br>46 | 4.0<br>.17<br>16 | .01 | | | 2.0<br>.04 | 2.0<br>•06 | | .1<br>1AF | | | 44 | 0.0 | S | | 03/20/84<br>0925 | 5050<br>5050 | 6.80<br>2050 | 11.5<br>103 | 48.2F<br>9.0C | 7.3 | 88 | | | | | | | | | | 1AF | | | | | | | 03/28/84<br>1630 | 5050<br>5050 | | | 52.0F<br>11.1C | 7.6 | 93 | 6.0<br>.30<br>32 | 6.0<br>.49<br>53 | 3.0<br>•13<br>14 | .01 | | <b></b> | 2.0<br>.04 | 2.0<br>.06 | | .2<br>1AF | | | 40 | 0.0 | S | | 04/11/84<br>1020 | 5050<br>5050 | 7.02<br>1340 | | 46.4F<br>8.0C | 7.6 | 98 | | | | | | | | | | <br>2AF | | | | | | | 05/03/84<br>1315 | 5050<br>5050 | 0 | | 51.0F<br>10.5C | 7.4 | 90 | 4.0<br>•20<br>25 | 6.0<br>•49<br>62 | 2.0<br>.09<br>11 | .4<br>.01<br>1 | | | 2.0<br>.04 | 2.0<br>.06 | | .0<br>1AF | ** | | 35 | 0.0 | S | | 05/18/84<br>1225 | 5050<br>5050 | | | 55.4F<br>13.0C | | 96 | +- | | | | | | | | | <br>1AF | | | | | | | 05/12/84<br>6930 | 5050<br>5050 | 4.79<br>577 | 10.0 | 59.0F<br>15.0C | 8.3 | 111 | | | | | | | | | | <br>2AF | | | | | | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | FIEI<br>LABORA<br>PH | ATORY | MINE | RAL CI | DNSTITU | ENTS | IN | MILLI | GRAMS PE<br>Equivale<br>et react | NTS PE | R LIT | ER | LLIGRAM: | | | | | |------------------|----------------|--------------------|-------------|----------------|----------------------|------------|------------------|------------------|------------------|-----------------|----|-------------|----------------------------------|------------|-------|------------|----------|------------|--------------------|-------------|-----| | * * * * | | | * * * | * * * | | | CA + + | MG | NA + + + | - K<br>+ ,+ | | 1000 | | | | TURB | | TDS<br>Sum | TH<br>NCH<br>• • • | SAR<br>ASAR | REY | | | | 1300. | | | | | A DELT | | | | | | A2080 | | | | | | | | | | 06/18/84<br>1330 | 5050<br>5050 | | | 69.0F<br>20.5C | 8.2 | 110 | 6.0<br>•30<br>27 | 7.0<br>.58<br>52 | 5.0<br>.22<br>20 | •7<br>•02<br>2 | | | 2.0<br>.04 | 3.0<br>.08 | *- | •1<br>1AF | | | 44 | 0.0 | s | | 07/10/84<br>0910 | 5050<br>5050 | 298 | | 66.2F<br>19.0C | 7.8 | 134 | | | *** | | | | | | | 1AF | | | | | | | 07/20/84<br>1400 | 5050<br>5050 | | 9.3 | 74.0F<br>23.3C | 8.3 | 135 | 8.0<br>.40<br>29 | 7.0<br>.58<br>43 | 8.0<br>.35<br>26 | 1.0<br>.03<br>2 | | | 2.0<br>.04 | 5.0<br>.14 | | • 2<br>1AF | | | 49 | 0.0 | s | | 08/07/84<br>0940 | 5050<br>5050 | 4.02<br>272 | | 66.2F<br>19.0C | 7.9 | 143 | | | | | | | | | | <br>1AF | | | | | | | 09/23/84<br>1330 | 5050<br>5050 | 0 | | 64.0F<br>17.8C | 8.2 | 140<br>145 | 8.0<br>•40<br>29 | 7.0<br>.58<br>41 | 9.0<br>.39<br>28 | 1.1<br>.03<br>2 | | | 3.0<br>.06 | 6.0<br>•17 | | .2<br>1AF | | | 49 | 0.0 | s | | 09/04/84<br>0920 | 5050<br>5050 | 3.91<br>241 | 9.8<br>105 | 62.6F<br>17.0C | 7.9 | 150 | | | | | | | | | | 1AF | | | | | | | 09/19/84<br>1330 | 5050<br>5050 | | 10.6<br>125 | 72.0F<br>22.2C | 8.3 | 143 | 8.0<br>•40<br>26 | 8.0<br>•66<br>43 | 10<br>•44<br>29 | | | | 2.D<br>.04 | 6.0 | | •2<br>0AF | | | 53 | 0.0 | s | | 10/23/84<br>0945 | 5050<br>5050 | 4.03<br>275 | 11.5<br>105 | | 8.3 | 155 | | <b></b> | | | | | *** | | | 2AF | | | | | | | 10/24/84<br>1400 | 5050<br>5050 | | 11.4 | 50.5F<br>10.3C | 7.8 | 147 | 8•0<br>•40<br>26 | 8.0<br>.66<br>43 | 10<br>•44<br>29 | 1.1<br>.03<br>2 | | <del></del> | 2.0<br>.04 | 6.0 | •• | 0AF | | | 53 | 0.0 | \$ | | | A2 | 2150. | 00 | MC | CLOUD | R AB | ATZAHZ | LK | | | | | AZZAI | | | | | | | | | | 04/25/83<br>0820 | 5050<br>0000 | 2730 | 12.1 | 44.6F<br>7.0C | 7.6 | 86 | | *** | | | | | ** | | | <br>2AF | | | | | | | 04/27/83<br>1430 | 5050<br>5050 | | 11.5<br>101 | 46.9F<br>8.3C | 7.3 | 90 | 11<br>•55<br>64 | 2.0<br>.16<br>19 | 3.0<br>.13<br>15 | .6<br>.02<br>2 | | 40<br>80 | 2.0<br>.04 | •00 | | •0<br>2AF | | 43 | 36<br>0 | 0•2<br>0•2 | s | | DATE<br>TIME | | DEP1 | | TEMP<br>PH | AR | | | CONSTITE BARIL CADMI | I UM<br>JM | IN MILL<br>CHROM (<br>CHROM (<br>+ + + | ALL)<br>Hex) | COPPER<br>IRON | ł . | LEAD<br>MANGANE<br>+ + 4 | SE | MERCUR<br>SELENIU | H | SILVER<br>ZINC | REN + + + | |--------------------------|------|------|---------|-----------------------|---------|-------|------|----------------------|------------|----------------------------------------|--------------|----------------|--------|--------------------------|--------|-------------------|--------|----------------|-----------| | | | - | 2112.00 | | | NTO R | A | | FERRY | | | A O | | | | | | | | | 07/14/83<br>1115 | | | 135 | 20.0C<br>7.3 | | 00 | T | 0.00 | T | 0.00 | • | 2.3 | | 0.00<br>0.06 | T | 0.000<br>0.00 | ŧ | 0.02 | T | | 09/20/83<br>1200 | | | 175 | 18.90<br>7.4 | 0. | 00 | T | 0.00 | T, | 0.00 | ī | 0.02<br>1.6 | T<br>T | 0.01<br>0.06 | Ť | 0.000<br>0.01 | T<br>T | 0.02 | <b>T</b> | | 02/22/84<br>1140 | | | | 50. <b>0</b> F<br>7.2 | | • | | .0.00 | T | | | 0.02<br>0.88 | T<br>T | *- | | 0.000 | T | 0.01 | T | | 05/01/84<br>1040 | | I | 0 164 | 60.0F<br>7.5 | | - | | 0.00 | T . | | | 0.06<br>1.6 | T<br>T | | | 0.000 | T | 0.02 | T | | | | AO | 2230.02 | | SACRAME | NTO R | L AB | COLUSA | BASIN | DR | | AO' | 7 A D | | | | | | | | 07/14/83<br>1200 | | | 128 | 20.6C<br>7.4 | | 00 | T | 0.00 | Ţ | 0.00 | T | 0.03<br>1.8 | | 0.00<br>0.04 | T | 0.000<br>0.00 | - | 0.02 | T | | 09/20/63<br>1250 | | | 165 | 20.6C<br>7.4 | | 00 | T | 0.00 | Ţ | 0.00 | Ţ | 0.02<br>0.59 | Ţ | 0.00<br>0.02 | T | 0.000<br>0.00 | | 0.02 | Ť | | 11/29/83<br>1200 | | | 159 | 10.8C<br>7.3 | | 00 | T | 0.00 | Ţ | 0.01 | | 0.03<br>4.7 | | 0.00<br>0.10 | Ť | 0.000<br>0.02 | • | 0.03 | T | | 02/22/84<br>12 <b>20</b> | | | 160 | 51.0F<br>7.3 | | | | 0.00 | τ | | | 0.02<br>0.87 | Ť | | | 0.000 | T | 0.01 | T | | 05/01/84<br>1120 | 5050 | | | 58.0F | - | • | | 0.00 | | | | 0.03 | T | | | 0.000 | | 0.01 | T | | • | | AO | 2630.00 | | SACRAME | NTO F | R A | HAMILTO | N CITY | | | A1 | 380 | | | | | | | | 04/28/83<br>1330 | | | 150 | 12.80 | | 00 | т | 0.00 | T | 0.01 | T | 0.04<br>7.6 | T | 0.00<br>0.16 | Ţ | 0.000<br>0.03 | | 0.05 | T | | 07/14/83<br>1500 | | | | 16.90<br>7.4 | | .00 | T | 0.00 | T | 0.00 | Ť | 0.03<br>0.71 | T<br>T | 0.00<br>0.01 | Ţ | 0.00 | Ţ | 0.03 | τ | | 09/20/83<br>1600 | | | | 17.20<br>7.5 | | .00 | Ť | 0.00 | T | 0.00 | T | 0.02 | Ť | 0.00<br>0.01 | Ť | 0.000 | T<br>T | 0.02 | T | | 11/29/83<br>1505 | | | | 11.10<br>7.3 | | .00 | | 0.00 | T | 0.00 | T | 0.01<br>1.0 | T | 0.00<br>0.03 | T<br>T | 0.000<br>0.01 | | 0.01 | Ť | | 02/22/84<br>1505 | | | 127 | 49.0F | | | | 0.00 | T | | | 0.02<br>0.56 | | | | 0.000 | Ť | 0.02 | T | | 05/01/84<br>1410 | | | 0 130 | 57.09<br>7.4 | | | | 0.00 | T | | | 0.07<br>0.69 | T | | | 0.000 | T | 0.02 | T | | DATE<br>TIME | SAMPLER<br>LAB | Q<br>DEPTH | SAT | | PH | AT DRY<br>EC | | | | | | MILLIG<br>MILLIE<br>PERCEN<br>CACUS | QUIVALE<br>T REACT | NTS PI | ER LI' | TER<br>B | LLIGRAMS<br>F<br>S102 | TDS | TH | SAR<br>ASAR | RE4 | |------------------|----------------------|------------|-------------|----------------|-----|--------------|-----------------|------------------|------------------|-----------------|-----|-------------------------------------|--------------------|------------|----------|------------|-----------------------|-------|---------|-------------|-------| | | | 2150. | | | | | | | | • • • | * * | * * * ' | | | | • • • | * * * • | • • • | * * * * | * * * | • • • | | ***** | | 2170 | | | | K AS | SHASTA | LK | | | | | AZZA1 | CONTIN | WED | | | | | | | | 06/13/83<br>1250 | 5050<br>5050 | 988 | 10.3 | 56.5F<br>13.6C | 7.6 | 95 | 11<br>•55<br>64 | 2.0<br>.16<br>19 | 3.0<br>.13<br>15 | •7<br>•02<br>2 | | | .00 | 1.0<br>.03 | | •0 | | | 36 | 0.0 | s | | 07/13/83<br>1245 | 5050<br>5050 | 451 | | 63.0F<br>17.2C | 8.0 | 112 | 13<br>•65<br>60 | 3.0<br>.25<br>23 | 4.0<br>•17<br>16 | . B<br>. O 2 | | | 3.0<br>.06 | 1.0 | | •0 | | | 45 | 0.0 | S | | 08/19/83<br>1115 | 5050<br>5050 | 369 | 9.7<br>100 | 59.5F<br>15.3C | 7•6 | 105 | 12<br>•60<br>58 | 3.0<br>.25<br>24 | 4.0<br>•17<br>16 | .9<br>.02<br>2 | | | 2.0<br>.04 | 1.0 | | .0<br>1AF | | | 42 | 0.0 | 5 | | 09/12/83<br>0740 | <b>50</b> 50<br>5050 | 336 | | 57.2F<br>14.0C | 7.4 | 108 | | | | | | | | | | 1AF | | | | | , | | 09/19/83<br>1330 | 5050<br>5650 | 336 | 10.5<br>106 | 57.9F<br>14.40 | 8.1 | 100 | 12<br>•60<br>55 | 3.0<br>.25<br>23 | 5.0<br>.22<br>20 | 1.1<br>.03<br>3 | | | 3.0<br>.06 | 1.0 | <b>-</b> | • 0<br>OAF | | | 42 | 0.0 | S | | 10/18/83<br>1200 | 5050<br>5050 | 316 | | 48.6F<br>9.2C | 8.1 | 105 | 11<br>•55<br>52 | 3.0<br>.25<br>24 | 5.0<br>.22<br>21 | | | | 2.0 | 1.0 | | •0<br>24F | | | 40 | 0.0 | 5 | | 11/14/83<br>0840 | 5050<br>5050 | 1020 | 11.8<br>104 | 47.3F<br>8.5C | 7.5 | 95 | | | | | | | | | | 2AF | | | | | , | | 11/29/83<br>1400 | 5050<br>5050 | | 12.1 | 43.0F<br>6.1C | 7.3 | 110 | 13<br>•65<br>60 | 3.0<br>.25<br>23 | 4.0<br>.17<br>16 | •6<br>•02<br>2 | | | 4.0<br>.06 | 1.0 | | •0<br>1AF | | | 45 | 0.0 | S | | 12/15/83<br>0915 | 5050<br>5050 | 2500 | 11.5<br>103 | 48.2F<br>9.0C | 7.3 | 89 | | | | | | | | | | <br>3AF | | | | | • | | 01/09/84<br>1330 | 5050<br>5050 | 1050<br>0 | 12.2 | 44.0F<br>6.7C | 7•3 | 99 | 14<br>•70<br>70 | 2.0<br>.16<br>16 | 3.0<br>.13<br>13 | .01 | | | 4.0 | 1.0 | | •0<br>1AF | | | 43 | 0.0 | S | | 01/17/84<br>0900 | 5050<br>5050 | 652 | 13.3<br>106 | 40.1F<br>4.5C | 7.3 | 112 | | | | | | | ** | | •- | ZAF | | | | | • | | 02/22/84 | 5050<br>5050 | 764 | 12.1<br>100 | 42.8F<br>6.0C | | 115<br>119 | 17<br>•85<br>67 | 3.0<br>.25<br>20 | 4.0<br>.17<br>13 | | | 52<br>04 | <b>190 6</b> 1 | 1.0 | | .0<br>1A | | | 55<br>3 | 0.2 | 5 | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>O<br>Depth | DO<br>Sat | TEMP | FIE | | MINE | RAL C | ONSTITU | ENTS | IN MI | LLIGRA<br>LLIEQU<br>RCENT | JIVALE | NTS PI | ER LIT | ER | LIGRAMS | | | | | |------------------|----------------|--------------------|-------------|----------------|--------|------------|------------------|------------------|------------------|-----------------|------------|---------------------------|------------|------------|--------|-----------|------------|------------|-----------|-------------|-------| | | | | | | | | CA | MG | NA | ĸ | | | | | | | F<br>\$102 | TDS<br>Sum | TH<br>NCH | SAR<br>Asar | REM | | * * * * * | | | | • • • | • • • | | * * * | * * : | * * * * | * * | * * * | * * * | * * * | * * * | * * * | | * * * * | * * * | * * * | * * * | * * * | | | <b>A</b> 2 | 2150. | 00 | H( | CCLDUD | R AB | SHASTA | LK | | | | A | 22A1 | CONTIN | WED | | | | | | | | 02/24/84 | 5050 | | 12.2 | 45.0F | 7.6 | | 14 | 2.0 | 3.0 | .4 | | _ | 5.0 | | | _ | | | | | | | 1320 | 5050 | 742 | | 7.20 | | | •70<br>70 | •16<br>16 | •13 | .01 | | | -10 | 1.0<br>•03 | | .0<br>14F | | | 43 | 0.0 | s | | 03/20/84<br>0835 | 5050<br>5050 | 1650 | 11.5<br>103 | 48.2F<br>9.0C | | 103 | | | ** | | | • | | - | | 1AF | | | | | | | 03/28/84<br>1430 | 5050<br>5050 | 926 | 10.8 | 51.0F<br>10.5C | 7.6 | 107 | 13<br>•65<br>60 | 3.0<br>.25<br>23 | | .02<br>2 | | • | 4.0 | 1.0 | ** | .0<br>1AF | | | 45 | 0.0 | s | | 04/11/84<br>0915 | 5050<br>5050 | 744 | 11.0<br>108 | 55.4F<br>13.0C | 7•6 | 102 | | | | | ~= | | | | ** | <br>2AF | | | | | Ţ | | 05/03/84<br>1120 | 5050<br>5050 | 485<br>0 | 11.0<br>103 | 52.0F<br>11.1C | 7.8 | 118 | 14<br>•70<br>66 | 3.0<br>.25<br>24 | 2.0<br>.09<br>8 | •6<br>•02<br>? | | | 4.0 | 1.0 | | .0<br>1AF | | | 48 | 0.0 | S | | 05/18/84<br>1330 | 5050<br>5050 | 365 | | 55.4F<br>13.0C | 8.0 | 164<br>170 | 28<br>1.40<br>79 | 3.0<br>.25<br>14 | 3.0<br>.13<br>7 | | 82<br>1.64 | | | 1.0 | | 1Å | | | 82<br>1 | 0.1<br>0.2 | s | | 06/12/84<br>0815 | 5050<br>5050 | 320 | 10.4 | 55.4F<br>13.00 | 8.4 | 181<br>184 | 30<br>1.50<br>78 | 3.0<br>.25<br>13 | 4.0<br>•17<br>9 | | 86<br>1•72 | | | 2.0<br>.06 | | 0A | | | 88<br>2 | 0.2<br>0.3 | S | | 06/18/84<br>1200 | 5050<br>5050 | | | 60.0F<br>15.5C | 7.6 | 110 | 13<br>•65<br>60 | 3.0<br>.25<br>23 | 4.0<br>.17<br>16 | •9<br>•02<br>2 | | | 2.0 | 1.0 | | .0<br>1AF | | | 45 | 0.0 | S | | 07/10/84<br>0755 | 5050<br>5050 | 285 | | 59.0F<br>15.0C | 7.8 | 190 | | | | | •• | | | | | 1AF | | | | | | | 07/20/84<br>1230 | 5050<br>5050 | | | 64.0F<br>17.8C | 8.1 | 107 | 12<br>•60<br>55 | 3.0<br>.25<br>23 | 5.0<br>.22<br>20 | 1.1<br>.03<br>3 | | | 2.0 | 1.0 | | .0<br>1AF | | | 42 | 0.0 | s | | 08/07/84<br>0840 | 5050<br>5050 | 256 | 10.0 | 60.8F<br>16.0C | 7.6 | 115 | | | | | | | | | | 1AF | | | | | | | 08/23/84<br>1150 | 5050<br>5050 | 0 | | 60.0F<br>15.5C | 7.9 | 108<br>108 | 11<br>•55<br>52 | 3.0<br>•25<br>24 | 5.0<br>•22<br>21 | | <b>.</b> | | 2.0<br>.04 | 1.0 | | +0<br>1AF | | | 40 | 0.0 | S | | DATE | SAMPLER<br>LAB | G.H.<br>Q<br>DEPTH | DO<br>SAT | TEMP | FIE<br>LABOR<br>PH | | MINE | RAL ( | CONSTITU | ENTS | IN I | 4ILLIE | RAMS PE | NTS P | ER LIT | ER | LLIGRAMS | | LITER | | | |------------------|----------------|--------------------|-----------|-------|--------------------|-------|------------|------------|----------|----------|------|---------|-----------------|-------|--------|-----------|-----------|----------------|-----------|-------------|-----| | | | * * * * | | | | | CA | MG | NA . | ,K | | | IT REACT<br>SO4 | | | B<br>Turb | F<br>SIO2 | T D S<br>S U M | TH<br>NCH | SAR<br>Asar | RE4 | | | | | | | | | | | * * * * | * * | | • • • | * * * * | • • | • • • | * * * | * * * * | + + | | * * * | | | | A2 | 2150. | 00 | M( | CCLOUD | R AB | SHASTA | LK | | | | | AZZA1 | CONTI | NUED | | | | | | | | 09/04/84 | 5050 | | 10.2 | 57.2F | 7.8 | 200 | 34 | 3.0 | 0 3.0 | | | 7 | | 1.0 | | • | | | | | | | 0815 | 5050 | 248 | 102 | 14.0C | 7.7 | | 1.70<br>82 | .2: | 5 .13 | | 1.9 | | | .03 | | 1Å | | | 98<br>1 | 0.2 | s | | 09/19/84 | | | 10.4 | 58.0F | 7.8 | 110 | 11 | 4.0 | 0 5.0 | 1.3 | | | 2.0 | 1.0 | | .0 | | | | | | | 1200 | 5050 | | 105 | 14.4C | | | •55<br>49 | 29 | | •03 | | | .04 | .03 | | 1AF | | | 44 | 0.0 | S | | 10/23/64 | | | 10.6 | 51.8F | 8.0 | 205 | 33 | 3.0 | 4.0 | | 9 | 95 | | 1.0 | | .0 | | | 95 | 0.2 | | | 0830 | 5050 | 304 | 99 | 11.0C | B.Q | 204 | 1.65<br>80 | •2:<br>12 | | | 1.9 | 0 | | •03 | | 24 | | | 0 | 0.3 | s | | 10/24/84 | | | | 47.0F | 7.5 | 110 | 11 | 4.0 | 5.0 | 1.3 | - | | 2.0 | 1.0 | | .0 | | | 44 | | | | 1230 | 5050 | | 103 | 8.3C | | | •55<br>49 | • 33<br>29 | 3 .22 | | | | •04 | .03 | | 1AF | ** | | ** | 0.0 | \$ | | | SA | 4100. | 00 | se | MAW C | AB SH | IASTA LI | ( | | | | | A2280 | | | | | | | | | | 04/27/83 | 5050 | | 11.4 | 46.9F | 7.4 | 145 | 25 | 2.0 | 3.0 | • | | | | _ | | _ | | | | | | | 1230 | 5050 | | 100 | 8.3C | ••• | 143 | 1.25 | 16 | •13 | .01<br>1 | | 6<br>12 | 6.0<br>.12 | •00 | | .0<br>1AF | | 76 | 70<br>5 | 2.0 | \$ | | 96/13/83 | | | 10.0 | 57.9F | 7.7 | 195 | 33 | 3.0 | 3.0 | . 3 | _ | - | 8.0 | .0 | | • | | | | | - | | 1030 | 5050 | | | 14.4C | | | 1.65 | .25 | •13 | •01 | | | •17 | •00 | | •0 | | | 95 | 0.0 | S | | 07/13/83 | 5050 | | 0.2 | 64.9F | 7.0 | 212 | •• | | | | | | | | | | | | | | 3 | | 1020 | 5050 | | 101 | 18.3C | 147 | 212 | 34<br>1.70 | 3.0 | | •01 | | - | 13<br>•27 | 1.0 | | •0 | | | 98 | 0.0 | | | | | | | | | | 60 | 12 | | ō | | | • 21 | •03 | | | | | | | s | | 09/19/83 | 5050 | | 8.4 | 66.9F | 7.9 | 220 | 36 | 3.0 | 4.0 | .4 | _ | _ | | | | _ | | | | | • | | 0915 | 5050 | | 94 | 19.4C | | | 1.80 | .25 | | .01 | _ | • | 15<br>•31 | 1.0 | | OAF | | | 103 | 0.0 | | | | | | | | | | 81 | 11 | . 8 | 0 | | | | | | - | | | | | \$ | | 09/19/83 | 5050 | | 9.4 | 61.0F | 7.9 | 225 | 37 | 4.0 | 4.0 | .4 | _ | - | 15 | 1.0 | *- | •0 | | | | | | | 1100 | 5050 | | 99 | 16.10 | | | 1.85 | •33 | •17 | .01 | | | •31 | .03 | | OAF | | | 109 | 0.0 | | | | | = | | | | | 78 | 14 | 7 | 0 | | | | | | | | | | | \$ | | 10/16/83 | | | | 49.5F | 7.7 | 230 | 37 | 4.0 | 4.0 | .3 | _ | - | 15 | 1.0 | | .0 | | | 109 | 0.0 | | | 1000 | 5050 | | 93 | 9.7C | | | 1.85 | • 33 | | .01 | | | . 31 | .03 | | 1AF | | | 104 | 0.0 | | | | | | | | | | 78 | 14 | 7 | 0 | | | | | | | | | | | \$ | | 11/29/83<br>1200 | 5050<br>5050 | | | 44.1F | | 185 | 30 | 3.0 | | • 3 | - | - | 13 | 1.0 | | •0 | | | 88 | 0.0 | | | 1500 | 2020 | | 103 | 6.7C | | | 1.50<br>79 | •25<br>13 | | .01 | | | .27 | .03 | | OAF | | | | | | | | | | | | | | • • | | • | | | | | | | | | | | | 5 | | DATE<br>TIME | SAMPLER<br>LAB | G.H.<br>Q<br>Depth | DD<br>SAT | TEMP | FIEL<br>LABOR<br>PH | | MINE | RAL CO | INS TITL | JENTS | IN | MILLIE | RAMS PEI | NTS PE | R LIT | MIL<br>Er | LIGRAMS | PER LITER | | | |------------------|----------------|--------------------|------------|----------------|---------------------|------------|------------------|------------------|-----------------|----------------|----|--------|-----------------------------|--------|--------------|---------------|-----------------------|--------------------------------|----------------------|-----| | * * * * * | | * * * * | • • • | * * * | * * * | * * * | CA + + | #G<br>+ + + | NA + + + | K * * | | CACD3 | T REACT!<br>\$04<br>* * * * | CL | ND3 | TURB<br>+ + + | F<br>\$102<br>+ + + + | TDS TH<br>SUM NCH<br>* * * * * | SAR<br>ASAR<br>+ + + | RE4 | | | <b>A2</b> | 4100. | 00 | so | UAW C | AB SH | IASTA L | ĸ | | | | | A2280 ( | CONTIN | IUED | | | | | | | 01/09/84<br>1100 | 5050<br>5050 | 0 | 10•1<br>90 | 48.0F<br>8.9C | 6.7 | 130 | 25<br>1.25<br>81 | 2.0<br>.16<br>10 | 3.0<br>•13<br>8 | •2<br>•01<br>1 | | | 10<br>•21 | 1.0 | | .0<br>1AF | | 70 | 0.0 | s | | 02/24/84<br>1125 | 5050<br>5050 | | | 45.0F<br>7.2C | 7.5 | 175 | 30<br>1.50<br>79 | 3.0<br>.25<br>13 | 3.0<br>.13<br>7 | •2<br>•01<br>1 | | | 12<br>• 25 | .00 | | 0<br>OAF | | 86 | 0.0 | S | | 03/28/84<br>1300 | 5050<br>5050 | | | 49.0F<br>9.4C | 7.8 | 182 | 30<br>1.50<br>79 | 3.0<br>.25<br>13 | 3.0<br>.13<br>7 | .01<br>1 | | *- | 12<br>•25 | 1.0 | <b>⇒</b> -95 | •0<br>1AF | | 88 | 0.0 | S. | | 05/03/84<br>0945 | 5050<br>5050 | 0 | | 50.0F<br>10.0C | 7.4 | 195 | 30<br>1.50<br>85 | 2.0<br>.16 | 2.0<br>.09<br>5 | .3<br>.01<br>1 | | ~= | 12<br>•25 | 1.0 | | .0<br>1AF | | 83 | 0.0 | s | | 06/18/84<br>1015 | 5050<br>5050 | | | 62.0F<br>16.7C | 7.9 | 220 | 36<br>1.80<br>68 | 3.0<br>.25<br>10 | 13<br>•57<br>22 | •3<br>•01<br>0 | | | .27 | 1.0 | | •0<br>OAF | | 103 | 0.0 | S | | 07/20/84<br>1100 | 5050<br>5050 | | | 70.0F<br>21.1C | 8.0 | 225 | 37<br>1.85<br>61 | 3.0<br>.25<br>11 | 4.0<br>.17<br>7 | .4<br>.01<br>0 | | | 14<br>• 29 | 1.0 | | .0<br>1AF | | 105 | 0.0 | s | | 08/23/84<br>1000 | 5050<br>5050 | 0 | | 63.0F<br>17.2C | 7.6 | 228<br>232 | 38<br>1.90<br>79 | 4.0<br>.33<br>14 | 4.0<br>.17<br>7 | .01<br>0 | | | 16<br>.33 | 1.0 | | •0<br>OAF | | 112 | 0.0 | S | | 09/19/84<br>1030 | 5050<br>5050 | | | 62.0F<br>16.7C | 7.6 | 219 | 38<br>1.90<br>79 | 4.0<br>.33<br>14 | 4.0<br>.17<br>7 | .5<br>.01<br>0 | | | 15<br>•31 | 1.0 | | • O<br>OAF | | 112 | 0.0 | S | | 10/24/84<br>1100 | 5050<br>5050 | | 12.6 | 47.5F<br>8.6C | 7.3 | 199 | 39<br>1.95<br>79 | 4.0<br>.33<br>13 | 4.0<br>•17<br>7 | .4<br>.01<br>0 | | | 17<br>•35 | 1.0 | | .0<br>1AF | | 114 | 0.0 | S | | DATE<br>TIME<br>+ + + | | DEPTH | DISCH<br>EC | TEMP<br>PH<br>* * * | ARSEN. | IC | COMSTITUEN<br>BARIUM<br>CADMIUM<br>* * * | CHROM<br>CHROM | (ALL)<br>(HEX) | PER LIT<br>COPPER<br>IRON | ₹ | LEAD<br>MANGANE:<br>+ + + | | MERCUR<br>SELENIU<br>+ + + | H | SILVER<br>* * | | REH<br>* * | |---------------------------|--------------|-------|-------------|---------------------|------------|--------|------------------------------------------|----------------|----------------|---------------------------|--------|---------------------------|--------|----------------------------|--------|---------------|---|------------| | | | A0 28 | 15.00 | \$ | ACRAMENTO | R A | BALLS FERRY | | | A17 | TAO | | | | | | | | | 04/29/83<br>1130 | 5050<br>5050 | | 90 | 11.1C<br>7.0 | 0.00 | т | 0.00 T | 0.00 | т . | 0.03<br>1.5 | T<br>T | | T<br>T | 0.000<br>0.01 | | 0.05 | T | | | 07/15/ <b>6</b> 3<br>1030 | | | 98 | 12.2C<br>7.3 | 0.00 | T | 0.00 T | 0.00 | Т | 0.03<br>0.40 | T<br>T | | T<br>T | 0.000<br>0.00 | • | 0.04 | T | | | 09/21/83<br>1000 | | | | 13.3C<br>7.2 | 0.01 | ī | 0.00 T | 0.00 | т | 0.02<br>0.32 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | | 0.03 | T | | | 12/01/83<br>1330 | | | | 12.2C<br>7.2 | 0.00 | · T | 0.00 T | 0.00 | T | 0.02<br>0.32 | T<br>T | 0.02 | T<br>T | 0.000<br>0.00 | | 0.02 | T | | | 03/05/84<br>1325 | | | 130 | 51.0F<br>7.3 | | | 0.00 T | ** | | 0.03<br>0.29 | Ť | | | 0.000 | T | 0.04 | T | | | 05/02/84<br>1115 | 5050 | _ | | 51.0F<br>7.3 | ** | | 0.00 T | <del></del> | | 0.06<br>0.40 | T | | | 0.000 | Ť | 0.02 | T | | | | | A1 10 | 20.00 | Р | IT R NR MC | ONTGDI | MERY C | | | ASO | во | | | | | | | | | 04/27/83<br>0845 | | | 123 | 9.4C<br>7.4 | 0.00 | T | 0.00 T | 0.00 | Ť | 0.02<br>0.47 | T<br>T | | T<br>T | 0.000<br>0.01 | Ţ | 0.01 | T | | | 07/13/83<br>0830 | | | 130 | 17.2C<br>8.0 | 0.00 | T | 0.00 T | 0.00 | τ | 0.03<br>0.17 | T<br>T | 0.00<br>0.02 | T<br>T | 0.000<br>0.00 | Ţ | 0.01 | T | | | 09/19/83<br>0845 | 5050<br>5050 | | 152 | 15.3C<br>7.8 | 0.00 | T | 0.00 T | 0.00 | T | 0.02<br>0.11 | Ť | 0.01<br>0.02 | T<br>T | 0.000<br>0.00 | Ť<br>Ť | 0.01 | T | | | 11/29/83 | 5050 | | | 7•2C<br>7•3 | 0.00 | T | 0.00 T | 0.00 | Ť | 0.02<br>0.42 | T | | T<br>T | 0.000<br>0.01 | T<br>T | 0.00 | ī | | | 02/24/84<br>0955 | 5050 | | | 45.0F<br>7.3 | | | 0.00 T | | | 0.02<br>0.82 | Ţ | | | 0.000 | T | 0.00 | T | | | 05/03/84<br>0815 | 5050 | 0 | 130 | 51.0F<br>7.6 | | | 0.00 T | | | 0.06<br>0.51 | T | | | 0.000 | T | 0.01 | Ŧ | | | 07/20/64<br>0930 | 5050<br>5050 | | 137 | 66.0F<br>8.2 | | | 0.00 T | | | 0.05<br>0.14 | T<br>T | | | 0.000 | T | 0.01 | T | | | 09/19/84<br>0830 | 5050<br>5050 | | | 60.0F<br>7.8 | ** | | 0.00 T | | | 0.00<br>0.16 | Ť | | | 0.000 | T | 0.00 | Ţ | | | • | DATE<br>TIME<br>+ + + | | DEPTH<br>+ + | DISCH<br>EC<br>* * * | TEMP<br>PH<br>+ + | | RSENI<br>+ | c<br>• • | CONSTIT<br>BARIU<br>CADMI<br>* * | M<br>1114 | CHROM | (ALL) | COPPI | ER | LEAD<br>Mangan | ESE | MERCUR<br>Seleniu<br>* * * | H | SILVE<br>ZINC<br>* * | RE | | |---|-----------------------|---------------------|--------------|----------------------|-------------------|--------|------------|----------|----------------------------------|------------|-------|-------|--------------|------------|----------------|--------|----------------------------|--------|----------------------|--------|--| | • | | | A2 L 0 | 043.2 225 | • 0 | SHASTA | LK A | DM | | | | | A | 2440 | | | | | | | | | , | 05/18/83<br>0700 | 5050<br><b>5050</b> | 0 | | 15.0C<br>7.4 | | •00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.21 | Ţ | 0.00<br>0.01 | 1 | 0.000<br>0.01 | T<br>T | 0.04 | T | | | | 05/18/83<br>0710 | 5050<br>5050 | 427 | | 7.2 | 0 | •00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.97 | <b>T</b> . | 0.00 | Ť | 0.000<br>0.01 | T<br>T | <br>0.02 | T | | | | 07/29/83<br>0830 | 5050 | 0 | 85 | 23.5C<br>7.6 | | -00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.08 | Ţ | 0.00<br>0.00 | T<br>T | 0.000<br>0.01 | T<br>T | <br>0.02 | T | | | | 07/29/83<br>0840 | 5050<br>5050 | 486 | 100 | 7•3 | 0 | •00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.74 | T . | 0.00<br>0.03 | Ţ | 0.000<br>0.01 | T<br>T | 0.02 | Ţ | | | | 09/27/83<br>0900 | 5050<br>5050 | 0 | | 20.5C<br>7.6 | | .00 | T | 0.00 | Ţ | 0.00 | τ | 0.02<br>0.33 | Ť | 0.00 | T<br>T | 0.000<br>0.01 | T<br>T | 0.01 | Ŧ | | | | 09/27/83<br>0910 | 5050<br>5050 | 459 | | 7.0 | 0 | •00 | T | 0.00 | t | 0.00 | T | 0.02<br>0.99 | Ţ | 0.00<br>0.03 | T<br>T | 0.000<br>0.00 | T<br>T | 0.06 | T | | | | 12/21/83<br>0945 | 5050<br>5050 | 0 | | 11.9C<br>7.3 | 0 | •00 | T | 0.00 | T | 0.00 | • | 0.02 | T<br>T | 0.00 | T<br>T | 0.000<br>0.01 | T<br>T | 0.03 | T | | | | 12/21/83<br>0955 | 5050<br>5050 | 427 | | 8.6C<br>6.9 | 0 | •00 | Ţ | 0.00 | T | 0.00 | T | 0.01 | Ť | 0.00<br>0.03 | T<br>T | | T<br>T | 0.01 | ·<br>T | | | | 03/01/84<br>0930 | 5050<br>5050 | 466 | 118 | 8.OC<br>7.2 | 0 | • 00 | T | 0.00 | Ţ | 0.00 | T | 0.01<br>0.37 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000 | T<br>T | 0.01 | T | | | | 03/01/84<br>0930 | 5050<br>5050 | 0 | 96 | 9.2C<br>7.4 | | •00 | T | 0.00 | Ţ | 0.00 | T | 0.02 | Ţ | 0.00<br>0.00 | ŢŢ | 0.000 | T<br>T | 0.02 | ·<br>T | | | | 05/11/84<br>0800 | 5050<br>5050 | 489 | 119 | 8.5C<br>7.3 | ō | •00 | T | 0.00 | T | 0.00 | T | 0.03<br>0.48 | T<br>T | 0.00<br>0.01 | Ť | | T<br>T | 0.00 | ī | | | | 05/11/84<br>0800 | 5050<br>5050 | 0 | 94 | 15.3C<br>7.7 | 0 | •00 | т | 0.00 | T | 0.00 | T | 0.04 | T<br>T | 0.00<br>0.01 | T<br>T | | T<br>T | 0.02 | T | | | | 07/19/84<br>0900 | 5050<br>5050 | 459 | 128 | 49.0F<br>7.2 | 0 | •00 | T | 0.00 | T | 0.00 | T | 0.04<br>0.53 | T<br>T | 0.00 | Ţ | | ŢŢ | 0.01 | T | | | | 07/19/84<br>0900 | 5050<br>5050 | 0 | 105 | 27.2C<br>7.7 | 0 | •00 | Ŧ | 0.00 | T | 0.00 | Ţ | 0.05<br>0.10 | Ť | 0.00<br>0.01 | Ţ | 0.000 | | 0.02 | r<br>T | | | | 09/14/84<br>0800 | 5050<br>5050 | 426 | 131 | 6.9C<br>7.0 | 0 | • 00 | T | 0.00 | <b>T</b> . | 0.00 | T | 0.00<br>0.81 | Ť | 0.00 | Ţ | 0.000 | t | 0.01 | ·<br>T | | | | 09/14/84<br>0800 | 5050<br>5050 | 0 | 114 | 22.5C<br>7.6 | | .00 | T | 0.00 | T | 0.00 | T | 0.00 | T<br>T | 0.00 | T<br>T | 0.000 | Ţ | 0.00 | D | | | DATE<br>TIME<br>* * * | | DEPTH<br>+ + | DISCH<br>EC<br>+ + + | TEMP<br>PH<br>+ + | ARSEN: | | CONSTITU<br>BARIUM<br>CADMIN | 4<br>JM | CHROM ( | ALL)<br>HEX) | COPPE | R | LEAD<br>Manganes<br>+ + + | E<br>• | MERCUR<br>SELENIUS | M | SILVE | R<br>• • | RE#<br>* * | |--------------------------|--------------|--------------|----------------------|-------------------|----------|------------|------------------------------|---------|---------|--------------|--------------|--------|---------------------------|---------------|--------------------|--------|-------|----------|------------| | | | A2 L O | 44.3 227 | '•3 S | HASTA LK | LIT | LE SQUA | 4 C I | NLET | | A2 | OAO | | | | | | | | | 05/12/83<br>1415 | 5050<br>5050 | 0 | | 14.0C<br>7.4 | 0.00 | Ţ | 0.00 | r | 0.00 | T | 0.03<br>0.20 | T<br>T | | T<br>T | 0.000 | Ţ | 0.05 | Ť | | | 05/12/83<br>1425 | | 138 | | 7.6C<br>7.1 | 0.00 | Ţ | 0.00 | T | 0.00 | T | 0.03<br>0.51 | T<br>T | | T<br>T | 0.000<br>0.02 | T<br>T | 0.08 | T | | | 07/28/83<br>1330 | 5050<br>5050 | 0 | 89 | 25.0C<br>7.7 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02 | · T | | T<br>T | 0.000<br>0.00 | T<br>T | 0.02 | T | | | 07/28/83<br>1340 | 5050<br>5050 | 157 | 82 | 10.2C<br>7.3 | 0.00 | Ť | 0.00 | T | 0.00 | T | 0.04 | Ť | | T<br>T | | T<br>T | 0.06 | T | | | 10/04/83<br>1200 | 5050<br>5050 | 0 | | 20.2C<br>7.6 | 0.00 | τ | 0.00 | T | 0.00 | T | 0.03<br>1.1 | Ţ | | T<br>T | | T<br>T | 0.04 | T | | | 10/04/83<br>1210 | 5050<br>5050 | 108 | | 15.3C<br>7.1 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03 | T<br>T | | T<br>T | | Ť | 0.02 | τ | | | 12/05/83<br>1 <b>400</b> | 5050<br>5050 | 0 | 105 | 12.2C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03<br>0.13 | Ţ | | T<br>T | 0.000 | Ť<br>Ť | 0.03 | T | | | 12/05/83<br>1410 | 5050<br>5050 | 105 | 102 | 12.0C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | T | 0.05<br>0.31 | T<br>T | | T<br>T | 0.000 | T<br>T | 0.07 | ī | | | 02/29/84<br>1300 | 5050<br>5050 | 0 | 95 | 9.2C<br>7.4 | 0.00 | T | 0.00 | T | 0.00 | T | 0.04<br>0.42 | Ţ | | T<br>T | 0.000<br>0.01 | T<br>T | 0.08 | T | | | 02/29/84<br>1300 | 5050<br>5050 | 115 | 96 | 8.0C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.02<br>0.16 | T<br>T | 0.00 | r<br>r | 0.000 | T<br>T | 0.03 | T | | | 05/09/84<br>1100 | 5050<br>5050 | 131 | 101 | 8.9C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.06<br>0.14 | T<br>T | 0.00 | Г<br><b>Т</b> | 0.000<br>0.00 | T<br>T | 0.05 | τ | | | 05/09/84<br>1100 | 5050<br>5050 | 0 | 97 | 15.0C<br>7.5 | 0.00 | T | 0.00 | T | 0.00 | T | 0.05<br>0.12 | T<br>T | 0.00 1<br>0.00 1 | | 0.000<br>0.00 | T<br>T | 0.04 | Ţ | | | 07/12/84<br>0800 | 5050<br>5050 | 115 | 104 | 11.0C<br>7.2 | 0.00 | <b>T</b> , | 0.00 | T | 0.00 | T | 0.06<br>0.30 | T<br>T | 0.00 1<br>0.01 1 | | 0.000<br>0.00 | Ť<br>Ť | 0.08 | T | | | 07/12/84<br>0800 | 5050<br>5050 | 0 | 103 | 26.0C<br>7.6 | 0.00 | T | 0.00 | T | 0.00 | T | 0.05<br>0.09 | T<br>T | 0.00 1 | | 0.000<br>0.00 | T<br>T | 0.03 | T | | | 09/10/84<br>0900 | 5050<br>5050 | 88 | 116 | 17.0C<br>7.0 | 0.00 | Ţ | 0.00 | Ť | 0.00 | T | 0.02 | Ť<br>Ť | 0.00 1<br>0.02 1 | | 0.000 | | 0.03 | Ţ | | | 09/10/84<br>0900 | 5050<br>5050 | 0 | 115 | 23.5C<br>7.6 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.16 | T | 0.00 1<br>0.00 1 | | 0.000 | | 0.02 | 1 | | | DATE<br>TIME<br>* * * | SAMP<br>LAB | DEPTH<br>+ + | | TEMP<br>PH<br>* * * | ARSEN | | CONSTITU<br>BARIUM<br>CADMIU | i<br>IM | CHROM ( | ALL) | COPPE | R | LEAD<br>Mangane<br>+ + 4 | | MERCUR<br>SELENIU<br>+ + + | M | SILVER<br>ZINC<br>+ + | t<br>• • | REH<br>* * | |---------------------------|--------------|--------------|-----------|---------------------|-----------|-------|------------------------------|---------|---------|----------|--------------|--------|--------------------------|--------|----------------------------|--------|-----------------------|----------|------------| | | | A2 L | 044.9 212 | 2.1 | SHASTA LK | PIT R | AB JONES | VAL | LEY | | A2 | OAO | | | | | | | | | 05/16/83<br>1120 | 5050<br>5050 | 0 | | 15.40<br>7.5 | 0.00 | t | 0.00 | T | 0.00 | <b>T</b> | 0.03<br>0.28 | T<br>T | 0.00<br>0.01 | T | 0.000<br>0.01 | T<br>T | 0.02 | Ť | | | 05/16/ <b>8</b> 3<br>1130 | 5050<br>5050 | 279 | | 7.2C<br>7.1 | 0.00 | Ţ | 0.00 | Ţ | 0.00 | ī | 0.02<br>0.82 | T<br>T | 0.00<br>0.04 | Ţ | 0.000<br>0.01 | T<br>T | 0.01 | T | | | 07/26/83<br>0830 | 5050<br>5050 | 0 | 98 | 23.90<br>6.0 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01 | Ť<br>Ť | 0.00 | Ť | 0.000<br>0.01 | T<br>T | 0.01 | T | | | 07/26/83<br>0840 | 5050<br>5050 | 262 | 114 | 9.0C<br>6.9 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.48 | ī | 0.00<br>0.02 | T<br>T | 0.000 | T<br>T | 0.01 | τ | | | 09/29/83<br>1130 | 5050<br>5050 | 0 | | 20.8C<br>7.7 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02 | T<br>T | 0.00 | T<br>T | 0.000<br>0.01 | T<br>T | 0.00 | τ | | | 09/29/83<br>1140 | 5050<br>5050 | 230 | | 12.2C<br>6.8 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.70 | Ť | 0.00<br>0.06 | Ţ | 0.000<br>0.01 | Ť<br>Ť | 0.00 | T | | | 12/19/83<br>1230 | 5050<br>5050 | D | | 12.0C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.01<br>0.02 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.01 | T<br>T | 0.01 | T | | | 12/19/83<br>1240 | 5050<br>5050 | 243 | | 8.3C<br>7.3 | 0.00 | Ť | 0.00 | T | 0.00 | T | 0.01<br>0.93 | T<br>T | 0.00<br>0.03 | T | 0.000<br>0.01 | Ţ | 0.03 | Ť | | | 02/27/84<br>1200 | 5050<br>5050 | 0 | 107 | 10.0C<br>7.5 | 0.00 | Ť | 0.00 | T | 0.00 | T | 0.01<br>0.03 | T<br>T | 0.00 | Ţ | 0.000<br>0.01 | ŢŢ | 0.00 | T | | | 02/27/84<br>1200 | 5050<br>5050 | 180 | 130 | 6.8C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.85 | T<br>T | 0.00<br>0.02 | Ţ | 0.000<br>0.03 | T<br>T | 0.00 | ī | | | 05/07/84<br>0830 | 5050<br>5050 | 180 | 118 | 8.7C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.98 | T<br>T | 0.00 | T | 0.000<br>0.01 | Ť<br>Ť | 0.01 | T | | | 05/07/84<br>0830 | 5050<br>5050 | 0 | 99 | 14.5C<br>7.7 | 0.00 | T | 0.00 | Ţ | 0.00 | Ť | 0.02<br>0.12 | T<br>T | 0.00<br>0.01 | T | | T<br>T | 0.00 | T | | | 07/10/84<br>0830 | 5050<br>5050 | 0 | 108 | 26.8C<br>7.7 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03<br>0.11 | T<br>T | 0.00 | T<br>T | 0.000 | T<br>T | 0.01 | Ţ | | | 07/10/84<br>0830 | 5050<br>5050 | 243 | 126 | 53.0F<br>7.0 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03<br>0.49 | T . | 0.00<br>0.04 | T<br>T | 0.000<br>0.00 | T<br>T | 0.01 | T | | | 09/11/84<br>0815 | 5050<br>5050 | 0 | 118 | 23.6C<br>7.8 | 0.00 | Ŧ | 0.00 | T | 0.00 | ī | 0.00<br>0.10 | Ţ | 0.00 | Ť | 0.000 | T<br>T | 0.01 | T | | | 09/11/84<br>0815 | 5050<br>5050 | 230 | 137 | 9.1C<br>6.9 | 0.00 | T | 0.00 | т | 0.00 | Ŧ | 0.00<br>0.54 | T<br>T | 0.00 | ĭ | 0.000<br>0.000 | • | 0.01 | T | | | DATE<br>TIME<br>+ + | | DEPTH | | TENP<br>PH<br>+ + | ARSEN] | ıc | CONSTITU<br>BARIU!<br>CADMII | 1<br>JM | S IN MILL<br>CHROM (<br>CHROM (<br>+ + + | ALL)<br>HEX} | COPPE<br>IRON | R | LEAD<br>MANGANE: | | MERCUR<br>SELENIU | M | SILVER<br>ZINC<br>* * | | REN | |---------------------|----------------------|-------|-----------|-------------------|-------------|--------|------------------------------|---------|------------------------------------------|--------------|---------------|--------|------------------|--------|----------------------|--------|-----------------------|---|-----| | | | A2 L | 045.4 225 | 5 • 5 | SHASTA LK L | .ITTLE | BACKBO | 4E C | INLET | | A2 | OAO | | | | | | | | | 05/13/83<br>1300 | 5050<br>5050 | 0 | | 14.5C<br>7.4 | 0.01 | T | 0.00 | T | 0.00 | Ť | 0.03<br>0.26 | Ţ | 0.00<br>0.05 | T<br>T | 0.000<br>0.02 | Ţ | 0.04 | T | | | 05/13/83<br>1310 | 5050<br>5050 | 197 | - | 7.4C<br>7.2 | 0.00 | τ. | 0.00 | ·T | 0.00 | T | 0.03<br>0.51 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.01 | T<br>T | 0.02 | T | | | 07/27/03<br>1200 | 5050<br>5050 | 0 | 88 | 24.8C<br>7.8 | 0.00 | Ť | 0.00 | T | 0.04 | T | 0.03<br>2.6 | T<br>T | 0.00<br>0.07 | T<br>T | 0.000<br>0.02 | T<br>T | 0.74 | T | | | 07/27/83<br>1210 | 5050<br>5050 | 177 | | 10.0C<br>7.1 | 0.00 | Ŧ | 0.00 | T | 0.00 | T | 0.02<br>0.24 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.01 | T<br>T | 0.04 | τ | | | 10/03/83<br>0810 | 5050<br>5050 | 0 | | 19.8C<br>8.0 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.23 | Ť<br>Ť | 0.00<br>0.00 | T<br>T | 0.000<br>0.00 | T<br>T | 0.05 | T | | | 10/03/83<br>0820 | 5050<br>5050 | 157 | | 13.10<br>6.8 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.27 | T<br>T | 0.01<br>0.01 | T<br>T | 0.000<br>0.01 | T<br>T | 0.03 | T | | | 12/20/83<br>0845 | 5 <b>050</b><br>5050 | 0 | | 12.0C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.09 | Ť | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | T<br>T | 0.02 | T | | | 12/20/83<br>0955 | 5050<br>5050 | 180 | | 10.2C<br>7.0 | 0.00 | τ | 0.00 | T | 0.00 | T | 0.01<br>0.28 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | T<br>T | 0.00 | Ŧ | | | 02/28/84<br>1300 | 5050<br>5050 | o | 94 | 9.5C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.03<br>0.09 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | T<br>T | 0.04 | T | | | 02/28/84<br>1300 | 5050<br>5050 | 148 | 95 | 7.9C<br>7.2 | 0.00 | T | 0.00 | t | 0.00 | T | 0.02<br>0.11 | Ţ | | ĭ | 0.000<br>0.00 | Ť | 0.03 | T | | | 05/08/84<br>1130 | 5050<br>5050 | 0 | 93 | 17.3C<br>7.6 | 0.00 | т | 0.00 | Ţ | 0.00 | Ť | 0.05<br>1.7 | T<br>T | | T<br>T | 0.000<br>0.00 | T<br>T | 0.03 | T | | | 05/08/84<br>1130 | 5050<br>5050 | 138 | 99 | 8.7C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | Ţ | 0.05 | T<br>T | | T<br>T | | Į<br>T | 0.03 | t | | | 07/11/84<br>0800 | 5050<br>5050 | 0 | 103 | 25.7C<br>7.7 | 0.00 | т | 0.00 | T | 0.00 | Ť | 0.04 | Ť | | T<br>T | 0.000<br><b>0.00</b> | T<br>T | 0.01 | т | | | 07/11/84<br>0800 | 5050<br>5050 | 148 | 108 | 10.4C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.05<br>0.16 | Ť | | Ţ | 0.000<br>0.00 | T<br>T | 0.03 | T | | | 09/13/84<br>0830 | 5050<br>5050 | 0 | 116 | 22.9C<br>7.5 | 0.00 | τ | 0.00 | D | 0.00 | T | 0.01<br>0.09 | T<br>T | | T<br>T | 0.000 | - | 0.01 | T | | | 09/13/84<br>0830 | 5050<br>5050 | 98 | 121 | 16.1C<br>7.0 | 0.00 | T | 0.00 | Т | 0.00 | T . | 0.01<br>0.25 | T<br>T | | T<br>T | 0.000<br>0.000 | | 0.02 | Ţ | | | DATE<br>TIME<br>+ + + | | DEPTH | | TENP<br>PH<br>+ + 4 | | SENIC<br>+ + | BARI<br>Çadm | UM | CHROM<br>CHROM | | COPPE | R | LEAD<br>Mangan<br>+ + | ESE | MERCUR<br>SELENIU<br>+ + + | H | SILVER<br>ZINC<br>+ + | | RER | |-----------------------|--------------|-------|----------|---------------------|-------------------|--------------|--------------|-------|----------------|-----|--------------|----------|-----------------------|--------|----------------------------|--------|-----------------------|---|-----| | | | 42 L | 046.4 21 | 2.9 | SHASTA | LK SQUA | AW C BL Z | INC C | | | A2 | OAG | | | | | | | | | 05/13/83<br>1045 | 5050<br>5050 | | | 14.00<br>7.4 | 0. | 00 T | 0.00 | T | 0.00 | T | 0.03<br>0.23 | T<br>T | 0.00 | T | 0.000<br>0.01 | T<br>T | 0.02 | Ţ | | | 05/13/83<br>1055 | | 197 | | 7.60<br>7.2 | 0. | :<br>00 T | 0.00 | Ť | 0.00 | т . | 0.02<br>0.60 | T<br>T | 0.00 | T<br>T | 0.000<br>0.02 | T<br>T | 0.01 | T | | | 07/26/83<br>1145 | 5050<br>5050 | | 100 | 24.30<br>8.1 | 0. | 00 T | 0.00 | T | 0.00 | т . | 0.01<br>0.06 | <b>T</b> | 0.00<br>0.00 | Ţ | 0.000<br>0.02 | T<br>T | 0.01 | T | | | 07/26/83<br>1155 | 5050<br>5050 | 171 | 110 | 10.20<br>7.2 | ;<br>0• | 01 T | 0.00 | Ť | 0.00 | T | 0.01<br>0.23 | Ť | 0.00<br>0.01 | T<br>T | | Ť | 0.01 | Ť | | | 09/29/83<br>0830 | 5050<br>5050 | 0 | | 20.80<br>7.7 | ;<br>0•( | 00 T | 0.00 | τ | 0.00 | T | 0.02<br>0.13 | Ţ | 0.00 | T<br>T | | Ţ | 0.01 | t | | | 09/29/83<br>0840 | 5050<br>5050 | 213 | | 12.20 | 0.1 | 7 OC | 0.00 | T | 0.00 | т | 0.0Z<br>0.64 | T | 0.00 | Ť | 0.000<br>0.00 | T<br>T | 0.02 | ī | | | 12/19/83<br>0945 | 5050<br>5050 | 0 | | 12.10<br>7.3 | :<br><b>0</b> •1 | 7 OO | 0.00 | T | 0.00 | Т | 0.01<br>0.07 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | T<br>T | 0.01 | T | | | 12/19/83<br>0955 | 5050<br>5050 | 190 | | 6.50<br>7.2 | :<br>0.1 | 7 00 | 0.00 | Ţ | 0.00 | T | 0.02<br>0.48 | T<br>T | 0.00<br>0.02 | T<br>T | 0.000<br>0.00 | Ţ | 0.01 | T | | | 02/27/84<br>1000 | 5050<br>5050 | 213 | 126 | 6.90<br>7.3 | 0.0 | 00 т | 0.00 | T | 0.00 | т | 0.01<br>0.36 | T<br>T | 0.00<br>0.02 | Ţ | 0.000<br>0.01 | T<br>T | 0.01 | ī | | | 02/27/84<br>1000 | 5050<br>5050 | 0 | 108 | 9.20<br>7.6 | :<br><b>0</b> • 0 | 00 T | 0.00 | T | 0.00 | T | 0.01<br>0.05 | T<br>T | 0.00 | Ţ | 0.000<br>0.00 | T<br>T | 0.01 | Ţ | | | 05/07/84<br>1100 | 5050<br>5050 | 230 | 122 | 7•90<br>7•3 | 0.0 | 00 T | 0.00 | T | 0.00 | T | 0.03<br>0.22 | T<br>T | 0.00<br>0.01 | T | 0.000<br>0.02 | T<br>T | 0.01 | T | | | 05/07/84<br>1100 | 5050<br>5050 | 0 | 100 | 15.00<br>7.6 | 0.0 | 00 T | 0.00 | Ť | 0.00 | T | 0.04<br>0.11 | f<br>f | 0.00 | T<br>T | | T<br>T | 0.01 | T | | | 07/10/64<br>1130 | 5050<br>5050 | 220 | 120 | 7.2 | 0.0 | т оо | 0.00 | Ť | 0.00 | T | 0.02<br>0.15 | Ť<br>Ť | 0.00<br>0.01 | Ţ | 0.000<br>0.00 | T<br>T | 0.01 | T | | | 07/10/84<br>1130 | 5050<br>5050 | 8 | 109 | 27.00<br>7.6 | 0.0 | 00 т | 0.00 | T | 0.00 | τ | 0.03<br>0.09 | Ť | 0.00 | Ţ | 0.000<br>0.01 | T<br>T | 0.01 | Ţ | | | 09/11/84<br>1045 | 5050<br>5050 | 236 | 136 | 9.3C<br>7.0 | 0.0 | 00 T | 0.00 | Ţ | 0.00 | T | 0.00<br>0.23 | Ť | 0.00<br>0.03 | T<br>T | 0.000 | | 0.01 | T | | | 09/11/84<br>1045 | 5050<br>5050 | 0 | 120 | 24.2C<br>7.9 | 0.0 | T 00 | 0.00 | Ţ | 0 <u>•0</u> 0 | T | 0.00<br>0.14 | T<br>T | 0.00 | ī | 0.000<br>0.000 | | 0.01 | т | | | DATE<br>TIME<br>+ • • | SAMP<br>LAB | DEPTH | | TEMP<br>PH | # # # | | CONSTITUE<br>BARIUM<br>CADMIUM<br>* * * | | CHROM ( | ALLI | PER LI<br>COPPEI<br>IRON | R | LEAD<br>Manganese<br>+ + + | MERCUR<br>Seleniu<br>+ + + | H | SILVER<br>ZINC<br>+ + | REM | |-----------------------|--------------|-------|-----------|--------------|------------|-------|-----------------------------------------|---|---------|------|--------------------------|--------|----------------------------|----------------------------|--------|-----------------------|-----| | | | A2 L | 048.4 217 | '•6 S | HASTA LK I | ICCLO | JD R ARM | | | | A2 | 4AD | | | | | | | 05/12/83<br>1015 | 5050<br>5050 | 0 | | 11.5C<br>8.0 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.17 | T | 0.00 T | 0.000<br>0.01 | Ť | 0.01 | Ť | | 05/12/83<br>1025 | 5050<br>5050 | 223 | | 7.10 | 0.00 | t | 0.00 | T | 0.00 | Ţ | 0.03<br>0.43 | Ţ | 0.00 T<br>0.01 T | 0.000<br>0.01 | T<br>T | 0.01 | T | | 07/28/83<br>0930 | 5050<br>5050 | 0 | 98 | 23.9C<br>8.0 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.10 | T<br>T | 0.00 T<br>0.00 T | 0.000<br>0.01 | Ţ | 0.00 | T | | 07/28/83<br>0940 | 5050<br>5050 | 197 | 90 | 9.5C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.12 | T<br>T | 0.00 T | 0.000<br>0.01 | T<br>T | 0.01 | T | | 10/03/83<br>1100 | 5050<br>5050 | 0 | | 19.8C<br>7.6 | 0.00 | 1 | 0.00 | T | 0.00 | T | 0.02<br>0.57 | Ţ | 0.01 T | 0.000<br>0.00 | T<br>T | 0.00 | T | | 10/U3/83<br>1110 | 5050<br>5050 | 279 | | 8.6C<br>6.9 | 0.00 | Ţ | 0.00 | T | 0.00 | T | 0.02<br>0.82 | T<br>T | 0.01 T | 0.000<br>0.01 | Ť | 0.01 | Ť | | 12/20/83<br>1130 | 5050<br>5050 | 0 | | 11.8C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.01<br>0.05 | T<br>T | 0.00 T | 0.000<br>0.00 | T<br>T | 0.00 | т | | 12/20/83<br>1140 | 5050<br>5050 | 197 | | 9.4C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.32 | T<br>T | 1 00.00 | 0.000<br>0.01 | T<br>T | 0.00 | T | | 02/28/84<br>0930 | 5050<br>5050 | 312 | 121 | 6.3C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.46 | T<br>T | 0.00 T<br>0.03 T | 0.000<br>0.01 | T<br>T | 0.02 | T | | 02/28/84<br>0930 | 5050<br>5050 | . 0 | 103 | 8.2C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.01<br>0.05 | Ţ | 0.00 T | 0.000<br>0.00 | Ţ | 0.00 | Ť | | 05/08/84<br>0900 | 5050 | 0 | 98 | 14.6C<br>7.7 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03<br>0.12 | T<br>T | 0.00 T<br>0.00 T | 0.000<br>0.00 | T<br>T | 0.00 | T | | 05/06/84<br>0900 | 5050<br>5050 | 292 | 117 | 7.0C<br>7.2 | 0.00 | T | 0.00 | Ţ | 0.00 | T | 0.03<br>0.50 | T<br>T | 0.00 T<br>0.01 T | 0.000<br>0.01 | T<br>T | 0.01 | Ť | | 07/11/84<br>1000 | 5050<br>5050 | 295 | 117 | 48.0F<br>7.1 | 0.00 | T | 0.00 | T | 0.00 | T | 0.04<br>0.32 | T<br>T | 0.00 T<br>0.01 T | | T<br>T | 0.01 | Ť | | 07/11/84<br>1000 | 5050 | 0 | 106 | 26.0C<br>7.6 | 0.00 | t | 0.00 1 | Ţ | 0.00 | T | 0.05<br>0.20 | T<br>T | 0.01 T | | T | 0.01 | т | | 09/13/84<br>1015 | 5050 | 295 | 131 | 7.2C<br>7.0 | 0.00 | T | 0.00 | T | 0.00 | 1 | 0.00<br>1.1 | Ť | 0.00 T<br>0.05 T | 0.000 | | 0.01 | T | | 09/13/84<br>1015 | 5050<br>5050 | 0 | 116 | 22.8C<br>7.5 | 0.00 | T | 0.00 1 | T | 0.00 | T | 0.00<br>0.29 | T<br>T | 0.00 T<br>0.00 T | 0.000 | Ť<br>T | 0.01 | T | | DATE<br>TIME<br>* * * | SAMP<br>LAB | DEPTH<br>+ + | | TEMP<br>PH<br>+ + | ARSEN: | | CONSTITUTE BARIUS CADMIL | 1<br>JM | IN MILL<br>CHROM (<br>CHROM (<br>+ + + | ALL)<br>HEX) | COPPE<br>IRON | R | LEAD<br>MANGANE<br>+ + 4 | | MERCUR<br>SELENIU | H | SILVEI<br>ZINC | :<br>• • | REM | |--------------------------|--------------|--------------|-----------|-------------------|-----------|--------|--------------------------|---------|----------------------------------------|--------------|---------------|--------|--------------------------|--------|-------------------|--------|----------------|----------|-----| | | | A2 L | 048.5 222 | 8 8 | SHASTA LK | SACRAP | IENTO R | NRM. | | | AZ | 440 | | | | | | | | | 05/16/83<br>1330 | 5050<br>5050 | 0 | | 13.8C<br>7.4 | 0.00 | Ţ | 0.00 | T | 0.00 | Ŧ | 0.02<br>0.19 | Ť | 0.00 | T | 0.000<br>0.01 | ŢŢ | 0.02 | Ţ | | | 05/16/83<br>1340 | 5050<br>5050 | 326 | | 7.2 | 0.00 | Ţ | 0.00 | t | 0.00 | T | 0.02<br>0.66 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.01 | T<br>T | ~-<br>0.02 | T | | | 07/27/83<br>0840 | 5050<br>5050 | 0 | 93 | 23.3C<br>8.0 | 0.00 | T | 0.00 | T | 0.00 | τ | 0.01 | Ť | 0.00 | Ť | 0.000<br>0.01 | T | 0.01 | T | | | 07/27/83<br>0850 | 5050<br>5050 | 312 | 73 | 7.9C<br>7.0 | 0.01 | T | 0.00 | Ť | 0.00 | T | 0.01 | T<br>T | 0.00 | T<br>T | | T<br>T | *- | | | | 10/04/83<br>0830 | 5050<br>5050 | 0 | | 19.80<br>7.5 | 0.00 | т | 0.00 | T | 0.00 | T . | 0.02 | T<br>T | 0.00 | Ţ | 0.000 | Ŧ | 0.01 | T . | | | 10/04/83<br>0840 | 5050<br>5050 | 292 | - | 8.3C | 0.00 | Ť | 0.00 | T | 0.00 | T | 0.02 | T | 0.00 | T<br>T | 0.01 | T<br>T | 0.00 | Ť | | | 12/05/83<br>1120 | 5050 | | | 12.80 | | | | | 0.00 | T | 0.28 | T<br>T | 0.02 | T<br>T | 0.00 | T<br>T | 0.02 | T | | | 12/05/83 | 5050<br>5050 | 0 | 103 | 7.5<br>9.40 | 0.00 | T | 0.00 | T | 0.00 | Ţ | 0.04 | T<br>T | 0.00 | T<br>T | 0.00 | T | 0.00 | T | | | 1130 | 5050<br>5050 | 279 | 80 | 6.8<br>6.40 | 0.00 | T | 0.00 | T | | , | 0.23 | Ť | 0.02 | Ť | 0.000<br>0.01 | T | 0.00 | T | | | 0930 | 5050 | 315 | 118 | 7.2 | 0.00 | T | 0.00 | T | 0.00 | T | 0.42 | T | 0.00<br>0.02 | T | 0.000<br>0.00 | T | 0.00 | T | | | 02/29/84<br>0930 | 5050 | 0 | 93 | 8.8C<br>7.4 | 0.00 | T | 0.00 | T | 0.00 | T | 0.01<br>0.04 | T | 0.00<br>0.00 | T | 0.000<br>0.00 | T<br>T | 0.01 | T | | | 05/09/84<br>093 <b>0</b> | 5050<br>5050 | 308 | 104 | 6.6C<br>7.2 | 0.00 | Ŧ | 0.00 | τ | 0.00 | T | 0.03 | T<br>T | 0.01<br>0.00 | T<br>T | 0.000<br>0.01 | T<br>T | 0.03 | T | | | 05/09/84<br>0930 | 5050<br>5050 | 0 | 96 | 14.8C<br>7.6 | 0.00 | T | 0.00 | t | 0.00 | T | 0.04 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.01 | T<br>T | 0.01 | Ţ | | | 07/12/84<br>1000 | 5050<br>5050 | 279 | 103 | 48.0F<br>7.1 | 0.00 | T | 0.00 | T | 0.00 | Ť | 0.04 | T<br>T | 0.00 | D<br>T | 0.000 | T<br>T | | | | | 07/12/84<br>1000 | 5050<br>5050 | 0 | 101 | 25.40<br>7.6 | 0.00 | т | 0.00 | T | 0.00 | T | 0.05 | T<br>T | 0.00 | T | 0.000 | T | 0.01 | T _ | | | 09/10/84<br>1100 | 5050<br>5050 | 295 | 119 | 7.0C | 0.00 | T | 0.00 | ·<br>T | 0.00 | T | 0.00 | T | 0.00 | T<br>T | | T<br>T | 0.01 | T | | | 09/10/84 | 5050 | | | 23.90 | | | | • | 0.00 | T | 0.60 | T<br>T | 0.02 | T<br>T | | T<br>T | 0.01 | T | | | 1100 | 5050 | 0 | 116 | 7.6 | 0.00 | Ŧ, | 0.00 | T | | | 0.05 | Ť | 0.00 | Ť | | Ť | 0.01 | T | | | DATE<br>TIME<br>* * * | | DEPT | | TEMP<br>PH<br>* * * | ARSEN | C | CONSTITUE<br>BARIUM<br>CADMIUM | 1 | CHROM ( | ALL)<br>HEX) | COPPE<br>IRON | R | LEAD<br>MANGANE<br>+ + + | SE + | MERCUR<br>Seleniu | M | SILVER | | REM | |-----------------------|--------------|------|---------|---------------------|------------|------------|--------------------------------|---|---------|--------------|---------------|--------|--------------------------|--------|-------------------|--------|----------|-----|-----| | | | A2 | 1010.00 | : | SACRAMENTO | R A I | KESWICK | | | | Al | 900 | | | | | | | | | 04/29/83<br>0940 | 5050<br>5050 | | 82 | 8.9C<br>7.0 | 0.00 | T | 0.00 | T | 0.00 | T | 0.04<br>1.4 | T<br>T | 0.00<br>0.02 | Ţ | 0.000<br>0.01 | | 0.08 | T | | | 07/15/83<br>1300 | 5050<br>5050 | | 96 | 11.1C<br>7.1 | 0.00 | <b>T</b> . | 0.00 | T | 0.00 | T | 0.04<br>0.43 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | Ţ | 0.04 | T | | | 07/21/83<br>1310 | | | 91 | 11.90<br>7.1 | 0.00 | T | 0.00 | T | 0.00 | T | 0.02<br>0.20 | T<br>T | 0.00 | T<br>T | 0.000<br>0.00 | T<br>T | 0.02 | , . | | | 11/30/83<br>1100 | | | 110 | 12.2C<br>7.1 | 0.00 | Ť | 0.00 | T | 0.00 | T | 0.02<br>0.31 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | T<br>T | <br>0•02 | T | | | 02/23/84<br>1405 | | | 103 | 47.0F<br>7.2 | | | 0.00 | T | | | 0.03<br>0.29 | Ť | | | 0.000 | T | 0.03 | T | | | 05/02/84<br>0915 | | 0 | 120 | 47.0F<br>7.3 | | | 0.00 | T | | | 0.06<br>0.37 | T<br>T | | | 0.000 | т | 0.02 | Ť | | | | | AZ | 1040.00 | S | ACRAMENTO | RAI | 1ATHESON | | | | A19 | PCO | | | | | | | | | 04/29/83<br>0820 | | | 96 | 9.4C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03<br>1.0 | Ť | 0.00<br>0.02 | T<br>T | 0.000<br>0.01 | ŢŢ | 0.04 | T | | | 07/15/83<br>1415 | | | 100 | 10.0C<br>7.2 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03<br>0.27 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.00 | T<br>T | 0.02 | T | | | 09/21/83<br>1340 | | | 97 | 12.5C<br>7.3 | 0.00 | T | 0.00 | T | 0.00 | Ŧ | 0.02<br>0.21 | T<br>T | 0.01<br>0.01 | T<br>T | 0.000 | Ţ | 0.02 | Ť | | | 11/30/83<br>0930 | | | 118 | 12.20<br>7.1 | 0.00 | Ţ | 0.00 | т | 0.00 | T | 0.02<br>0.18 | T<br>T | 0.00<br>0.01 | T<br>T | 0.000<br>0.01 | Ţ | 0.00 | T | | | 02/23/84<br>1515 | 5050<br>5050 | | 105 | 49.0F<br>7.3 | | | 0.00 | т | | | 0.02<br>0.24 | T<br>T | | | 0.000 | T | 0.01 | T | | | 05/02/84<br>0815 | | 0 | 118 | 48.0F<br>7.3 | | | 0.00 | T | | | 0.06<br>0.32 | T<br>T | | | 0.000 | T | <br>0.01 | T | | | | | AZ | 1300.00 | 5 | ACRAMENTO | RAD | ELTA | | | | A20 | )B0 | | | | | | | | | 04/27/83<br>1630 | | | 77 | 7.8C<br>7.2 | 0.00 | Ť | 0.00 | T | 0.00 | Ť | 0.02<br>0.24 | T<br>T | | T<br>T | 0.000<br>0.01 | T<br>T | 0.01 | T | | | 07/13/83<br>1430 | | | 87 | 16.4C<br>7.4 | 0.00 | T | 0.00 | T | 0.00 | T | 0.03 | T<br>T | | T<br>T | 0.000<br>0.00 | T<br>T | 0.02 | T | | | 09/19/83<br>1545 | | | 126 | 16.7C<br>8.3 | 0.00 | Ť | 0.00 | T | 0.00 | T | 0.02<br>0.13 | T<br>T | | T<br>T | 0.000 | | 0.01 | Ŧ | | | DATE<br>TIME<br>* * * | | DEPI | T H | DISCH<br>EC<br>+ + 4 | PH | | ARSEN | IC | | CONSTITE<br>BARIUM<br>CADMIL | l<br>JH | IN MILL<br>CHROM (<br>CHROM (<br>+ + + | ALL)<br>HEX) | COPPE<br>IRON | R | LEAD<br>Mangane<br>+ + + + | SE | MERCUR<br>Seleniu<br>+ + + | M | SILVER<br>ZINC | • • | REH + | |-----------------------|------|-----------|------|----------------------|--------------|-------|-------|----|-----|------------------------------|---------|----------------------------------------|--------------|---------------|--------|----------------------------|--------|----------------------------|--------|----------------|-----|-------| | | | A2 | 130 | 0.00 | | SACRA | MENTO | R | A D | ELTA | | | | A20 | 080 | CONTINUED | | | | | | | | 11/29/83<br>1600 | | | | | 6.10<br>7.3 | | 0.00 | 7 | | 0.00 | t | 0.00 | T | 0+02<br>0+06 | Ţ | | ĭ | 0.000 | | 0.00 | T | | | 02/24/84<br>1505 | | | | 90 | 46.0F<br>7.4 | | | | | 0.00 | T | | | 0.02<br>0.06 | Ţ | | | 0.000 | T | 0.00 | T | | | 05/03/84<br>1315 | | | • | 90 | 51.0F<br>7.4 | : | ~- | | | 0.00 | T | | | 0.06<br>0.20 | Ţ | | | 0.000 | T | 0.00 | T | | | 07/20/84<br>1400 | | | • | | 74.0F<br>8.3 | | | - | | 0.00 | T | | | 0.04 | T | • | T<br>T | 0.000 | T | 0.01 | T | | | 09/19/84<br>1330 | | | | 143 | 72.0F<br>8.3 | : | | | | 0.00 | T | | | 0.00<br>0.11 | T | | | 0.000 | T | 0.00 | T | | | | | <b>A2</b> | 2150 | 0.00 | | MCCLE | UD R | AB | SHA | STA LK | | | | AZZ | 241 | | | | | | | | | 04/27/83<br>1430 | | | | 90 | 8.3C<br>7.3 | | 0.00 | T | | 0.00 | T | 0.00 | Ť | 0.02<br>0.12 | T | 0.00 | T<br>T | 0.000<br>0.01 | T<br>T | 0.01 | T | | | 07/13/83<br>1245 | | | | | 17.20<br>8.0 | | 0.00 | τ | | 0.00 | Ţ | 0.00 | <b>T</b> . | 0.02<br>0.11 | T<br>T | 0.00<br>0.01 | Ţ | 0.00 | T<br>T | 0.01 | Ţ | | | 07/19/83<br>1330 | | | | 100 | 14.4C<br>8.1 | | 0.00 | T | | 0.00 | T | 0.00 | T | 0.01<br>0.08 | Ţ | 0.01<br>0.01 | T<br>T | 0.000<br>0.00 | | 0.01 | T | | | 11/29/83<br>1400 | | | | 110 | 6.1C<br>7.3 | | 0.00 | T | | 0.00 | T | 0.00 | T | 0.01<br>0.04 | Ť | 0.00<br>0.00 | T<br>T | 0.000<br>0.01 | | 0.00 | T | | | 02/24/84<br>1320 | 5050 | | | | 45.0F<br>7.6 | | | | | 0.00 | Ţ | | | 0.02<br>0.09 | Ť | | | 0.000 | T | 0.01 | T | | | 05/03/84<br>1120 | 5050 | C | • | 118 | 52.0F<br>7.8 | | | | | 0.00 | T | | | 0.05<br>0.11 | T | | | 0.000 | T | 0.01 | T | | | 07/20/84<br>1230 | 5050 | | | 107 | 64.0F<br>8.1 | | | | | 0.00 | T | | | 0.05<br>0.10 | Ţ | | | 0.000 | T | 0.01 | T | | | 09/19/84<br>1200 | | | | | 58.0F<br>7.8 | | | | | 0.00 | T | | | 0.00<br>0.11 | T<br>T | | | 0.000 | T | 0.00 | T | | # MINDR ELEMENT ANALYSES OF SURFACE WATER | DATE<br>TIME<br>+ + + | SAMP<br>LAB<br>+ + | DE P | | DISCH<br>EC<br>+ + | • | TEMP<br>PH<br>+ + | | LRS | ENIC | | C | DNSTI<br>BARII<br>CADM: | JM | | CH | MIL<br>ROM<br>ROM<br># | CAL | L) | PER L1<br>COPPE<br>IRDN | R | • | LEAD<br>MANGANE<br>+ + 4 | SE | MERCUR<br>Seleniu<br>+ + + | | • | SILVER<br>ZINC | | REI<br>≠ : | | |-----------------------|--------------------|------|-----|--------------------|-----|-------------------|-------|-----|------|-----|----|-------------------------|----|---|----|------------------------|-----|----|-------------------------|-----|---|--------------------------|----|----------------------------|---|---|----------------|---|------------|--| | | | 42 | 410 | 00.00 | | : | WAUPZ | C | AB S | HAS | TA | LK | | | | | | | AZ | 280 | | | | | | | | | | | | 04/27/83 | 5050 | | | | | 8.30 | | | | | | | | | ı | 0.00 | | т | 0.02 | т | | 0.00 | T | 0.000 | | | | | | | | 1230 | 5050 | | | 14 | 5 | 7.4 | ( | •0 | 0 | T | | 0.00 | | T | | | | • | 0.09 | Ť | | 0.00 | Ť | 0.01 | Ť | | 0.01 | T | | | | 07/13/83 | 5050 | | | | | 18.30 | | | | | | | | | | 0.00 | | | 0.03 | • | | 0.00 | | | _ | | | | | | | 1020 | 5050 | | | 21 | . 2 | 7.9 | ( | .0 | 0 | T | | 0.00 | | T | | | | • | 0.04 | Ť | | 0.00<br>0.01 | T | 0.000 | Ţ | | 0.01 | T | | | | 00/10/01 | | | | | | | | | | | | | | | | | | | | • | | 0402 | • | 0.00 | • | | 0.01 | • | | | | 09/19/83 | | | | | | 16.1C | | | _ | _ | | | | | ( | 0.00 | | T | 0.02 | T | | 0.01 | T | 0.000 | T | | | | | | | 1100 | 5050 | | | 22 | . 5 | 7.9 | • | • 0 | 0 | T | | 0.00 | | T | | | | | 0.06 | T | | 0.01 | Ŧ | 0.00 | Ţ | | 0.01 | T | | | | 11/29/83 | 5050 | | | | | 6.7C | | | | | | | | | | 0.00 | | т | 0.02 | T | | 0.00 | T | 0.000 | T | | | | | | | 1200 | 5050 | | | 16 | 5 | 7.5 | ( | . 0 | 0 | T | | 0.00 | | T | | | | • | 0.03 | Ť | | 0.00 | Ť | 0.000<br>0.00 | ÷ | | 0.00 | T | | | | 02/24/84 | 5050 | | | | | 45 05 | | | | | | | | | | | | | | | | | - | -555 | • | | | • | | | | 1125 | 5050 | | | 17 | | 45.0F<br>7.5 | | | | | | | | _ | | | | | 0.02 | Ţ | | | | 0.000 | T | | | | | | | | 3030 | | | 11 | • | 1.5 | | | | | | 0.00 | | T | | | | | 0.01 | T | | | | | | | 0.00 | T | | | | 05/03/84 | 5050 | | | | | 50.0F | | | | | | | | | | | | | 0.07 | т | | | | 0.000 | Ŧ | | | | | | | 0945 | 5050 | 1 | 0 | 19 | 5 | 7.4 | | | | | | 0.00 | | T | | | · | | 0.10 | Ť | | | | | ' | | 0.01 | Ť | | | | 07/20/64 | 5050 | | | | | 70°-0F | | | | | | | | | | | | | | | | | | | | | | • | | | | 1100 | 5050 | | | 22 | | | | | | | | | | _ | | | | | 0.04 | Ţ | | | | 0.000 | T | | | | | | | 1100 | 7070 | | | 22 | , | 8.0 | | | | | | 0.00 | | Ţ | | | | | 0.09 | T | | | | | | | 0.01 | T | | | | 09/19/84 | | | | | | 62.0F | | | | | | | | | | | | | 0.00 | T | | | | 0.000 | Ŧ | | | | | | | 1030 | 5050 | | | 21 | 9 | 7.6 | | | | | | 0.00 | | T | | | | | 0.12 | Ť | | | | | • | | 0.01 | T | | | | | | | | | | | | | | | | | | | | | | | | • | | | | | | | A.A. | • | | | | DATE<br>TIME<br>+ + + | SAMP<br>Lab | DEP | DIS | C | PH | ALUHINE | IN. | ANTIMDI<br>BERYLL | NY BIS | MUTH<br>ALT | S PER LITER<br>GALLIUM<br>GERMANIUM<br>F + + + | LITHIUM<br>MOLYBDENUM | NICKE<br>STRONT: | I UM | TITANIUM<br>VANADIUM<br>+ + + + | <br>RE | |-----------------------|-----------------|-----|--------|-----|--------------|-----------|------|-------------------|---------------|-------------|------------------------------------------------|-----------------------|------------------|------|---------------------------------|--------| | 09/20/83 | 5050 | AD | 2112.0 | 0 | 18.9C | ACRAMENTO | R A | | FERRY | | A0280 | | 0.01 | T | | | | 1200 | 5050 | | | 175 | 7.4 | 1.1 | 1 | | 4+ | | | | | | | | | 02/22/84<br>1140 | | | | 140 | 50.0F<br>7.2 | | | | | | 100 min | | 0.00 | Ţ | | | | 05/Q1/84<br>1040 | | | 0 | | 60.0F<br>7.5 | | | | | | | | 0.01 | T | | | | | | A D | 2230.0 | 2 | s | ACRAMENTO | R AB | COLUSA I | BASIN DR | | AO7AO | | | | | | | 07/20/83 | 5050 | | | | 20.60 | | | | | | | | | _ | | | | 1250 | | | | 165 | 7.4 | 0.4 | T | | - | | | | 0.01 | ī | | | | 11/29/83 | E 0 E 0 | | | | | | | | | | | | | _ | | | | 1200 | | | | | 10.8C<br>7.3 | 20. | T | | | | | | 0.02 | T | | | | 02/22/84 | 5050 | | | | 51.0F | | | | | | | | 0.00 | Т | | | | 1220 | 5050 | | | 160 | 7.3 | | | | | | | | | • | | | | 05/01/84 | 5050 | | | | 58.DF | | | | | | | | 0.01 | т | | | | 1120 | 5050 | | 0 | 160 | 7.5 | | | | | | | | | • | | | | | | AO | 2630.0 | 0 | S | ACRAMENTO | R A | HAMIL TON | CITY | | A1380 | | | | | | | 04/28/83 | 5050 | | | | 12.80 | | | | <del>*-</del> | | | | 0.03 | T | | | | 1330 | 5050 | | | 150 | 12.8C<br>7.3 | 5.8 | T | | | | | · | | , | | | | 09/20/83 | 5050 | | | | 17.2C | | | | | | | | 0.01 | t | : | | | 1600 | 5050 | | | | 7.5 | 0.3 | T | | | | | | | • | | | | 11/29/83 | 5050 | | | | 11.10 | | | | | | | | | - | | | | 1505 | | | | 120 | 7.3 | 0.8 | Ŧ | | | | | | 0.01 | T | | | | 02/22/84 | 5050 | | | | 49.0F | | | | | • | | | | _ | | | | 1505 | | | | 127 | 7.2 | | | | | | | | 0.00 | Ţ | | | | 05/01/84 | . # <u>0</u> 50 | | | | 57.0F | | | | | | | | | _ | | | | 1410 | | | 0 | | 7.4 | | | | | | | | 0.01 | T | | | | | | AO | 2815.0 | 0 | s | ACRAMENTO | R A | BALLS FEE | RRY | | A17A0 | | | | | | | 04/29/83 | | | | | 11.10 | | | | | | | | | _ | | | | 1130 | | | | | 7.0 | 1.1 | T | | | | | | 0.01 | T | | | | 00/01/01 | *** | | | | | | | | | | | | | | _ <b>-</b> | | | 09/21/83<br>1000 | | | | | 13.3C<br>7.2 | 0.2 | T | | | | | - | 0.01 | T | | | | 1000 | 3070 | • | | 77 | 1 • 2 | V+2 | 1 | | | | | | | | | | • • · · · · - · ## SUPPLEMENTAL MINOR ELEMENT ANALYSES OF SURFACE WATER | DATE<br>TIME | SAMP<br>LAB | DEP1 | DISCH<br>FH EC<br>+ + + + | TEMP<br>PH<br>+ + | ALUMINU | N . | ANTIMONY<br>RERYLLIUM | IN MILLIGRAMS BISHUTH COBALT + + + + + | GALLIUM<br>GERMANIUM | LITHIUM<br>MOLYBDENUM<br>+ + + + | NICKEL<br>STRONTLU | | <br>RE M | |------------------|--------------|----------|---------------------------|-------------------|------------|-------|-----------------------|----------------------------------------|----------------------|----------------------------------|--------------------|---|----------| | | | AO | 2815.00 | SA | CRAMENTO ( | R A B | ALLS FERRY | | A17A0 | CONTINUED | | | | | 12/01/83<br>1330 | 5050<br>5050 | | 118 | 12.2C<br>7.2 | 0.2 | T . | | | | | 0.00 | T | | | 03/05/84<br>1325 | 5050<br>5050 | | 130 | 51.0F<br>7.3 | | | | | | | 0.00 | T | | | 05/02/84<br>1115 | 5050<br>5050 | ı | 0 138 | 51.0F<br>7.3 | | | | | *- | | 0.00 | T | | | - | | Al | 1020.00 | ÞΙ | T R NR MO | NTGDI | MERY C | | A2080 | | | | | | 04/27/83 | 3 5050 | | | 9.4C | | | | ' | | | 0.01 | T | | | 0845 | 5050 | | 123 | 7.4 | 0.5 | T | | | | | | | | | 09/19/83 | 3 5050 | | | 15.3C | | _ | | | | | 0.01 | T | | | 0845 | 5050 | | 152 | 7.8 | 0.1 | Ť | | | | | | | | | 11/29/8 | 3 5050 | | | 7.20 | | _ | | | | | 0.00 | T | | | 1000 | 5050 | | 138 | 7.3 | 0.5 | T | | | <del></del> | | | | | | 02/24/6 | 4 5050 | | | 45.0F | | | | | | | 0.01 | T | | | 0955 | 5050 | | 127 | 7.3 | | | | | | | | | | | 05/03/8 | | | | 51.0F | | | | | | | 0.00 | T | | | . 0815 | 5050 | | 0 130 | 7.6 | | | | | | | | | | | 07/20/8 | 4 5050 | | | 66.0F | | | | | | | 0.02 | T | | | 0930 | 5050 | | 137 | 8.2 | *** | | | <del></del> | | | | | | | 09/19/8 | 4 5050 | | | 60.00 | | | | ** | | | 0.00 | 1 | | | 0830 | 5050 | | 145 | 7.8 | | | | | | <del></del> | - | | | | | | AZ | L 043.2 225 | 5.0 Si | HASTA LK | A DH | | | A24A0 | | | | | | 05/18/8 | 3 5050 | , | | 15.0C | | | | | | | | T | | | 0700 | 5050 | | 0 | 7.4 | 0.2 | T | | | | | | | | | 05/18/8 | 3 5050 | , | | | | | | | | | | T | | | 0710 | 5050 | | 27 | 7.2 | 1.1 | Ţ | | | | *** | | | | | 07/29/8 | 13 5050 | <b>)</b> | | 23.5C | | | | | | | 0.00 | T | | | 0830 | 5050 | | 85 | 7.6 | 0.3 | T | | | | *** | | | | | 07/29/6 | 3 505 | ) | | | | | | | | | 0.01 | T | | | 0840 | | ) 4 | 86 100 | 7.3 | 0.7 | T | | | | <del></del> | | | | | 09/27/8 | 3 505 | • | | 20.50 | | | | ` | | | 0.01 | T | | | 0900 | | | 0 | 7.6 | 0.1 | T | | <b></b> . | | | | | | ı enterente, por enterente, por enterente, por enterente, enterente, enterente | | DATE<br>TIME<br>+ + + | | DEPTH | DISCH<br>EC<br>+ + + | PH | ALUMIN | # # | CONSTITUENTS ANTIMONY BERYLLIUM + + + + | BISMUTH | MS PER LITER GALLIUM GERMANIUM * * * * * | LITHIUM<br>MOLYBDENUM | NICKEL<br>STRONTIUM<br>+ + + + | TITANIUH<br>HULDANAV<br>+ + + + | REM * * | |---|-----------------------|--------------|--------|----------------------|--------------|-------------|----------------|-----------------------------------------|---------|------------------------------------------|-----------------------|--------------------------------|---------------------------------|---------| | , | | | AZ L O | 43.2 225 | •0 5 | SHASTA LK | A DH | | | A24A0 C | CONTINUED | | | | | | 09/27/83<br>0910 | | | | 7.0 | 0.9 | T | | | ** | | 0.01 T | - | | | | 12/21/83 | | | | 11.90 | | • | | | | | | | | | | 0945 | 5050 | 0 | | 7.3 | 0.0 | . 1 | | | | | 0.00 T | | | | • | 12/21/83<br>0955 | | 427 | | 8.6C<br>6.9 | 1.0 | T | · | | | | 0.01 T | | | | | 03/01/84<br>0930 | | 466 | 119 | 8.0C<br>7.2 | 0.6 | T | | | | | 0.01 T | | | | | 03/01/84<br>0930 | | 0 | 96 | 9•20<br>7•4 | 0.1 | τ | | | | | 0.01 T | | | | * | 05/11/84<br>0800 | 5050<br>5050 | 489 | 119 | 8.5C<br>7.3 | 0.5 | T | | | | | 0.01 T | | | | ( | 05/11/84<br>0800 | 5050<br>5050 | 0 | 94 | 15.3C<br>7.7 | 0.0 | T | | ~~ | | ** | 0.01 T | <br> | | | | 07/19/84<br>0900 | 5050<br>5050 | 459 | 128 | 49.0F<br>7.2 | 0.0 | T | | | | | 0.01 T | | | | | 07/19/84<br>0900 | 5050<br>5050 | 0 | 105 | 27.2C<br>7.7 | 0.1 | Ŧ | | | | | 0.01 T | | | | | 09/14/84<br>0800 | 5050<br>5050 | 426 | 131 | 6.9C<br>7.0 | 0.6 | T | | | | | 0.00 T | | | | | 09/14/84<br>0800 | 5050<br>5050 | 0 | 114 | 22.5C<br>7.6 | 0.1 | т | | | | | 0.01 T | | | | | | | A2 L 0 | 44.3 227 | • 3 S | HASTA LK'A- | LITTLE | SQUAW INLET | | | | | | | | • | 05/12/83<br>1415 | 5050<br>5050 | 0 | | 14.0C<br>7.4 | 0.2 | т | | | <br> | *** | 0.01 T | | | | | 07/28/83<br>1330 | 5050<br>5050 | 0 | 89 | 25.0C<br>7.7 | 0.2 | · <sub>T</sub> | | | | | 0.00 T | | | | | 07/28/83<br>1340 | 5050<br>5050 | 157 | 82 | 10.2C<br>7.3 | 0.4 | T | | | | | 0.00 T | | | | | 10/04/83<br>1200 | | 0 | | 20.2C<br>7.6 | 0.1 | T | *** | | | | 0.01 T | | | | | 10/04/83<br>1210 | 5050<br>5050 | 108 | | 15.3C<br>7.1 | 0.2 | T | | | | | 0.01 T | | | | DATE<br>TIME<br>* * * | | DEPTH | | TEMP<br>PH | ALUMIN | . HU<br>* * | CONSTITUENTS ANTIMONY BERYLLIUN + + + + | BISMUTH | MS PER LITER GALLIUM GERMANIUM + + + + | LITHIUM<br>MOLYBDENUM<br>+ + + + | NICKEL<br>STRONTII | UM VANADIUM | | |------------------------------|--------------|--------|-----------|--------------|-------------|-------------|-----------------------------------------|------------------|----------------------------------------|----------------------------------|--------------------|-------------|--| | | | A2 L | 044.3 227 | 7.3 | SHASTA LI | KA LII | ITLE SQUAW INLET | | c | CONTINUED | | | | | 12/05/83<br>1400 | 5050<br>5050 | 0 | 105 | 12.2C<br>7.3 | 0.0 | T | | | | | 0.00 | T | | | 12/05/83<br>1410 | 5050<br>5050 | 105 | 102 | 12.0C<br>7.3 | 0.1 | Ť | | | | | 0.00 | T | | | 02/29/84<br>1300 | 5050 | 0 | 95 | 9.2C<br>7.4 | 0.2 | T | | | 40-400<br>40-400 | | 0.00 | T | | | 02/29/84 | 5050 | 115 | 96 | 8.0C<br>7.2 | 0.1 | T | | ** | *** | | 0.00 | T | | | 05/09/84<br>1100 | 5050 | 131 | 101 | 8.9C<br>7.2 | 0.1 | T | | | | | 0.01 | T | | | 05/09/84<br>1100 | 5050 | 0 | 97 | 15.0C<br>7.5 | 0.1 | T | | *** | ** | | 0.02 | T | | | 07/12/84<br>0800 | 5050 | 115 | 104 | 11.0C<br>7.2 | 0.1 | T | | , <del>***</del> | | •• | 0.00 | T | | | 07/12/84<br>0800<br>09/10/84 | 5050 | 0 | 103 | 26.0C<br>7.6 | 0.1 | T | | | : | | 0.00 | T | | | 0900 | 5050 | 68 | 116 | 17.0C<br>7.0 | 0.2 | T | | | | | 0.00 | T | | | 0900 | 5050 | 0 | 115 | 23.5C<br>7.6 | 0.1 | T | | | | | 0.00 | T | | | | | 42 L 0 | 44.9 212 | ·1 \$1 | MASTA LK PI | T R AB | JONES VALLEY | | | | | | | | 05/16/83<br>1120 | 5050<br>5050 | 0 | | 15.4C<br>7.5 | 0.3 | T | | | *** | ** | 0.00 | T | | | 05/16/83<br>1130 | 5050 | 279 | | 7.2C<br>7.1 | 1.1 | Ŧ | | | | | 0.00 | T | | | 07/26/83<br>0830 | 5050 | 0 | 98 | 23.9C<br>8.0 | 0.2 | Ţ | | | | | 0.00 | T | | | 07/26/83 | 5050 | 262 | 114 | 9.0C<br>6.9 | 0.7 | T | | | | | 0.00 | T | | | 09/29/83 | 5050 | 0 | | 20.8C<br>7.7 | 0.1 | T | | | | | 0.00 | T | | | 09/29/83<br>1140 | 5050 | 230 | | 12.2C<br>6.8 | 0+8 | T | | | | | 0.01 | T | | the second second of the secon ----- THE THE PARTY OF T | | | | | | | | CONSTITUENTS | IN MILLIGRAN | IS PER LITER | | | | | | | |------------------|--------------|--------|-----------|--------------|-------------|---------|--------------------------------|-------------------|----------------------|----------------------------------|-------------------|----|----------------------|---|-----| | DATE<br>TIME | | DEPTH | EC | TEMP<br>PH | ALUMIN | UM | ANTIMONY<br>BERYLLIUM<br>+ + + | BISMUTH<br>Cobalt | GALLIUM<br>GERMANIUM | LITHIUM<br>MOLYBDENUM<br>* * * * | NICKES<br>STRONTS | UM | TITANIUM<br>VANADIUM | | REM | | | | A2 L | 044.9 212 | 2•1 s | HASTA LK P1 | T R AB | JONES VALLEY | | ٠. | CONTINUED | | | | • | • | | 12/19/83 | | | | 12.00 | | | | | | <b>~</b> | 0.00 | t | | | | | 1230 | 5050 | 0 | | 7.3 | 0.0 | T | | | | | | , | | | | | 12/19/83 | | | | 8.3C | | | | - | | | 0.00 | T | | | | | 1240 | 5050 | 243 | | 7.3 | 1.1 | Ť | | | | | | • | | | | | 02/27/84 | | | | 6 • 8C | | | *** | - | | | 0.00 | - | | | | | 1200 | 5050 | 180 | 130 | 7.3 | 1.4 | T | | | ~= | == | 0.00 | T | | | | | 02/27/84 | | | | 10.00 | | | | | | ** | • •• | _ | | | | | 1200 | 5050 | 0 | 107 | | 0.0 | T | | | | | 0.00 | T | | | | | 05/07/84 | 5050 | | | 8.7C | | | | | | | | _ | | | | | 0830 | 5050 | 180 | 118 | 7.3 | 1.1 | Ţ | | | | | 0.01 | T | | | | | 05/07/84 | 5050 | | | 14.5C | | | | | | | | _ | | | | | 0830 | 5050 | 0 | 99 | 7.7 | 0.1 | Ť | | | | | 0.02 | T | | | | | 07/10/84 | 5050 | | | 53.0F | | | | | | | | _ | | | | | 0830 | | 243 | 126 | 7.0 | 0.5 | T | | | | *** | 0.00 | Ŧ | | | | | 07/10/84 | 5050 | | | 26.80 | | | | | | | | | | | | | 0830 | | 0 | 108 | 7.7 | 0.1 | T | | | | | 0.00 | Ť | | | | | 09/11/84 | 5050 | | | 9.1C | | | | | | | | | | | | | 0815 | | 230 | 137 | 6.9 | 0.4 | T | | | | | 0.01 | T | | | | | 09/11/84 | 5050 | | | 22 60 | | | | | | | | | | | | | 0815 | | 0 | 118 | 23.6C<br>7.8 | 0.0 | T | | | | | 0.01 | T | | | | | | | A2 1 ( | 145.4 225 | | | | | | | | | | | | | | | | #E E ( | V77.7 225 | • > 3 | HASIA LE LI | TIPLE B | ACKBONE C INLET | | | | | | | | | | 05/13/83<br>1300 | 5050<br>5050 | 0 | | 14.5C<br>7.4 | ۸ ، | | | | | | 0.01 | Ţ | | | | | | | • | | 147 | 0.2 | T | | - | | | | | | | | | 05/13/83<br>1310 | 5050<br>5050 | 107 | | 7.4C | • • | | | ** | | | 0.01 | T | | | | | | | 271 | | 7.2 | 0.6 | T | | | | | | | ~~ | | | | 07/27/83<br>1200 | _ | • | 0.0 | 24.8C | | _ | | - | | | 0.28 | T | | | | | 1200 | 2020 | . 0 | 90 | 7.8 | 0.6 | Ţ | | | <b>**</b> *** | | | | | | | | 07/27/83 | | 177 | | 10.0C | | | | | - | | 0.00 | T | - | | | | 1210 | 2020 | 111 | | 7.1 | 0.2 | Ţ | | | | | | • | | | | | 10/03/83 | | • | | 19.8C | | _ | | | | | 0.01 | T | | | | | 0810 | 2020 | 0 | | 8.0 | 0.1 | T | | | | | | • | ~- | | | | 10/03/83 | | | | 13.10 | | | | ·<br>•• | | | 0.01 | т | | | | | 0820 | 5050 | 157 | | 6.8 | 0.2 | Ŧ | | | | | | • | | | | ### TALL STATE OF THE | DATE<br>TIME<br>+ + + | | | * * * | | | * * | ANTIMONY<br>BERYLLIUM<br>* * * * | IN MILLIGRAMS BISMUTH COBALT + + + + | GALLIUM | LITHIUM * * * * * | NICKEL<br>STRUNTIU | | REM + + | |-----------------------|--------------|------|-----------|--------------|-----------------|--------|----------------------------------|--------------------------------------|---------|--------------------|--------------------|-----------|---------| | | | AZ L | 045.4 225 | . 5 | SHASTA LK LI | ITLE I | BACKBONE C INLET | | | CONTINUED | | | | | 12/20/83<br>0845 | | 0 | | 12.0C<br>7.3 | 0.1 | T | ** | | | | 0.00 | T | | | 12/20/83<br>0855 | | 180 | | 10.2C<br>7.0 | | T | | | | ** | 0.01 | T | | | 02/28/84<br>1300 | | 148 | 95 | 7.9C<br>7.2 | 0.0 | T | | | | | 0.00 | T | | | 02/28/84<br>1300 | 5050<br>5050 | 0 | 94 | 9.5C<br>7.3 | | T | | | | | 0.00 | r | | | 05/08/84<br>1130 | 5050<br>5050 | 138 | 99 | 8.7C<br>7.3 | 0.0 | T | | | | | 0.01 | T | | | 05/08/64<br>1130 | | 0 | 93 | 17.3C<br>7.6 | 0.1 | т | | | | | 0.01 | T | | | 07/11/84<br>0600 | 5050<br>5050 | 148 | 108 | 10.4C<br>7.2 | 0.1 | T | | | | | 0.00 | r | | | 07/11/84<br>0800 | 5050<br>5050 | 0 | 103 | 25•7C<br>7•7 | 0.1 | T | | | | | 0.00 | T | | | 09/13/84<br>0830 | 5050<br>5050 | 98 | 121 | 16.1C<br>7.0 | 0.1 | T | | | | 40 tp. | 0.00 | r | | | 09/13/84<br>0830 | 5050<br>5050 | 0 | 116 | 22.9C<br>7.5 | 0.0 | T | ** | | | | 0.00 | r <u></u> | | | | | 42 L | 046.4 212 | .9 51 | HASTA LEK SQUAT | F S BI | L ZINC C | | | | | | | | 05/13/83<br>1045 | 5050 | 0 | | 14.0C<br>7.4 | 0.3 | T | | | | | 0.00 | r | | | 05/13/83<br>1055 | | 197 | | 7.6C<br>7.2 | 0.0 | T | | | | | 0.00 | <br> | | | 07/26/83<br>1145 | | 0 | 100 | 24.3C<br>8.1 | 0.3 | T | | | | | 0.00 | <br> | | | 07/26/83<br>1155 | | 171 | 110 | 10.2C<br>7.2 | 0.5 | Ţ | | | | | 0.00 1 | <br> | | | 09/29/63<br>0830 | 5050<br>5050 | ð | | 20.8C<br>7.7 | 0.1 | t | | | | | 0.00 | <br> | | | 09/29/83<br>0840 | 5050<br>5050 | 213 | | 12.2C<br>6.9 | 0.4 | T | | · | | | 0.01 | | | | DATE<br>TIME<br>+ + + | SAMP<br>LAB<br>+ + | DEPTH | | TEMP<br>PH<br>+ + + | ALUNIN | IUM<br>+ + | ANTIMONY<br>BERYLLIUM<br>+ + + + | IN MILLIGRAM<br>BISMUTH<br>Cobalt<br>+ + + + | GALLIUM<br>GERMANIUM | LITHIUM<br>MOLYBDENUM<br>* * * * | NICKE<br>STRONT<br>+ + + | IUN | TITANIUM<br>NUIGANAV<br>+ + + | * * | REM | |-----------------------|--------------------|--------|-----------|---------------------|-------------|------------|----------------------------------|----------------------------------------------|----------------------|----------------------------------|--------------------------|-----|-------------------------------|-----|-----| | | | A2 L ( | 046.4 212 | 5.9 SH | ASTA LK SQI | IAW C BI | L ZING C | | ( | CONTINUED | | | | | | | 12/19/83 | | | | 12.10 | | | | | | | 0.00 | | | | | | 0945 | 5050 | 0 | | 7.3 | 0.1 | T | | | | - | | T | | | | | 12/19/83 | | | | 8.5C | | | | | | | | | | | | | 0955 | 5050 | 190 | | 7.2 | 0.4 | T | | | | | 0.00 | Ť | | | | | 02/27/84 | 5050 | | • | 6.9C | | | | | | | | _ | | | | | 1000 | 5050 | 213 | 126 | 7.3 | 0.0 | T | | | | | 0.00 | T | | | | | 02/27/84 | 5050 | | | 9.20 | | | | | | | _ | | | | | | 1000 | 5050 | 0 | 106 | 7.6 | 0.1 | Ŧ | | | | | 0.00 | T | | | | | 05/07/84 | 5050 | | | 7.9C | • | | | | | | <u>-</u> | | | | | | 1100 | 5050 | 230 | 122 | 7.3 | 0.2 | T | | | | | 0.01 | T | | | | | 05/07/84 | 5050 | | | 15.0C | | | | | | | | | | | | | 1100 | 5050 | 0 | 100 | 7.6 | 0.1 | T | | | | | 0.00 | T | | | | | 07/10/84 | E0E0 | | | | | - | | | | | | | | | | | 1130 | _ | 220 | 120 | 7.2 | 0.1 | T | | | | | 0.00 | T | | | | | | | , | | | 011 | • | <del></del> | | | | | | | | | | 07/10/84<br>1130 | | 0 | 109 | 27.0C<br>7.6 | 0.1 | T | | | | | 0.00 | T | | | | | | | • | 207 | 7 4 0 | 0.1 | • | | | | | | | | | | | 07/11/84<br>1045 | | 226 | 136 | 9.3C | | _ | | | | | 0.01 | T | | | | | | | 230 | 130 | 7.0 | 0.2 | T | <del></del> | | | | | | | | | | 09/11/84<br>1045 | | • | | 24.2C | | | | - | | | 0.00 | T | | | | | 1043 | 3030 | 0 | 120 | 7.9 | 0.1 | Ŧ | | | | | | • | | | | | | | AZ L Q | 48.4 217 | •6 S | HASTA LK | MCCLOU | D R ARM | | A24A0 | | | | | | | | 05/12/83 | 5050 | | | 11.5C | | | | | | | | | | | | | 1015 | 5050 | 0 | | 8.0 | 0.2 | T | | | | | 0.00 | T | | | | | 05/12/83 | 5050 | | | 7.10 | | | | | | | | | | | | | 1025 | 5050 | 223 | | | 0.5 | T | | | | | 0.00 | T | | | | | 07/28/83 | 505n | | | 23.90 | | | | | | • | | | | | | | 0930 | 5050 | 0 | 98 | | 0.1 | Τ. | | **= | | | 0.00 | T | | | | | 07/28/83 | 5050 | | | 0.60 | | • | | | • | <del></del> | | | | | | | 0940 | 5050 | 197 | 90 | 9•5C<br>7•3 | 0.3 | T | | | | | 0.00 | T | | | | | 10/03/83 | 505A | | | | | • | | | <del></del> | | | | | | | | 1100 | 5050 | 0 | | 19.8C<br>7.6 | 0.1 | T | ~- | | | | 0.00 | T | | | | | 10/02/02 | | | | | ••• | • | | <del></del> | | | | | | | | | 10/03/63 | | 279 | | 8.6C<br>6.9 | ۸ ، | T | | *** | | | 0.00 | T | | | | | | | | | 047 | 0.2 | | | | | | | | | | | | DATE<br>TIME | SAMP<br>LAB<br>+ + | DEPTH | DISCH<br>EC | TEMP<br>PH | ALUMII | 4 UM | CONSTITUENTS ANTIMONY BERYLLIUM + + + + | IN MILLIGRAM BISMUTH COBALT + + + | IS PER LITER GALLIUM GERMANIUM + + + + | LITHIUM<br>MOLYBDENUM<br>F + + + | NICKEL<br>STRONTI | | TITANIUH<br>VANADIUM<br>+ + + | • | REM | |---------------------------|----------------------|--------|-------------|-----------------|-----------|------------|-----------------------------------------|-----------------------------------|----------------------------------------|----------------------------------|-------------------|---|-------------------------------|---|-----| | | | A2 L | 048.4 217 | ·6 | SHASTA LK | MCCLO | JD R ARM | | A24A0 ( | ONTINUED | | | | | | | 12/20/83<br>1130 | 5050<br>5 <b>050</b> | 0 | | 11.8C<br>7.3 | 0.0 | т | | | | | 0.00 | T | <br> | | | | 12/20/83<br>1140 | 5050<br>5050 | 197 | | 9.4C<br>7.2 | 0.3 | T | | | | | 0.00 | T | | | | | 02/28/64<br>0930 | 5050<br>5050 | 312 | 121 | 6.3C<br>7.2 | 0.6 | т | | | | | 0.00 | T | | | | | 02/28/84<br>0930 | 5050<br>5050 | ٥, | 103 | 8 • 2C<br>7 • 3 | 0.1 | Ť | | | | | 0.00 | T | | | | | 05/08/84<br>0900 | 5050<br>5050 | 292 | 117 | 7.0C<br>7.2 | 0.6 | T | | | | | 0.00 | T | | | | | 05/08/84<br>0900 | 5050<br>5050 | 0 | 98 | 14.6C<br>7.7 | 0.1 | Ť | | | | | 0.01 | T | | | | | 07/11/84<br>1000 | 5050<br>5050 | 295 | 117 | 48.0F<br>7.1 | 0+3 | T | | | | | 0.00 | T | | | | | 07/11/84<br>1000 | 5050<br>5050 | 0 | 106 | 26.0C<br>7.6 | 0.1 | , <b>T</b> | | | | | 0.00 | T | | | | | 09/13/84<br>1015 | 5050<br>5050 | 295 | 131 | 7.2C<br>7.0 | 0.7 | Ť | | ** | | ** | 0.00 | T | | | | | 09/13/84<br>1015 | 5050<br>5050 | 0 | 116 | 22.8C<br>7.5 | 0.1 | T | | ###<br>### | | | 0.00 | T | | | | | | | A2 L 0 | 48.5 222 | • B S | HASTA LK | SACRAM | ENTO R ARM | | A24A0 | | | | | | | | 05/16/83<br>1330 | 5050<br>5050 | 0 | | 13.8C<br>7.4 | 0.2 | T | ** | <br> | | | 0.01 | T | | | | | 05/16/83<br>1340 | 5050<br>5050 | 326 | | 7.2 | 0.8 | т | | | <b></b> . | | 0.01 | T | | | | | 07/27/83<br>0840 | 5050<br>5050 | 0 | 93 | 23.3C<br>8.0 | 0.2 | T | | | | | 0.00 | T | | | | | 07/27/ <b>8</b> 3<br>0850 | 5050<br>5050 | 312 | 73 | 7.9C<br>7.0 | 0.2 | ī | | | | | 0.01 | T | | | | | 10/04/83<br>0830 | 5050<br>5050 | 0 | | 19.8C<br>7.5 | 0.1 | т | | | | | 0.00 | T | | | | | 10/04/83<br>0840 | 5050<br>5050 | 292 | | 8.3C | 0.2 | T | | | | | 0.01 | T | | | | #### SALL PROPERTY OF ANY CREMENT WATER THE PROPERTY AND THE PROPERTY OF PROPER | DATE<br>TIME<br>* * * | | DEPTH<br>* * | | TEMP<br>PH<br>* * | ALUMIN | EUM . | ANIIMUNY<br>Berylitiin | IN MILLIGRAMS BISMUTH COBALT + + + + + | GALLIUM | LITHIUM<br>MOLYBDENUM<br>+ + + + | NICKEL<br>STRONTI | | TITANIUM<br>VANADIUN | REM | |---------------------------|--------------|--------------|-----------|-------------------|------------|--------|------------------------|----------------------------------------|---------|----------------------------------|-------------------|---|----------------------|-----| | | | 42 L | 048.5 222 | . 8 | SHASTA LK | SACRAM | ENTO R ARM | | A24A0 | CONTINUED | | | | | | 12/05/83<br>1120 | | | 102 | 12.8C | | _ | | *** | | | 0.00 | T | | | | | | · | 103 | | 0.0 | T | | | | | | | | | | 12/05/83<br>11 <b>30</b> | | 279 | 80 | 9.4C<br>6.8 | 0.2 | T | | | | <del></del> | | T | | | | 02/29/84 | 5050 | | | 6.4C | - | | ** | | | | | | | | | 0930 | | 315 | 118 | 7.2 | 0.7 | T | | | | | 0.00 | T | | | | 02/29/84 | | _ | | 8.8C | | | | | | •• | 0.00 | т | | | | 0930 | | 0 | 93 | 7.4 | 0.1 | T | | | | | | | | | | 05/09/84<br>0930 | | 308 | 104 | 6.6C | 0.3 | т | | | | | 0.01 | T | | | | 05/09/84 | 5050 | | | 14.80 | | • | | | | | | | | | | | 5050 | 0 | 96 | 7.6 | 0.0 | T | | | | | 0.01 | T | | | | 07/12/84 | | | | 48.0F | | | | | | | 0.01 | T | | | | | 5050 | 279 | 103 | 7.1 | 0.6 | T | | | | | | • | | | | 07/12/84<br>1000 | | 0 | 101 | 25.4C<br>7.6 | 0.1 | T | | | | | 0.00 | T | | | | 09/10/84 | | • | | | 0+1 | ı | | | | <del></del> | | | | | | | 5050 | 295 | 119 | 7.0C<br>6.9 | 0.5 | T | | | | | 0.01 | T | | | | 09/10/84 | | | | 23.90 | | | | | | | 0.00 | | | | | 1100 | - | 0 | | 7.6 | 0.1 | T | | | | | | • | | | | | | A2 10 | 10.00 | : | SACRAMENTO | R A K | ESWICK | | A19C0 | | | | | | | 04/29/83<br>0940 | 5050<br>5050 | | 82 | 8.9C<br>7.0 | 0.8 | т | | | | | 0.01 | Ŧ | | | | 09/21/83 | | | | | 0.0 | • | | | | | | | | | | 1310 | | | | 11.9C<br>7.1 | 0.2 | T | *** | | | | 0.01 | T | | | | 11/30/83 | | | | 12.20 | | | | *** | | | | | | | | 1100 | | | 110 | 7.1 | 0.2 | T | <del>* -</del> | | | | 0.00 | T | | | | 02/23/ <b>8</b> 4<br>1405 | | | 103 | 47.0F | | | | | | | 0.00 | T | | | | 05/02/84 | - | | 103 | | | | | | | | | | | | | 0915 | | 0 | 120 | 47.0F<br>7.3 | | | | ** | | | 0.00 | T | <b></b> | | | | | | | | | | | | | | | | | | TO THE SERVICE STREET OF SURFIEL BRIEN | DATE<br>TIME<br>• • • | SAMP<br>LAB | DEP | DISCH<br>TH EC<br>+ + + + | TEMP<br>PH<br>* * * | ALUHINI<br>* * * | ј <del>н</del><br>* • | CONSTITUENTS ANTIMONY BERYLLIUM + + + + | BISMUTH | GALLIUM | LITHIUM MOLYSDENUM | NICKE<br>STRONT | | TITANIUM<br>WANADIUM<br>* * * * | REM | |-----------------------|-------------|-----------|---------------------------|---------------------|------------------|-----------------------|-----------------------------------------|------------|---------|--------------------|-----------------|---|---------------------------------|-----| | | | 42 | 1040.00 | | SACRAMENTO | R A | MATHESON | | A19C0 | | | | | | | 04/29/83<br>0820 | | | 96 | 9.4C<br>7.2 | 1.1 | T | | ¥ | | | 0.01 | T | ** | | | 09/21/83<br>1340 | | | 97 | 12.5C<br>7.3 | | Ţ | | | | <b>*</b> = | 0.01 | T | | | | 11/30/83<br>0930 | | | 118 | 12.20<br>7.1 | 0.1 | T | | · | | | 0.00 | T | | | | 02/23/84<br>1515 | | | 105 | 49.0F<br>7.3 | | | ** | | | | 0.00 | Ŧ | | | | 05/02/84<br>0815 | | c | ) 118 | 48.DF<br>7.3 | | | | | | | 0.00 | T | | | | | | 42 | 1300.00 | | SACRAMENTO | R A | DELTA | | AZOBO | | | | | | | 04/27/83<br>1630 | | | 77 | 7.8C<br>7.2 | 0.2 | T | | | | | 0.02 | T | | | | 09/19/83<br>1545 | | | 128 | 16.7C<br>0.3 | 0.1 | T | 40 mm | | ** | | 0.01 | T | | | | 11/29/83<br>1600 | | | 102 | 6.1C<br>7.3 | 0.0 | T | | | | | 0.01 | T | | | | 02/24/84<br>1505 | | | 90 | 46.0F<br>7.4 | | | | | , | | 0.01 | T | | | | 05/03/84<br>1315 | | 0 | 90 | 51.0F<br>7.4 | | | | | | | 0.01 | T | | | | 07/20/84<br>1400 | | | 135 | 74.0F<br>8.3 | | | | <b>*</b> * | | | 0.02 | τ | | | | 09/19/84<br>1330 | | | 143 | 72.0C<br>8.3 | | | | | | | 0.01 | T | | | | | | <b>A2</b> | 2150.00 | ı | CCLOUD R A | в \$н | ASTA LK | | AZZA1 | | | | | | | 04/27/83<br>1430 | | | 90 | 8.3C<br>7.3 | 0.1 | T | | | | | 0.01 | T | | | | 09/19/83<br>1330 | | | 100 | 14.40<br>8.1 | 0.0 | T | | | | | 0.00 | T | | | | 11/29/83<br>1400 | | | 110 | 6.1C<br>7.3 | 0.0 | τ | | | | | 0.00 | T | | | | | | | | | • | | | | | | | | | | and the second second of the second | , | DATE<br>TIME<br>+ + + | SAMP<br>LAB | DEF | тн<br>* | DISC<br>EC | : | TEM<br>PH | | | LUMI: | | • | A | NTII<br>Eryi | MON'<br>LLI( | r<br>JM | BIS | HUT<br>HUT | Н | PER LITER<br>GALLIUM<br>GERMANIUM<br>+ + + | | LITHIUM<br>MOLYBDENUM<br>+ + + + | | NICKE<br>TRONT | | TITANIUM<br>NUIDANAV | • ( | RE | M | |----------|-----------------------|-------------|-----|---------|------------|-----|-----------|-----|-----|-------|------|-----|------|--------------|--------------|---------|-----|------------|---|--------------------------------------------|----|----------------------------------|---|----------------|---|----------------------|-----|----|---| | | | | AZ | 21 | 50.00 | ) | | но | CLD | UD R | AB | SHA | AST. | A LI | K | | | | | A2241 | cı | ONTINUED | | | | | | | | | | 00404404 | | | | | | | | | | | | | | | | | | | ~==== | • | U. 1 2 110 C D | | | | | | | | | | 02/24/84 | | | | | | 45. | | | | | | | | | | | , | | | | | | 0.00 | T | | | | | | | 1320 | 2020 | | | | | 7. | 6 | | | | | | | | | | • | | | | | | | • | | | | | | | 05/03/84 | 5050 | | | | | 52. | 0F | | | | | | | | | | | | | | | | | _ | | | | | | | 1120 | 5050 | | 0 | 1 | 118 | 7. | | | | | | | | | | | , | | | | | | 0.00 | Ŧ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 07/20/84 | | | | _ | | 64. | | | | | | | | | | | | | | | | | 0.02 | T | | | | | | | 1230 | 2020 | | | 1 | .07 | 8. | 1 | | | | | | | | | | | | | | | | | • | | | | | | | 09/19/84 | 5050 | | | | | 58. | ۸c | | | | | | | | | | | | | | | | | | | | | | | | | 5050 | | | 1 | 10 | 7. | | | | | | | | | | | | | | | | | 0.00 | T | | | | | | | | | | | • | | • • • | | | | | | | | | | | | | | | | | | | | | | | | | | | AZ | 41 | 00.00 | } | | Sa | UAW | C A | B SH | AST | A I | LK | | | | | | A2280 | | | | | | | | | | | | 04/27/83 | 5050 | | | | | 8. | 3C | | | | | | | | | | | | | | | | | _ | | | | | | | 1230 | 5050 | | | 1 | 45 | 7. | | | 0.1 | T | | | | | | | | | | | | - | 0.01 | T | | | | | | , | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | | | | 07/19/83 | | | | | | 16. | | | | | | | | | | | | | · | | | | 0.01 | Ţ | | | | | | <b>:</b> | 1100 | 2020 | | | Z | 25 | 7. | 9 | • | 0.0 | T | | • | | | | | | | | | | | | • | | | | | | | 11/29/83 | 5050 | | | | | 6. | 7. | | | | | | | | | | | | | | | | | | | | | | | | . 1200 | | | | 1 | A S | 7. | | | 0.0 | T | | | | | | | | | | | | | 0.00 | T | | | | | | , | | | | | | | | | • | ••• | ' | | | | | | | | | | | | | | | | | | | | | 02/24/84 | | | | | | 45.0 | | | | | | | | | | | | | | | | | 0.00 | T | | | | | | , | 1125 | 5050 | | | 1 | 75 | 7. | 5 | | | | | | | | | | | | - | | | ' | | • | | | | | | | 05/03/04 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 05/03/84<br>0945 | 5050 | | 0 | | 0.5 | 50.1 | | | | | | | | | | | | | | | | | 0.01 | T | | | | | | | 0,45 | 2020 | | U | | 77 | 7. | + | | | | | | ~- | | | | | | | | | | | | | | | | | | 07/20/84 | 5050 | | | | | 70.0 | ) F | | | | | | | | | | | | | | | | | | | | | | | | 1100 | 5050 | | | 2 | 25 | 8.6 | | | | | | | | | | | | | | | ~~ | • | 0.03 | 1 | | | | | | | | | | | _ | | | | | | | | | - | | | | | | | | | | | | | | | | | | 09/19/84 | | | | | | 62.6 | )F | | | | | | | | | | | | | | | | 0.01 | T | | | | | | | 1030 | 5050 | | | 2 | 19 | 7.0 | 5 | | | | | | | | | | | | | | | | -401 | • | <del></del> | | | | ## ATTACHMENT F TEMPERATURE RECORDER DATA FROM THE SACRAMENTO RIVER Daily minimum and maximum temperatures for Sacramento River at Hamilton City, 1983 | | Ma | | | ne | Ju | | | ust | Septe | mber | Octo | ber | Nove | mber | Dece | mber | |-----|------|------|------|------|------|----------|------|------------|-------|----------------|------|----------|----------|----------|----------|----------| | Day | Max. | Min. | 1 | | | No D | ata | 63 | 59 | 62 | 60 | 57 | 55 | 57 | 56 | 58 | 57 | 52 | 51 | | 2 | | | 81 | | 62 | 58 | 62 | 60 | 59 | 56 | 57 | 56 | 58 | 57 | 52<br>52 | | | 3 | | | 60 | 58 | 64 | 58 | 62 | 60 | 60 | 57 | 58 | 56 | 57 | 56 | 52<br>52 | 52<br>50 | | 4 | | | 61 | 57 | 65 | 60 | 62 | 60 | 60 | 58 | 58 | 56 | 57 | 56 | 50 | 50 | | 5 | | | 62 | 58 | 66 | 61 | 61 | 59 | 60 | 58 | 58 | 57 | 57 | 56 | | 48 | | 6 | | | 62 | 58 | 65 | 61 | 61 | 59 | 60 | 58 | 58 | 57 | 56 | | 48 | 48 | | 7 | | | 62 | 58 | 64 | 60 | 61 | 60 | 60 | 60 | 58 | 57 | | 55 | 50 | 48 | | 8 | | | 62 | 58 | 63 | 59 | 62 | 60 | 62 | 60 | 58 | 57 | 55 | 53 | 50 | 50 | | 9 | | | 62 | 58 | 62 | 58 | 62 | 60 | 61 | 60 | 58 | | 53 | 52 | 50 | 50 | | 10 | 53 | 52 | 62 | 58 | 64 | 59 | 62 | 60 | 61 | 60 | 58 | 58<br>56 | 52<br>51 | 51 | 50 | 50 | | 11 | 54 | 50 | 58 | 55 | 64 | 60 | 61 | 59 | 62 | 60 | .58 | 57 | 51 | 51 | 50 | 50 | | 12 | 54 | 51 | 60 | 56 | 64 | 60 | 60 | 59 | 63 | 61 | 57 | 57 | 52<br>53 | 51 | 50 | 49 | | 13 | 54 | 51 | 62 | 57 | 66 | 60 | 60 | 59 | 64 | 62 | 57 | 56 | 53<br>52 | 52<br>52 | 48 | 48 | | 14 | | | 62 | 58 | 64 | 62 | 60 | 59 | 64 | 62 | 56 | 56 | 52<br>52 | 52<br>51 | 50 | 48 | | 15 | | | 62 | 58 | 62 | 59 | 62 | 60 | 64 | 62 | 56 | 55 | 52<br>52 | 51 | 50 | 50 | | 16 | | | 64 | 58 | 63 | 58 | 62 | 60 | 63 | 62 | 56 | 55 | 52<br>52 | 51<br>52 | 50<br>50 | 50 | | 17 | | | 66 | 60 | 60 | 58 | 62 | 59 | 62 | 61 | 56 | 55 | 52<br>52 | 52<br>52 | 50<br>50 | 50<br>50 | | 18 | | | 65 | 60 | 60 | 58 | 62 | 58 | 62 | 61 | 56 | 55 | 52<br>52 | | | 50 | | 19 | | | 63 | 58 | 60 | 57 | 62 | 58 | 62 | 61 | 56 | 55 | 52<br>51 | 50<br>50 | 50 | 50 | | 20 | | | 64 | 60 | 60 | 57 | 60 | 56 | 60 | 61 | 57 | 56 | 51<br>51 | • | 50 | 49 | | 21 | | | 63 | 60 | 60 | 58 | 60 | 57 | 60 | 59 | 58 | 56 | | 50 | 49 | 48 | | 22 | | | 64 | 60 | 61 | 58 | 60 | 57 | 60 | 5 <del>9</del> | 58 | 56 | 50 | 48 | 48 | 48 | | 23 | | | 64 | 60 | 61 | 58 | 60 | 57 | 60 | 58 | 58 | 56 | 50 | 48 | 48 | 48 | | 24 | | | 64 | 60 | 61 | 58 | 60 | 57 | 60 | 58 | 58 | 56 | 50 | 49 | 48 | 46 | | 25 | | | 64 | 60 | 61 | 58 | 60 | 58 | 60 | 60 | 58 | 56 | 50<br>48 | 48 | 46 | 42 | | 26 | | | 64 | 60 | 61 | 59 | 60 | 57 | 60 | 60 | 58 | 56 | 48<br>48 | 46 | 45 | 41 | | 27 | | | 64 | 60 | 61 | 59 | 60 | 57 | 60 | 58 | 56 | 56 | | 47 | 46 | 45 | | 28 | | | 63 | 60 | 62 | 59 | 60 | 57 | 58 | 58 | 57 | 56 | 50<br>50 | 48 | 47 | 46 | | 29 | | | 63 | 60 | 62 | 60 | 60 | 57 | 58 | 57 | 55 | 55 | | 48 | 47 | 47 | | 30 | | | 64 | 60 | 62 | 60 | 60 | 58 | 58 | 57 | 56 | 55 | 50<br>50 | 48 | 47 | 47 | | 31 | | | | • | 62 | 60 | 60 | 57 | 70 | <i>31</i> | | | 50 | 50 | 48 | 47 | | | | | | | - | <b>J</b> | 00 | <i>)</i> ( | | | 58 | 56 | 51 | 50 | 48 | 48 | Daily minimum and maximum temperatures for Sacramento River at Hamilton City, 1984 | Day January Max. February Max. March Min. April Max. May Max. Max. Min. | June<br>x. Min. | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | 1 48 48 48 50 50<br>2 48 48 50 48 51 50<br>3 48 48 50 48 52 50 | . 1111. | | 2 48 48 50 48 51 50<br>3 48 48 50 48 52 50 | | | 2 48 48 50 48 51 50<br>3 48 48 50 48 52 50 | | | 3 48 48 50 48 52 50 | | | | | | | | | 5 48 48 50 48 52 51 | | | 6 48 48 50 49 52 51 | | | 7 48 48 50 49 53 52 | | | 8 48 48 50 49 54 53 | | | 9 48 48 50 50 54 53 | | | 10 48 48 50 49 54 54 | | | 11 48 48 49 49 54 54 | | | 12 48 48 48 54 54 | | | 13 48 48 48 54 53 | | | 14 48 47 48 48 54 53 | | | 15 47 47 48 48 54 54 | | | 16 47 47 48 48 54 53 | | | 17 47 47 48 47 53 52 | | | 18 47 46 48 47 53 52 | | | 19 47 46 48 48 53 52 | | | 20 46 46 48 48 53 52 | | | 21 46 46 49 48 54 53 | | | 22 46 46 49 49 54 53 | | | 23 48 46 49 49 53 53 | | | 24 48 47 49 49 54 53 | | | 25 48 47 49 48 53 53 | | | 26 48 48 50 48 53 53 | | | 27 48 48 50 48 53 53 | | | 28 48 48 50 48 54 5 <u>3</u> | | | 29 48 48 50 50 54 53 | | | 30 48 48 | | | 31 48 48 | | Daily minimum and maximum temperatures for Sacramento River at Tehama, 1983 | Dan | Ma | | | ne | | 1 <u>y</u> | | ust | Septe | mber | Octo | ber | Nove | mber | Dece | mber | |-----|----------|----------|------|------|------|------------|------|------------|----------|----------|----------|----------|------|------|------|------| | Day | Max. | Min. | 1 | | | 56 | 54 | 57 | 55 | 61 | 58 | 57 | E /. | 57 | | | | | | | 2 | | | 56 | 55 | 58 | 55 | 61 | 58 | 58 | 54<br>55 | 56 | 55 | 58 | 58 | 52 | 52 | | 3 | | | 57 | 54 | 59 | 56 | 61 | 58 | 59 | | 57 | 56 | 58 | 57 | 52 | 52 | | 4 | | | 58 | 56 | 60 | 57 | 61 | 58 | 59<br>59 | 56 | 58 | 56 | 58 | 57 | 52 | 58 | | 5 | | | 58 | 56 | 61 | 58 | 60 | 58 | | 56 | 58 | 56 | 57 | 57 | 49 | 48 | | 6 | | | 59 | 57 | 60 | 57 | 60 | | 59 | 56 | 58 | 56 | 56 | 56 | 50 | 49 | | 7 | | | 59 | 57 | 59 | 56 | | 58 | 60 | 57 | 58 | 56 | 56 | 56 | 50 | 50 | | 8 | | | 58 | 56 | 58 | | 61 | 58 | 61 | 59 | 58 | 56 | 56 | 54 | 50 | 50 | | 9 | | | 59 | 56 | 58 | 56 | 61 | 58 | 62 | 58 | 58 | 56 | 54 | 54 | 50 | 50 | | 10 | 51 | 50 | 57 | 54 | | 56 | 61 | 58 | 62 | 58 | 58 | 56 | 54 | 53 | 50 | 50 | | 11 | 52 | 50 | 56 | | 59 | 56 | 61 | 58 | 62 | 58 | 58 | 56 | 54 | 53 | 50 | 50 | | 12 | 52<br>52 | 50 | 57 | 53 | 60 | 56 | 61 | 58 | 62 | 59 | 58 | 56 | 54 | 53 | | | | 13 | 53 | 51 | | 54 | 60 | 57 | 60 | 58 | 62 | 60 | 58 | 56 | 54 | 54 | | | | 14 | 54 | | 58 | 56 | 60 | 57 | 60 | 58 | 62 | 60 | 58 | 56 | 54 | 54 | | | | 15 | | 52<br>50 | 58 | 55 | 61 | 58 | 60 | 58 | 62 | 60 | 58 | 55 | 54 | 52 | | | | 16 | 55<br>58 | 52 | 58 | 56 | 61 | 58 | 61 | 58 | 62 | 60 | 56 | 54 | 54 | 53 | | | | 17 | | 53 | 60 | 57 | 60 | 58 | 61 | 58 | 62 | 59 | 56 | 54 | 54 | 54 | | | | 18 | 60 | 54 | 60 | 57 | 60 | 57 | 60 | 58 | 62 | 59 | 56 | 54 | 55 | 54 | | | | 19 | 61 | 56 | 58 | 56 | 60 | 56 | 60 | 57 | 61 | 58 | 56 | 54 | 55 | 53 | | | | 20 | 58 | 55 | 59 | 56 | 58 | 56 | 59 | 56 | 61 | 58 | 57 | 55 | 53 | 53 | | | | | 59 | 56 | 60 | 56 | 60 | 56 | 58 | 56 | 60 | 58 | 58 | 56 | 53 | 52 | | | | 21 | 59<br>50 | 55 | 59 | 56 | 60 | 55 | 58 | 5 <b>6</b> | 59 | 57 | 58 | 56 | 53 | 51 | | | | 22 | 59 | 56 | 60 | 56 | 61 | 58 | 59 | 56 | 58 | 57 | 58 | 56 | 52 | 52 | | | | 23 | 60 | 56 | 59 | 57 | 61 | 58 | 59 | 56 | 59 | 57 | 58 | 57 | 52 | 52 | | | | 24 | 60 | 56 | 60 | 57 | 61 | 58 | 60 | 56 | 60 | 58 | 58 | 57 | 52 | 50 | | | | 25 | 58 | 56 | 60 | 57 | 61 | 58 | 59 | 56 | 60 | 58 | 58 | 56 | 50 | 49 | | | | 26 | 58 | 56 | 60 | 57 | 60 | 58 | 59 | 56 | 60 | 57 | 58 | 56 | 51 | 50 | | | | 27 | 58 | 56 | 60 | 57 | 60 | 58 | 58 | 56 | 59 | 57 | 58 | 56 | | | | | | 28 | 58 | 56 | 59 | 56 | 61 | 58 | 58 | 56 | 58 | 56 | 57 | | 52 | 52 | | | | 29 | 57 | 56 | 59 | 56 | 61 | 58 | 59 | 56 | 58 | 56 ° | | 56 | 52 | 51 | | | | 30 | 57 | 55 | 60 | 56 | 61 | 58 | 59 | 56 | 56<br>57 | | 56 | 56 | 52 | 52 | | | | 31 | 56 | 55 | | - | 61 | 58 | 55 | 54 | ١٠ | 56 | 57<br>58 | 56<br>57 | 52 | 52 | | | Daily minimum and maximum temperatures for Sacramento River at Tehama, 1984 | | Janua | ary | Febr | uary | Ma | rch | Δ+ | ril | Ma | •• | 7 | | |----------|-------|------|----------|------|------------|------------|------|------|------|-------|------|------| | Day | Max. | Min. | Ju | | | | | | • | | <u> </u> | | | | Hax. | riti. | Max. | Min. | | 1 | | | | | 51 | 50 | | | | | | | | 2<br>3 | | | 48 | 48 | 52 | 51 | | | | | | | | 3 | | | 48 | 47 | 5 <b>2</b> | 52 | | | | | | | | 4 | | | 48 | 46 | 52 | 52 | | | | | | | | 5 | | | 48 | 48 | 52 | 51 | | | | | | | | 6 | | | 48 | 48 | 52 | 51 | | | | | | | | 7 | | | 48 | 48 | 53 | 51 | | | | | | | | 8 | | | 48 | 48 | 5 <b>3</b> | 52 | | | | | | | | 9 | | | 48 | 48 | 54 | 52 | | | | | | | | 10 | | | 48 | 48 | 54 | 5 <b>3</b> | | | | | | | | 11 | | | 48 | 46 | 54 | 5 <b>3</b> | | | | | | | | 12 | | | 46 | 46 | 55 | 54 | | | | | | | | 13 | | | 46 | 46 | 54 | 53 | | | | | | | | 14 | | | 46 | 46 | 53 | 53 | | | | | | | | 15 | | | 46 | 46 | 5 <b>3</b> | 5 <b>3</b> | | | | | | | | 16 | | | 46 | 46 | 53 | 52 | | | | | | | | 17 | | | 46 | 46 | 52 | 52 | | | | | | | | 18 | | | 47 | 46 | 52 | 52 | | | | | | | | 19 | | | 48 | 47 | 52 | 52 | | | | | | | | 20 | | | 48 | 48 | 53 | 52 | | | | | | | | 21<br>22 | | | 48 | 48 | 53 | 53 | | | | | | | | 23 | | | 48 | 48 | 53 | 53 | | | | | | | | 23<br>24 | | | 47 | 46 | 53 | 53 | | | | | | | | 25 | | | 48 | 46 | | | | | | | | | | 26 | | | 50 | 47 | | | | | | | | | | 27 | | | 50<br>50 | 48 | | | | | | | | | | 28 | | | 50 | 48 | | | | | | | | | | 29 | | | 50 | 49 | | | | | | | | | | 30 | | | 50 | 49 | | | | | | | | | | 31 | | | | | | | | | | | | | | 71 | | | | | | | | | | | | | Daily minimum and maximum temperatures for Sacramento River below Red Bluff Diversion Dam, 1983 | ъ. | Ma | | | ne | | ly | Aug | gust | Septe | mber | Octo | ber | Nove | mber | Dece | mber | |-----|------|-----------|----------|----------|----------|----------|----------|------|-------|----------|------|------|------------|------------|------|-------------| | Day | Max. | Min. | 1 | | | 57 | 54 | 57 | 55 | 58 | 56 | 57 | 55 | 56 | | 50 | | | <del></del> | | 2 | | | 56 | 54 | 56 | 54 | 58 | 56 | 58 | 56 | 56 | 55 | 58 | 57 | 54 | 54 | | 3 | | | 56 | 54 | 57 | 55 | 58 | 56 | 58 | 57 | | 56 | 58 | 57 | 54 | 54 | | 4 | | | 56 | 54 | 58 | 56 | 58 | 56 | 58 | 57 | 56 | 56 | 58 | 57 | 54 | 53 | | 5 | | | 57 | 55 | 58 | 56 | 58 | 56 | 58 | 56 | 56 | 56 | 57 | 56 | 54 | 50 | | 6 | | | 57 | 55 | 59 | 57 | 58 | 56 | 58 | 57 | 57 | 56 | 57 | 56 | 52 | 50 | | 7 | | | 56 | 54 | 58 | 56 | 58 | 56 | 60 | | 57 | 56 | 56 | 55 | 52 | 50 | | 8 | | | 57 | 54 | 56 | 55 | 58 | 56 | 50 | 58<br>50 | 57 | 56 | 55 | 54 | 52 | 52 | | 9 | 51 | 51 | 57 | 55 | 56 | 55 | 58 | 57 | 60 | 59 | 57 | 56 | 56 | 54 | 52 | 51 | | 10 | 52 | 49 | 57 | 54 | 57 | 55<br>55 | 58 | 56 | | 59 | 56 | 56 | 56 | 55 | 52 | 51 | | 11 | 53 | 51 | 56 | 53 | 58 | 55 | 58 | 56 | 60 | 58 | 57 | 56 | 56 | 55 | 52 | 52 | | 12 | 53 | 50 | 56 | 54 | 58 | 56 | | | 61 | 59 | 57 | 56 | 56 | 56 | 52 | 52 | | 13 | 53 | 51 | 56 | 54 | 58 | | 58<br>50 | 56 | 61 | 60 | 57 | 56 | 56 | 56 | 52 | 52 | | 14 | 53 | 51 | 56 | 54<br>54 | 58 | 56 | 58 | 56 | 61 | 61 | 59 | 56 | 56 | 56 | 52 | 51 | | 15 | 53 | 51 | 56 | 54<br>54 | 57 | 57 | 57 | 56 | 61 | 60 | 59 | 56 | 56 | 56 | 52 | 51 | | 16 | 55 | 53 | 57 | 55 | 57<br>58 | 56 | 58 | 57 | 61 | 60 | 56 | 56 | 56 | 56 | 53 | 52 | | 17 | 56 | 55 | 58 | 56 | | 56 | 58 | 57 | 61 | 60 | 56 | 56 | 56 | 56 | 53 | 53 | | 18 | 59 | 55 | 58 | | 58 | 56 | 58 | 57 | 60 | 59 | 56 | 56 | 56 | 56 | 53 | 52 | | 19 | 59 | 57 | 57 | 56 | 57 | 56 | 58 | 57 | 60 | 59 | 57 | 56 | 56 | 56 | 52 | 52 | | 20 | 57 | 56 | 57 | 56 | 56 | 55 | 58 | 56 | 60 | 59 | 57 | 56 | 56 | 55 | 52 | 51 | | 21 | 58 | 56 | 57 | 56 | 57<br>50 | 56 | 58 | 55 | 59 | 58 | 57 | 56 | 56 | 55 | 51 | 51 | | 22 | 58 | 56 | 57 | 55 | 58 | 56 | 58 | 56 | 58 | 57 | 58 | 56 | 56 | 55 | 51 | 50 | | 23 | 58 | 56 | 57<br>57 | 55 | 58 | 56 | 58 | 57 | 57 | 56 | 59 | 57 | 56 | 54 | 50 | 49 | | 24 | 58 | 56 | | 55 | 58 | 56 | 58 | 57 | 59 | 56 | 59 | 58 | 54 | 52 | 49 | 42 | | 25 | 58 | 56 | 57<br>57 | 56 | 58 | 56 | 58 | 57 | 58 | 58 | 58 | 57 | 54 | 52 | 45 | 42 | | 26 | 57 | | 57 | 56 | 58 | 56 | 58 | 56 | 58 | 58 | 58 | 56 | 55 | 54 | 48 | 45 | | | | 55 | 57 | 56 | 58 | 56 | 58 | 57 | 58 | 57 | 57 | 56 | 56 | 54 | 48 | 48 | | 27 | 57 | 55<br>5.6 | 57 | 56 | 58 | 56 | 58 | 57 | 58 | 56 | 57 | 56 | 56 | 54 | 48 | 48 | | 28 | 57 | 56 | 57 | 56 | 58 | 56 | 58 | 56 | 56 | 56 | 57 | 56 | 56 | 55 | 48 | 48 | | 29 | 57 | 55 | 56 | 55 | 58 | 56 | 58 | 57 | 56 | 56 | 57. | 56 | 56 | 55 | 49 | 48 | | 30 | 57 | 55 | 57 | 56 | 58 | 56 | 58 | 57 | 56 | 56 | 58 | 57 | 56 | 56 | 49 | | | 31 | 57 | 54 | | | 58 | 56 | 58 | 55 | | | 58 | 58 | <i>J</i> 0 | <i>J</i> 0 | 49 | 49 | | | | | | | | | | | | | -0 | 20 | | | 47 | 48 | Daily minimum and maximum temperatures for Sacramento River below Red Bluff Diversion Dam, 1984 | _ | Janu | | Febr | uary | М | larch | ΑD | ril | Ma | v | 1,, | ne | |-----|------|------|------|------|------|-------|------|------|----------|------------|------|------| | Day | Max. | Min. | | | | | | | | | | | | | | | | 1 | 48 | 48 | 50 | 50 | 49 | 48 | 47 | 48 | 50 | 49 | | | | 2 | 49 | 48 | 50 | 48 | 50 | 48 | 48 | 48 | 50 | 48 | | | | 3 | 49 | 49 | 48 | 48 | 50 | 49 | 49 | 48 | 50 | 49 | | | | 4 | 50 | 49 | 50 | 48 | 49 | 49 | 50 | 49 | 51 | 50 | | | | 5 | 49 | 49 | 50 | 49 | 50 | 48 | 50 | 49 | 52 | 51 | | | | 6 | 49 | 48 | 50 | 49 | 50 | 48 | 50 | 49 | 51 | 51 | | | | 7 | 48 | 48 | 50 | 49 | No | data | 50 | 49 | 52 | 51 | | | | 8 | 48 | 48 | 49 | 49 | | data | 50 | 49 | 52 | 51 | | | | 9 | 48 | 48 | 49 | 49 | 50 | 49 | 50 | 48 | 53 | 52 | | | | 10 | 48 | 47 | 49 | 49 | 50 | 50 | 48 | 48 | 53 | 5 <b>2</b> | | | | 11 | 48 | 47 | 49 | 48 | 51 | 50 | 48 | 48 | 52 | 52 | | | | 12 | 47 | 46 | 48 | 48 | 51 | 50 | 49 | 48 | 53 | 52 | | | | 13 | 47 | 47 | 48 | 47 | 51 | 50 | 50 | 49 | 53 | 52 | | | | 14 | 47 | 47 | 47 | 46 | 51 | 50 | 50 | 50 | 53 | 53 | | | | 15 | 48 | 48 | 46 | 46 | 50 | 50 | 52 | 50 | 53 | 52 | | | | 16 | 48 | 48 | 46 | 45 | 50 | 48 | 52 | 51 | 52 | 51 | | | | 17 | 48 | 48 | 46 | 46 | 48 | 46 | 52 | 51 | 52 | 51 | | | | 18 | 48 | 47 | 46 | 46 | 47 | 46 | 51 | 50 | 53 | 52 | | | | 19 | 47 | 46 | 46 | 46 | 48 | 47 | 51 | 48 | 53 | 52 | | | | 20 | 47 | 47 | 47 | 46 | 49 | 48 | 50 | 49 | 54 | 53 | | | | 21 | 47 | 47 | 47 | 47 | 49 | 49 | 51 | 50 | 54 | 53 | | | | 22 | 48 | 48 | 47 | 47 | 49 | 48 | 52 | 50 | 54 | 53 | | | | 23 | 49 | 48 | 47 | 46 | 48 | 48 | 53 | 52 | 54 | 53 | | | | 24 | 49 | 49 | 46 | 46 | 49 | 48 | 53 | 52 | 54 | 53 | | | | 25 | 49 | 49 | 48 | 46 | 48 | 48 | 52 | 51 | 54 | 53 | | | | 26 | 49 | 49 | 48 | 48 | 48 | 48 | 51 | 49 | 54 | 53 | | | | 27 | 50 | 49 | 49 | 48 | 49 | 48 | 50 | 49 | 55 | 54 | | | | 28 | 50 | 50 | 49 | 48 | 48 | 47 | 50 | 49 | 55 | 54 | | | | 29 | 50 | 50 | 49 | 48 | 48 | 48 | 50 | 50 | 55<br>55 | 54<br>54 | | | | 30 | 50 | 50 | | | 48 | 47 | 50 | 50 | 55<br>55 | 54 | | | | 31 | 50 | 50 | | | 47 | 47 | 50 | 70 | )) | | | | | | | | | | • • | ٠, | | | | | | | Daily minimum and maximum temperatures for Sacramento River at Elks Lodge, 1983 | D | | ay | | ine | | ıly | Aug | ust | Septe | mber | Octo | ber | Nove | mber | Dece | ember | |--------|------------|---------------------------|------------|-------------|-----------|------|----------|------------|----------|----------|----------|------|-------------|------|----------|----------| | Day | Max. | $\underline{\text{Min.}}$ | Max. | Min. | 1 | | | 55 | 53 | <b>50</b> | F.1 | | | | | | | <del></del> | | | | | 2 | | | 52 | 52 | 52 | 51 | 56 | 55 | 54 | 52 | 56 | 55 | 57 | 57 | 53 | 52 | | 3 | | | | | 54 | 51 | 56 | 55 | 54 | 54 | 56 | 55 | 57 | 56 | 52 | 52 | | 4 | | | 53 | 52 | 54 | 51 | 56 | 55 | 56 | 54 | 56 | 56 | 56 | 56 | 52 | 50 | | 5 | | | 55 | 53 | 55 | 53 | 56 | 55 | 56 | 54 | 56 | 56 | 56 | 56 | 50 | 48 | | 6 | | | 55 | 53 | 54 | 53 | 56 | 55 | 56 | 55 | 56 | 56 | 56 | 56 | 50 | 49 | | 7 | | | 55<br>5.1 | 53 | 54 | 52 | 56 | 56 | 56 | 55 | 57 | 56 | 56 | 55 | 50 | 50 | | - | | | 54 | <b>53</b> . | 54 | 53 | 57 | 56 | 57 | 56 | 57 | 56 | 55 | 54 | 50 | 49 | | 8<br>9 | | | 55 | 53 | 53 | 51 | 57 | 56 | 58 | 56 | 57 | 56 | 54 | 54 | 50 | 50 | | | | | 55 | 53 | 54 | 52 | 56 | 55 | 57 | 56 | 56 | 56 | 54 | 52 | 50 | 50 | | 10 | | | 55 | 51 | 54 | 52 | 56 | 55 | 58 | 56 | 56 | 56 | 52 | 52 | 50 | 50<br>50 | | 11 | <b>5</b> 0 | | 53 | 51 | 54 | 53 | 56 | 55 | 58 | 56 | 57 | 56 | 53 | 52 | 50 | 49 | | 12 | 52 | 51 | 53 | 52 | 55 | 53 | 56 | 55 | 59 | 57 | 57 | 56 | 54 | 53 | 50 | 48 | | 13 | 51 | 49 | 54 | 53 | 55 | 54 | 56 | 55 | 59 | 57 | 57 | 56 | 54 | 52 | 50 | 40<br>48 | | 14 | 52 | 50 | 54 | 53 | 56 | 55 | 56 | 55 | 59 | 57 | 57 | 56 | 53 | 52 | 50 | | | 15 | 53 | 51 | 54 | 53 | 56 | 54 | 56 | 5 <b>5</b> | 59 | 57 | 56 | 56 | 53 | 53 | 50<br>50 | 50 | | 16 | 54 | 53 | 54 | 53 | 56 | 54 | 56 | 55 | 58 | 57 | 56 | 55 | 53 | 53 | | 50 | | 17 | 57 | 54 | 54 | 53 | 55 | 54 | 56 | 55 | 58 | 56 | 56 | 55 | 53 | | 50 | 49 | | 18 | 56 | 55 | 53 | 52 | 54 | 53 | 56 | 55 | 58 | 56 | 56 | 55 | | 53 | 50 | 48 | | . 19 | 56 | 54 | 53 | 52 | 55 | 54 | 56 | 54 | 58 | 56 | 56 | | 53 | 52 | 49 | 48 | | 20 | 56 | 54 | 53 | 52 | 56 | 54 | 55 | 53 | 57 | 56 | 56<br>56 | 56 | 52 | 52 | 49 | 48 | | 21 | 56 | 55 | 54 | 52 | 56 | 55 | 55 | 54 | 59 | 56<br>56 | | 55 | 52 | 51 | 48 | 48 | | 22 | 56 | 55 | 54 | 52 | 56 | 54 | 55 | 54 | 59 | 56 | 56 | 56 | 52 | 51 | 48 | 48 | | 23 | 56 | 56 | 54 | 52 | 56 | 54 | 55 | 54 | 57 | | 57 | 56 | 52 | 51 | 48 | 48 | | 24 | 57 | 55 | 53 | 52 | 56 | 54 | 55<br>55 | 54<br>54 | 57<br>58 | 56 | 58 | 56 | 52 | 50 | 48 | 47 | | 25 | 57 | 55 | 54 | 52 | 56 | 55 | 55 | 54<br>54 | | 57 | 58 | 56 | 50 | 48 | 47 | 41 | | 26 | 57 | 55 | 54 | 52 | 56 | 54 | 55 | | 59 | 58 | 59 | 56 | 50 | 48 | 44 | 41 | | 27 | 57 | 55 | 54 | 52 | 56 | 55 | | 54 | 58 | 57 | 57 | 56 | 50 | 50 | 46 | 44 | | 28 | 56 | 55 | 53 | 52 | 56 | 55 | 55 | 54 | 59<br> | 58 | 56 | 56 | 52 | 50 | 46 | 46 | | 29 | 57 | 55 | 53 | 52<br>52 | 56 | | 55<br>54 | 54 | 57 | 56 | 56 | 56 | 52 | 51 | 46 | 46 | | 30 | 56 | 55 | 53 | 52<br>52 | | 55 | 56 | 54 | 57 | 56 | 56 | 56 | 51 | 51 | 46 | 46 | | 31 | 55 | 53 | <i>)</i> ) | <b>3</b> 2 | 56 | 55 | 55 | 54 | 56 | 56 | 56 | 56 | 52 | 51 | 46 | 46 | | | ,, | <i>)</i> | | | 56 | 55 | 56 | 52 | | | 57 | 56 | | | 46 | 46 | Daily minimum and maximum temperatures for Sacramento River at Elks Lodge, 1984 | | Janu | | Febr | uary | Ма | rch | Αb | ri1 | Ma | v | T <sub>11</sub> | ne | |-----|------|----------|-------|------|------------|----------|------------|------|------------|------|-----------------|------------| | Day | Max. | Min. | | | | | | | | | | | | | - Tida | 111111 | | 1 | 46 | 46 | 47 | 46 | 49 | 48 | 48 | 46 | 50 | 50 | 5.0 | <i>.</i> , | | 2 | 46 | 46 | 47 | 46 | 51 | 49 | 49 | 46 | | | 56 | 54 | | 3 | 47 | 46 | 46 | 46 | 50 | 49 | 49 | 48 | - | 51 | 56 | 54 | | 4 | 48 | 47 | | .0 | 50 | 49 | 48 | | 52 | 50 | 55 | 54 | | 5 | 48 | 48 | | | 50 | 48 | | 48 | 52 | 52 | 54 | 52 | | 6 | 48 | 47 | | | 50 | 48<br>48 | 49 | 47 | 52 | 51 | 54 | 52 | | 7 | 47 | 46 | | | 51 | | 49 | 48 | 52 | 51 | 53 | 51 | | 8 | 46 | 46 | | | 51 | 48 | 48 | 47 | 53 | 51 | 53 | 50 | | 9 | 46 | 46 | | | | 50 | 49 | 44 | 54 | 52 | 54 | 53 | | 10 | 46 | 46 | | | 51 | 50 | 45 | 44 | 55 | 53 | 54 | 54 | | 11 | 46 | 46 | | | 52 | 50 | 46 | 46 | 53 | 53 | 54 | 54 | | 12 | 46 | 46 | | | 52 | 50 | 48 | 46 | 54 | 53 | 55 | 54 | | 13 | 46 | 46<br>45 | | | 53 | 50 | 49 | 48 | 54 | 52 | 5 <b>6</b> | 55 | | 14 | 45 | | 1. 14 | | 52 | 52 | 50 | 48 | 55 | 54 | 5 <b>6</b> | 55 | | 15 | 44 | 44 | | | 53 | 51 | 52 | 50 | 54 | 52 | 56 | 55 | | 16 | | 44 | | | 51 | 50 | 52 | 49 | 52 | 51 | 5 <b>6</b> | 5 <b>6</b> | | | 45 | 44 | | | 50 | 48 | 50 | 49 | 52 | 51 | <b>56</b> | 56 | | 17 | 45 | 44 | | | 48 | 47 | 51 | 50 | 54 | 52 | 56 | 56 | | 18 | 44 | 44 | | | 50 | 48 | 51 | 50 | 54 | 53 | 56 | 56 | | 19 | 45 | 44 | | | 50 | 50 | 51 | 50 | 55 | 53 | 56 | 55 | | 20 | 44 | 44 | | | 51 | 50 | 52 | 50 | 55 | 54 | 55 | 55 | | 21 | 45 | 44 | | | 51 | 50 | 54 | 50 | 55 | 54 | 55 | 55 | | 22 | 45 | 44 | | | 50 | 49 | 56 | 52 | 55 | 54 | | 33 | | 23 | 45 | 44 | 46 | 44 | 50 | 50 | 5 <b>6</b> | 54 | 56 | 54 | | | | 24 | 46 | 45 | 46 | 44 | 5 <b>0</b> | 50 | 5 <b>6</b> | 52 | 54 | 53 | | | | 25 | 46 | 46 | 48 | 46 | 50 | 50 | 52 | 50 | 55 | 53 | | | | 26 | 46 | 46 | 48 | 46 | 50 | 50 | 50 | 50 | 5 <b>6</b> | 55 | | | | 27 | 47 | 46 | 48 | 46 | 50 | 50 | 50 | 50 | 57 | 55 | | | | 28 | 47 | 46 | 48 | 47 | 48 | 46 | 51 | 50 | 57 | 55 | | | | 29 | 47 | 46 | 48 | 47 | 46 | 45 | 52 | 50 | 57 | -56 | | | | 30 | 47 | 46 | | | 45 | 45 | 51 | 50 | 57 | 55 | | | | 31 | 47 | 46 | | | 46 | 45 | 71 | 20 | 56 | 55 | | | | | | | | | . • | 4.2 | | | סכ | 33 | | | Daily maximum and minimum temperatures for the Sacramento River at Bend Bridge, 1983 | _ | <u>Ma</u> | | | ne | Ju | 1y | Aug | ust | Septe | mber | Octo | ber | Nove | mber | Dece | mber | |-----|------------|----------|----------|------------|----------|----------|------------|----------|----------|------|----------|----------|------|------|------|----------| | Day | Max. | Min. | 1 | | | 55 | 52 | 57 | 54 | 50 | | 50 | | | | | | | | | 2 | | | 56 | 52<br>52 | 58 | 54 | 58<br>58 | 55<br>55 | 58<br>58 | 55 | 58 | 57 | 58 | 58 | 53 | 52 | | 3 | | | 56 | 52<br>52 | 59 | 55 | 58 | 55 | 58<br>50 | 55 | 57 | 56 | 58 | 57 | 53 | 52 | | 4 | | | 57 | 53 | 58 | 54 | 58 | 55 | 58 | 55 | 58 | 56 | 57 | 57 | 53 | 50 | | 5 | | | 56 | 53 | 57 | 54 | | | 58 | 55 | 58 | 56 | 57 | 57 | 51 | 50 | | 6 | | | 56 | 53 | 58 | 54 | 58 | 54 | 58 | 55 | 58 | 56 | 57 | 56 | 51 | 50 | | 7 | | | 57 | 53 | - 58 | 54<br>54 | 58<br>50 | 54 | 59 | 55 | 58 | 56 | 57 | 56 | 51 | 50 | | 8 | | | 57<br>57 | 54 | | | 58 | 54 | 59 | 56 | 58 | 56 | 56 | 55 | 50 | 50 | | 9 | | | 54 | 53 | 58<br>50 | 54 | 58 | 55 | 59 | 57 | 58 | 56 | 56 | 54 | 52 | 51 | | 10 | | | 56 | | 58 | 54 | 58 | 55 | 59 | 56 | 58 | 56 | 56 | 55 | 52 | 51 | | 11 | 52 | 50 | | 52<br>52 | 58 | 54 | 58 | 55 | 59 | 57 | 58 | 56 | 53 | 53 | 51 | 51 | | 12 | 52<br>52 | 50<br>50 | 56 | 53 | 58 | 55 | 58 | 54 | 60 | 57 | 58 | 56 | 55 | 53 | 50 | 51 | | 13 | 52<br>52 | | 57 | 53 | 59 | 55 | 58 | 54 | 60 | 57 | 58 | 56 | 55 | 54 | 50 | 49 | | 14 | 52<br>52 | 50 | 56 | 53 | 58 | 55 | 57 | 54 | 60 | 58 | 58 | 56 | 54 | 53 | 51 | 50 | | | | 50 | 56 | 53 | 59 | 55 | 58 | 55 | 60 | 58 | 58 | 56 | 54 | 53 | 51 | 51 | | 15 | 55 | 51 | 56 | 53 | 58 | 54 | 58 | 55 | 60 | 57 | 58 | 55 | 54 | 53 | 51 | 51 | | 16 | 56 | 52 | 58 | 54 | 58 | 54 | 58 | 55 | 60 | 57 | 58 | 55 | 54 | 54 | 51 | 51 | | 17 | 57 | 54 | 57 | 54 | 57 | 54 | 58 | 55 | 60 | 57 | 58 | 55 | 55 | 54 | 51 | 50 | | 18 | 55 | 53 | 58 | 54 | 57 | 54 | 58 | 55 | 60 | 57 | 58 | 55 | 54 | 53 | 50 | 50 | | 19 | 56 | 52 | 57 | 54 | 58 | 54 | 58 | 55 | 58 | 57 | 58 | 55 | 54 | 53 | 50 | 50 | | 20 | 56 | 52 | 58 | 54 | 58 | 54 | 58 | 54 | 58 | 56 | 58 | 55 | 53 | 52 | 50 | 50 | | 21 | 5 <b>6</b> | 52 | 58 | 54 | 58 | 54 | 57 | 55 | 58 | 56 | 57 | 56 | 53 | 52 | 50 | 49 | | 22 | 57 | 52 | 58 | 54 | 58 | 54 | 58 | 55 | 58 | 57 | 58 | 55 | 53 | 52 | 50 | 49 | | 23 | 56 | 53 | 58 | 54 | 58 | 54 | 58 | 55 | 59 | 57 | 58 | 55 | 53 | 51 | 50 | 48 | | 24 | 56 | 53 | 58 | 54 | 58 | 55 | 5 <b>8</b> | 55 | 59 | 57 | 58 | 56 | 51 | 50 | 48 | 43 | | 25 | 55 | 52 | 58 | 54 | 58 | 54 | 58 | 55 | 59 | 57 | 58 | 56 | 52 | 51 | 46 | 43<br>43 | | 26 | 56 | 52 | 58 | 54 | 58 | 54 | 58 | 55 | 58 | 57 | 58 | 56 | 53 | 51 | | | | 27 | 56 | 52 | 57 | 54 | 58 | 54 | 58 | 55 | 58 | 57 | 58 | 56 | | | 48 | 46 | | 28 | 55 | 52 | 57 | 54 | 58 | 55 | 58 | 55 | 58 | 56 | 57 | | 53 | 51 | 48 | 47 | | 29 | 55 | 52 | 58 | 54 | 58 | 55 | 58 | 55 | 58 | 56 | | 55<br>56 | 53 | 52 | 48 | 47 | | 30 | 56 | 52 | 56 | 54 | 58 | 55 | 58 | 55 | 57 | | 58<br>50 | 56 | 53 | 52 | 48 | 48 | | 31 | 55 | 52 | | <b>7</b> T | 58 | 55 | טכ | ,, | 31 | 56 | 58<br>50 | 56 | 53 | 52 | 49 | 48 | | | | | | | 50 | , | | | | | 58 | 57 | | | 49 | 48 | Daily minimum and maximum temperatures for Sacramento River at Bend Bridge, 1984 | | Janu | lary | Febr | uary | Ma | rch | Ap | ril | Ma | v | Ju. | ne | |-----|------|------|------|------|------|------|----------------|------|------------|------|------------|----------| | Day | Max. | Min. | | | | | | | | | | | | | | | | 1 | 48 | 47 | 48 | 47 | 50 | 49 | 52 | 49 | 52 | 50 | 58 | 54 | | 2 | 49 | 47 | 48 | 46 | 50 | 49 | 5 <b>2</b> | 50 | 53 | 51 | 58 | 54 | | 3 | 50 | 48 | 48 | 46 | 50 | 48 | 52 | 52 | 55 | 51 | 58 | 54 | | 4 | 50 | 48 | 48 | 47 | 50 | 48 | 52 | 52 | 55 | 51 | 58 | 54 | | 5 | 49 | 49 | 49 | 48 | 51 | 48 | 52 | 52 | 54 | 51 | 56 | 54 | | 6 | 49 | 49 | 49 | 47 | 51 | 49 | 53 | 52 | 54 | 51 | 56 | 54 | | 7 | 49 | 48 | 49 | 48 | 51 | 50 | 53 | 51 | 55 | 51 | 5 <b>6</b> | 54<br>54 | | 8 | 48 | 48 | 48 | 48 | 51 | 50 | 52 | 51 | 55 | 52 | 58 | 54 | | 9 | 48 | 48 | 49 | 48 | 51 | 50 | 5 <b>2</b> | 50 | 55 | 53 | 58 | 54 | | 10 | 48 | 48 | 49 | 47 | 52 | 50 | 52 | 49 | 55 | 53 | 57 | 54 | | 11 | 48 | 47 | 48 | 47 | 52 | 51 | 52 | 49 | 54 | 53 | 58 | 54 | | 12 | 48 | 47 | 47 | 47 | 52 | 52 | 53 | 50 | 56 | 53 | 58 | 54 | | 13 | 47 | 46 | 47 | 47 | 52 | 52 | 54 | 50 | 56 | 53 | 59 | 55 | | 14 | 46 | 46 | 48 | 46 | 52 | 51 | 54 | 51 | 56 | 53 | 59 | 55 | | 15 | 46 | 46 | 48 | 46 | 52 | 50 | 55 | 53 | 55 | 51 | 59 | 55 | | 16 | 47 | 46 | 47 | 46 | 51 | 49 | 55 | 53 | 55 | 51 | 59 | 56 | | 17 | 47 | 46 | 48 | 46 | 49 | 47 | 54 | 52 | 56 | 52 | 5 <b>9</b> | 56 | | 18 | 47 | 45 | 48 | 46 | 50 | 48 | 54 | 50 | 56 | 53 | 59 | 56 | | 19 | 47 | 46 | 48 | 47 | 51 | 48 | 53 | 50 | 56 | 53 | 58 | 56 | | 20 | 46 | 45 | 49 | 48 | 51 | 49 | 53 | 50 | 56 | 53 | 58 | 55 | | 21 | 47 | 46 | 49 | 48 | 50 | 48 | 54 | 51 | -56 | 53 | 50 | 54 | | 22 | 47 | 46 | 49 | 47 | 50 | 48 | 56 | 52 | 56 | 53 | | J4 | | 23 | 47 | 45 | 46 | 46 | 50 | 48 | 56 | 54 | 56 | 53 | | | | 24 | 48 | 46 | 48 | 46 | 51 | 48 | 55 | 53 | 56 | 54 | | | | 25 | 48 | 46 | 49 | 47 | 50 | 48 | 53 | 51 | 55 | 53 | | | | 26 | 47 | 46 | 49 | 47 | 51 | 48 | 52 | 48 | 57 | 53 | | | | 27 | 48 | 46 | 49 | 47 | 51 | 48 | 52 | 48 | 57 | 54 | | | | 28 | 48 | 46 | 49 | 47 | 51 | 49 | 53 | 50 | 57 | 54 | | | | 29 | 48 | 46 | 50 | 48 | 50 | 48 | 53 | 50 | 5 <b>9</b> | 58 | | | | 30 | 48 | 46 | | | 50 | 48 | 52 | 50 | 59 | 55 | | | | 31 | 48 | 46 | | | 50 | 49 | ~ <del>~</del> | 20 | 58 | 54 | | | Daily minimum and maximum temperatures for Sacramento River near Balls Ferry, 1983 | _ | Ma | | | ne | Jι | ıly | Aug | ust | Septe | mber | Octo | ber | Nove | mber | Dece | ember | |-----|-----------|------|----------|------|----------|------|----------|----------|-------|------|------|----------|------|----------|------|----------| | Day | Max. | Min. | 1 | | | Clock | DOA | 52 | 52 | 53 | 51 | 53 | 52 | 56 | 51 | 53 | E 2 | | | | 2 | | | 52 | 51 | 52 | 52 | 53 | 51 | 54 | 52 | 56 | 51 | 53 | 53<br>53 | 57 | 54 | | 3 | | | 52 | 50 | 52 | 52 | 53 | 51 | 54 | 52 | 56 | 51 | 53 | 53 | 59 | 59 | | 4 | | | 52 | 51 | 52 | 52 | 52 | 52 | 54 | 53 | 56 | 51 | 53 | 53<br>53 | 60 | 54 | | 5 | | | 52 | 51 | 53 | 52 | 52 | 52 | 54 | 53 | 56 | 52 | 53 | | 58 | 54<br>50 | | 6 | 56 | 54 | 52 | 52 | 53 | 52 | 52 | 52 | 54 | 53 | 56 | 52<br>52 | 53 | 53 | 59 | 59 | | 7 | 54 | 51 | 52 | 52 | 53 | 52 | 52 | 52 | 55 | 54 | 56 | 52<br>52 | | 53 | 60 | 55 | | 8 | 51 | 50 | 52 | 51 | 53 | 52 | 53 | 52 | 56 | 54 | 56 | | 53 | 53 | 55 | 55 | | 9 | 51 | 50 | 52 | 51 | 53 | 51 | 53 | 52 | 56 | 54 | | 52 | 53 | 52 | 56 | 55 | | 10 | 51 | 50 | 51 | 51 | 53 | 51 | 53 | 52<br>52 | 56 | | 56 | 52 | 52 | 52 | 55 | 54 | | 11 | 51 | 50 | 52 | 51 | 53 | 51 | 53 | 51 | | 54 | 56 | 52 | 52 | 52 | 54 | 54 | | 12 | 51 | 50 | 52 | 51 | 53 | 51 | | | 56 | 54 | 56 | 52 | 52 | 52 | 54 | 54 | | 13 | <b>7.</b> | 50 | 52 | 51 | 53 | 52 | 53<br>53 | 51 | | | 56 | 52 | 52 | 52 | 54 | 54 | | 14 | | | 52<br>52 | 51 | 53 | | 53 | 51 | | | 56 | 52 | 51 | 51 | 54 | 54 | | 15 | | | 52<br>52 | | | 52 | 53 | 51 | | | 56 | 52 | 51 | 51 | 54 | 54 | | 16 | | | 52<br>52 | 51 | 53 | 51 | 53 | 51 | | | 56 | 52 | 51 | 51 | 54 | 54 | | 17 | | | 52<br>53 | 51 | 54 | 52 | 53 | 52 | | | 56 | 52 | 51 | 51 | 54 | 54 | | 18 | | | 52 | 51 | 54 | 52 | 53 | 51 | | | 57 | 52 | 51 | 51 | 54 | 54 | | 19 | | | 52<br>53 | 51 | 52<br>50 | 52 | 54 | 53 | | | 57 | 52 | 51 | 51 | 54 | 54 | | 20 | | | | 51 | 52 | 52 | 53 | 53 | | | 57 | 52 | 51 | 51 | 55 | 54 | | 21 | | | 53 | 52 | 52 | 52 | 53 | 52 | | | 56 | 52 | 51 | 51 | 56 | 55 | | 22 | | | 53 | 51 | 52 | 52 | 53 | 52 | 52 | 52 | 57 | 52 | 52 | 52 | 56 | 56 | | | | | 53 | 51 | 52 | 52 | 54 | 53 | 52 | 52 | 57 | 53 | 52 | 52 | 56 | 56 | | 23 | | | 53 | 51 | 52 | 52 | 54 | 53 | 52 | 52 | 57 | 53 | 52 | 51 | 58 | 56 | | 24 | | | 53 | 51 | 53 | 51 | 54 | 53 | 52 | 52 | 57 | 53 | 52 | 49 | 58 | 49 | | 25 | | | 53 | 51 | 53 | 51 | 54 | 53 | 52 | 52 | 57 | 53 | 49 | 49 | 50 | 49 | | 26 | | | 53 | 51 | 53 | 51 | 54 | 53 | 52 | 52 | 57 | 53 | 50 | 49 | 50 | 49 | | 27 | | | 53 | 51 | 53 | 51 | 53 | 53 | 52 | 51 | 57 | 53 | 51 | 50 | 49 | 49 | | 28 | | | 53 | 51 | 53 | 51 | 54 | 53 | 52 | 51 | 57 | 53 | 51 | 51 | 49 | 49 | | 29 | | | 53 | 51 | 53 | 51 | 54 | 53 | 52 | 51 | 57 | 53 | 51 | 51 | 49 | 49 | | 30 | | | 53 | 51 | 53 | 51 | 54 | 53 | 52 | 51 | 57 | 53 | 51 | 51 | 49 | 49 | | 31 | | | | | 53 | 51 | 53 | 53 | | | 57 | 53 | | ~ = | 49 | 49 | Daily minimum and maximum temperatures for Sacramento River at Balls Ferry, 1984 | _ | | uary | | uary | _ Ma | rch | Ар | ril | Ma | V | Tu | ne | |------------|------|------|------------|----------|----------|----------|----------|----------|----------|------|------------|----------| | <u>Day</u> | Max. | Min. | | | | | | | | | | | | | | | | 1 | 49 | 49 | 48 | 48 | 50 | 49 | 53 | 52 | 51 | 51 | 57 | 54 | | 2 | 49 | 49 | 48 | 48 | 50 | 49 | 53 | 53 | 51 | 51 | 57<br>57 | 54 | | 3 | 49 | 49 | 49 | 47 | 50 | 50 | 53 | 53 | 53 | 51 | 5 <b>6</b> | 54 | | 4 | 49 | 49 | 49 | 48 | 50 | 49 | 53 | 53 | 55 | 53 | 5 <b>6</b> | 56 | | 5 | 49 | 49 | 49 | 49 | 54 | 52 | 53 | 53 | 55 | 53 | 56 | 55 | | 6 | 49 | 49 | 49 | 49 | 54 | 53 | 53 | 52 | 55 | 53 | 55 | 55<br>55 | | 7 | 49 | 49 | 49 | 48 | 54 | 54 | 53 | 52 | 55 | 53 | 5 <b>6</b> | 54 | | 8 | 49 | 49 | 49 | 49 | 54 | 53 | 52 | 51 | 55 | 53 | 5 <b>6</b> | 54<br>54 | | 9 | 49 | 49 | 49 | 49 | 54 | 53 | 51 | 51 | 55<br>55 | 54 | 57 | 54<br>54 | | 10 | 49 | 49 | 49 | 48 | 56 | 53 | 51 | 51 | 55 | 54 | | | | 11 | 48 | 48 | 49 | 49 | 56 | 55 | 51 | 51 | 54 | 54 | 57 | 54 | | 12 | 48 | 48 | 49 | 49 | 56 | 55 | 52 | 51 | 55 | 53 | 57 | 54 | | 13 | 48 | 48 | 49 | 48 | 56 | 54 | 52 | 51 | 55<br>55 | | 56 | 55 | | 14 | 48 | 48 | 48 | 47 | 54 | 51 | 53 | 52 | 55<br>55 | 53 | 57<br>57 | 55 | | 15 | 48 | 48 | 48 | 47 | 51 | 50 | 54 | 53 | 55 | 53 | 57 | 54 | | 16 | 48 | 48 | 48 | 47 | 50 | 48 | 54 | 53 | | 53 | 5 <b>6</b> | 54 | | 17 | 48 | 48 | 49 | 48 | 48 | 47 | 53 | 53 | 54 | 53 | 57 | 54 | | 18 | 48 | 48 | 49 | 48 | 48 | 47 | 53 | 53<br>52 | 54 | 53 | 56 | 54 | | 19 | 48 | 48 | 50 | 49 | 48 | 47 | 52 | | 55 | 53 | 57 | 54 | | 20 | 48 | 48 | 50 | 50 | 49 | 48 | | 51 | 55 | 54 | 5 <b>6</b> | 55 | | 21 | 48 | 48 | 50 | 50 | 50 | 49 | 53 | 51 | 56 | 54 | 57 | 55 | | 22 | 48 | 48 | 50 | 49 | 50<br>50 | 50 | 53 | 51 | 55<br>56 | 54 | | 55 | | 23 | 48 | 48 | 49 | 49 | 50 | 50 | 53 | 52 | 56 | 54 | | | | 24 | 48 | 48 | 50 | 49 | 50 | 50<br>50 | 54 | 52 | 56 | 55 | | | | 25 | 48 | 48 | 50 | 49 | 50 | 50 | 54<br>53 | 53 | 55 | 54 | | | | 26 | 48 | 48 | 50 | 48 | 50 | 50<br>50 | 53 | 52 | 56 | 54 | | | | 27 | 48 | 48 | 49 | 49 | 50<br>51 | | 52 | 50 | 56 | 55 | | | | 28 | 48 | 48 | 49 | 49 | 51 | 50 | 51 | 50 | 56 | 55 | | | | 29 | 48 | 48 | 50 | 49<br>49 | | 50 | 51 | 50 | 56 | 55 | | | | 30 | 48 | 48 | J <b>U</b> | 47 | 51 | 50 | 51 | 51 | 57 | 55 | | | | 31 | 48 | 48 | | | 51 | 50 | 51 | 51 | 56 | 54 | | | | <b>J</b> 1 | 40 | 40 | | | 52 | 51 | | | 56 | 54 | | | Daily minimum and maximum temperatures for Sacramento River above Clear Creek, 1983 | _ | Ma | | | ne | | 1 <b>y</b> | Aug | ust | Septe | mber | Octo | ber | Nove | mber | Dece | mber | |-----|------|------|------|------|------|------------|------|------|-------|------|------|------|------|------|------|------| | Day | Max. | Min. | 1 | | | 49 | 49 | 52 | 51 | 54 | 53 | 52 | 52 | 53 | 52 | 52 | 52 | 52 | 52 | | 2 | | | 50 | 49 | 52 | 51 | 54 | 53 | 53 | 52 | 54 | 52 | 53 | 52 | 52 | 51 | | 3 | | | 50 | 49 | 53 | 52 | 54 | 53 | 53 | 52 | 54 | 52 | 53 | 52 | 52 | 51 | | 4 | | | 50 | 49 | 53 | 52 | 54 | 53 | 53 | 52 | 54 | 52 | 53 | 52 | 51 | 51 | | 5 | | | 50 | 49 | 53 | 52 | 54 | 53 | 53 | 52 | 54 | 52 | 53 | 52 | 51 | 51 | | 6 | 49 | 48 | 50 | 50 | 53 | 52 | 54 | 53 | 54 | 52 | 54 | 53 | 52 | 52 | 51 | 50 | | 7 | 48 | 48 | 50 | 50 | 53 | 52 | 54 | 53 | 54 | 52 | 54 | 53 | 53 | 52 | 50 | 50 | | 8 | 49 | 48 | 50 | 50 | 53 | 52 | 54 | 54 | 54 | 53 | 54 | 53 | 52 | 52 | 50 | 50 | | 9 | 49 | 48 | 50 | 50 | 53 | 52 | 54 | 54 | 55 | 53 | 54 | 53 | 52 | 52 | 50 | 50 | | 10 | 49 | 48 | 50 | 49 | 54 | 52 | 54 | 53 | 55 | 53 | 54 | 53 | 53 | 52 | 50 | 50 | | 11 | 49 | 48 | 50 | 49 | 53 | 52 | 54 | 53 | 55 | 53 | 54 | 53 | 53 | 52 | 50 | 49 | | 12 | 48 | 48 | 50 | 49 | 53 | 52 | 54 | 54 | 55 | 53 | 54 | 53 | 53 | 53 | 50 | 49 | | 13 | 48 | 48 | 50 | 49 | 53 | 52 | 54 | 54 | 55 | 54 | 54 | 53 | 53 | 53 | 50 | 50 | | 14 | 48 | 48 | 50 | 50 | 54 | 52 | 54 | 53 | 55 | 54 | 54 | 53 | 53 | 53 | 50 | 49 | | 15 | 50 | 48 | 51 | 50 | 54 | 52 | 54 | 54 | 55 | 54 | 54 | 53 | 54 | 53 | 49 | 49 | | 16 | 52 | 49 | 51 | 50 | 54 | 52 | 55 | 54 | 55 | 54 | 54 | 54 | 53 | 53 | 49 | 48 | | 17 | 52 | 49 | 53 | 51 | 54 | 52 | 53 | 52 | 54 | 54 | 54 | 54 | 53 | 53 | 48 | 48 | | 18 | 51 | 50 | 52 | 51 | 54 | 52 | 52 | 52 | 55 | 54 | 54 | 54 | 53 | 53 | 49 | 48 | | 19 | 52 | 50 | 53 | 51 | 54 | 52 | 52 | 52 | 56 | 53 | 54 | 54 | 53 | 53 | 49 | 48 | | 20 | 51 | 49 | 52 | 51 | 54 | 52 | 52 | 51 | 55 | 54 | 54 | 52 | 53 | 53 | • • | 48 | | 21 | 50 | 49 | 52 | 51 | 54 | 53 | 52 | 52 | 54 | 53 | 54 | 52 | 53 | 53 | | 70 | | 22 | 50 | 49 | 52 | 51 | 54 | 53 | 53 | 52 | 53 | 53 | 54 | 52 | 54 | 53 | 50 | 49 | | 23 | 50 | 49 | 52 | 51 | 54 | 53 | 52 | 52 | 54 | 53 | 54 | 52 | 53 | 52 | 49 | 48 | | 24 | 50 | 50 | 52 | 51 | 54 | 53 | 53 | 52 | 54 | 53 | 54 | 52 | 52 | 52 | 48 | 48 | | 25 | 50 | 49 | 52 | 52 | 54 | 53 | 53 | 52 | 54 | 52 | 53 | 52 | 52 | 52 | 48 | 48 | | 26 | 50 | 49 | 52 | 52 | 54 | 53 | 53 | 52 | 54 | 52 | 53 | 52 | 53 | 52 | 48 | 48 | | 27 | | | 52 | 52 | 54 | 53 | 52 | 52 | 54 | 52 | 53 | 52 | 53 | 52 | 48 | 47 | | 28 | | | 52 | 51 | 54 | 53 | 52 | 52 | 54 | 52 | 53 | 52 | 52 | 52 | 47 | 47 | | 29 | | | 52 | 51 | 54 | 53 | 53 | 52 | 54 | 52 | 52 | 52 | 52 | 52 | 47 | 47 | | 30 | | | 52 | 51 | 54 | 53 | 53 | 52 | 52 | 52 | 52 | 52 | 52 | 52 | 47 | 47 | | 31 | | | | | 54 | 53 | 52 | 52 | | | 52 | 52 | | | 47 | 46 | Daily minimum and maximum temperatures for Sacramento River above Clear Creek, 1984 | _ | | uary | Febr | uary | Ма | rch | Ap | ril | Ма | ıy | Ju | ne | |------------|------|------|------|------|------|------|------|----------|-----------------|------|----------|----------| | <u>Day</u> | Max. | Min. | | 1 | 47 | 46 | 44 | | , , | , , | | | | | | | | 2 | 47 | 46 | | 44 | 45 | 44 | 49 | 48 | 46 | 46 | 51 | 49 | | 3 | | | 44 | 44 | 46 | 44 | 50 | 47 | 48 | 46 | 51 | 49 | | | 47 | 46 | 45 | 44 | 46 | 44 | 50 | 48 | 48 | 46 | 51 | 49 | | 4 | 47 | 46 | 45 | 44 | 46 | 44 | 50 | 48 | 49 | 46 | 50 | 49 | | 5 | 46 | 46 | 45 | 44 | 46 | 44 | 50 | 48 | 49 | 46 | 50 | 49 | | 6 | 46 | 46 | 45 | 44 | 46 | 44 | 51 | 48 | 49 | 47 | 49 | 49 | | 7 | 46 | 46 | 45 | 44 | 46 | 45 | 50 | 48 | 49 | 47 | 50 | 49 | | 8 | 46 | 46 | 45 | 44 | 46 | 45 | 50 | 48 | 50 | 48 | 51 | 49 | | 9 | 46 | 46 | 45 | 44 | 46 | 45 | 48 | 48 | 50 | 48 | 52 | 49 | | 10 | 46 | 46 | 45 | 44 | 47 | 45 | 50 | 48 | 50 | 48 | 51 | 49 | | 11 | 46 | 45 | 44 | 44 | 46 | 45 | 50 | 48 | 50 | 48 | 51 | 49 | | 12 | 45 | 45 | 44 | 44 | 46 | 45 | 50 | 48 | 50 | 48 | 51 | 49 | | 13 | 45 | 45 | 44 | 44 | 46 | 46 | 50 | 48 | 50 | 48 | 52 | 49 | | 14 | 45 | 45 | 44 | 44 | 49 | 46 | 51 | 48 | 50 | 48 | 52 | 49 | | 15 | 45 | 45 | 44 | 44 | 46 | 46 | 52 | 48 | 50 | 48 | 52 | 50 | | 16 | 45 | 44 | 45 | 44 | 46 | 45 | 50 | 49 | 50 | 48 | 52<br>52 | 49 | | 17 | 45 | 44 | 44 | 44 | 45 | 45 | 51 | 48 | 50 | 48 | 51 | 49 | | 18 | 45 | 44 | 44 | 44 | 46 | 45 | 50 | 48 | 49 | 47 | 52 | 50 | | 19 | 44 | 44 | 45 | 44 | 46 | 45 | 51 | 48 | 49 | 47 | 51 | | | 20 | 44 | 44 | 44 | 44 | 46 | 46 | 48 | 47 | 49 | 48 | 52 | 49<br>40 | | 21 | 44 | 44 | 45 | 44 | 46 | 45 | 49 | 46 | 50 | 48 | 32 | 49<br>50 | | 22 | 44 | 44 | 45 | 44 | 46 | 45 | 49 | 46 | 50 | 48 | | 50 | | 23 | 44 | 44 | 45 | 44 | 46 | 46 | 49 | 46 | 50<br>50 | 48 | | | | 24 | 44 | 44 | 45 | 44 | 46 | 46 | 50 | 46 | | | | | | 25 | 44 | 44 | 45 | 44 | 46 | 46 | 48 | 46 | 50 <sub>.</sub> | 48 | | | | 26 | 44 | 44 | 45 | 44 | 46 | 46 | 48 | 46<br>46 | 50 | 48 | | | | 27 | 44 | 44 | 45 | 44 | 46 | 46 | | | 50 | 47 | | | | 28 | 44 | 44 | 45 | 44 | 50 | | 48 | 46 | 51 | 48 | | | | 29 | 44 | 44 | 45 | 44 | 49 | 48 | 48 | 46 | 51 | 48 | | | | 30 | 44 | 44 | 47 | 44 | | 48 | 48 | 46 | 50 | 48 | | | | 31 | 44 | 44 | | | 48 | 48 | 47 | 46 | 51 | 48 | | | | J. | 77 | 44 | | | 48 | 48 | | | 52 | 49 | | | Daily minimum and maximum temperatures for Sacramento River below Keswick, 1983 | | | ay | | ine | Jı | 11y | Aug | gust | Septe | ember | 0cto | ber | Nove | mber | Doge | ember | |------------|------|----------|----------|----------|----------|----------|----------|----------|-------|-------|------|------|-------------|------|------|----------| | <u>Day</u> | Max. | Min. | 1 | | | 48 | 46 | 50 | 40 | F.1 | | | | | | <del></del> | | | | | 2 | | | 48 | 48 | 50<br>50 | 49 | 51 | 50 | 52 | 52 | 54 | 54 | 55 | 55 | | | | 3 | | | 48 | - | | 49 | 51 | 50 | 52 | 52 | 54 | 54 | 55 | 55 | | | | 4 | | | 48<br>48 | 48<br>48 | 50 | 50 | 51 | 50 | 52 | 52 | 54 | 54 | 55 | 55 | | | | 5 | 45 | 45 | 40<br>49 | | 50 | 50 | 51 | 50 | 52 | 52 | 54 | 54 | 56 | 55 | | | | 6 | 71 | 43 | | 48 | 50 | 50 | 51 | 50 | 53 | 52 | 54 | 54 | 56 | 56 | | | | 7 | 46 | 43<br>46 | 49<br>40 | 48 | 56 | 50 | 51 | 50 | | | 54 | 54 | 56 | 56 | | | | 8 | 46 | | 49 | 48 | 56 | 54 | 51 | 50 | | | 54 | 54 | 56 | 56 | | | | 9 | | 46 | 49 | 48 | 54 | 53 | 51 | 50 | | | 54 | 54 | 56 | 56 | | | | | 46 | 46 | 49 | 48 | 53 | 53 | 51 | 51 | , | | 55 | 54 | 56 | 56 | | | | 10 | 46 | 46 | 49 | 48 | 53 | 53 | 51 | 51 | | | 55 | 55 | 56 | 53 | | | | 11 | 46 | 46 | 49 | 48 | 53 | 52 | 52 | 51 | | | 55 | 55 | 53 | 53 | | | | 12 | 46 | 46 | 49 | 48 | 52 | 52 | 51 | 51 | 54 | 54 | 55 | 55 | 53 | 52 | | | | 13 | 46 | 46 | 40 | 49 | 52 | 52 | 51 | 51 | 54 | 54 | 55 | 55 | 52 | | | | | 14 | 46 | 46 | 49 | 48 | 52 | 52 | 52 | 51 | 58 | 44 | 60 | 55 | | 52 | | | | 15 | 46 | 42 | 49 | 49 | 52 | 52 | 51 | 51 | 50 | 7-7 | 55 | | 53 | 52 | | | | 16 | | | 49 | 49 | 52 | 50 | 51 | 51 | | | | 55 | 54 | 53 | | | | 17 | | | 52 | 49 | 50 | 50 | 52 | 51 | 54 | 53 | 55 | 55 | 54 | 53 | | | | 18 | 50 | 47 | 50 | 49 | 51 | 50 | 52 | 51 | | 53 | 55 | 55 | 54 | 53 | | | | 19 | 47 | 46 | 50 | 49 | 51 | 50 | 52<br>52 | 52 | 54 | 53 | 55 | 55 | 54 | 54 | | | | 20 | 46 | 46 | 50 | 49 | 51 | 50 | 52<br>52 | 52<br>52 | 54 | 54 | 55 | 55 | 54 | 54 | | | | 21 | 46 | 46 | 50 | 49 | 51 | 50 | 52<br>52 | | 54 | 53 | 56 | 55 | 54 | 54 | | | | 22 | 46 | 46 | 50 | 49 | 51 | 50 | 52<br>52 | 52 | 54 | 53 | 56 | 56 | 54 | 54 | | | | 23 | 46 | 46 | 50 | 49 | 51 | 50 | 52<br>52 | 52 | 54 | 54 | 56 | 56 | 54 | 53 | | | | 24 | 46 | 46 | 50 | 49 | 51 | 50 | | 52 | 54 | 54 | 56 | 56 | 53 | 52 | | | | 25 | 46 | 45 | 50 | 49 | 51 | 51 | 52 | 52 | 54 | 54 | 56 | 56 | 55 | 52 | | | | 26 | 46 | 46 | 50 | 49 | 51 | | 52<br>50 | 52 | 54 | 54 | 56 | 56 | 55 | 53 | | | | 27 | 46 | 45 | 50 | 50 | | 50<br>50 | 52 | 52 | 54 | 54 | 56 | 56 | 53 | 53 | | | | 28 | 46 | 46 | 50 | | 51 | 50 | 52 | 52 | 54 | 54 | 56 | 56 | 53 | 53 | 50 | 50 | | 29 | 46 | | | 49 | 51 | 50 | 52 | 52 | 54 | 54 | 56 | 56 | 53 | 52 | 50 | 49 | | 30 | | 46 | 49 | 49 | 51 | 50 | 52 | 52 | 54 | 54 | 56 | 55 | 52 | 52 | 49 | 49 | | | 46 | 46 | 50 | 49 | 51 | 50 | 52 | 52 | 54 | 54 | 55 | 55 | | | 49 | 48 | | 31 | 47 | 46 | | | 51 | 50 | 52 | 52 | | | 55 | 55 | | | 48 | 46<br>48 | | | | | | | | | | | | | | | | | 40 | 40 | Daily minimum and maximum temperatures for Sacramento River below Keswick, 1984 | D - | | uary | | uary | Ma | ırch | Ap | ril | Ma | ıv | Ţı | ine | |-----|------|------|------------|------|----------|----------|----------|------|-------------|----------|----------|----------| | Day | Max. | Min. | | _ | | | | | | | | | <del></del> | | | | | 1 | 48 | 48 | Prob | | 54 | 54 | 48 | 48 | 48 | 48 | 48 | 48 | | 2 | 49 | 48 | of | | 55 | 54 | 49 | 48 | 47 | 47 | 49 | 48 | | 3 | 49 | 48 | Wat | er | 56 | 55 | 49 | 49 | 47 | 47 | 49 | 48 | | 4 | 49 | 49 | 5 <b>6</b> | 56 | 55 | 55 | 49 | 49 | 47 | 47 | 48 | 48 | | 5 | 49 | 49 | 5 <b>6</b> | 56 | 55 | 55 | 49 | 49 | 47 | 47 | 48 | 48 | | 6 | 49 | 49 | 56 | 56 | 55 | 55 | 49 | 49 | 48 | 47 | 48 | 48 | | 7 | 50 | 49 | 56 | 56 | 55 | 55 | 49 | 49 | 48 | 47 | 48 | 48 | | 8 | 50 | 50 | 5 <b>6</b> | 56 | 55 | 55 | 49 | 49 | 48 | 47 | 49 | 48 | | 9 | 49 | 50 | 56 | 56 | 55 | 55 | 49 | 49 | 48 | 47 | 49 | 48 | | 10 | 50 | 50 | 56 | 56 | | | 49 | 48 | 48 | 47 | 49 | 48 | | 11 | 48 | 47 | 56 | 56 | | | 48 | 48 | 47 | 47 | 48 | 48 | | 12 | 47 | 46 | 5 <b>6</b> | 56 | | | 48 | 48 | 47 | 47 | 48 | 48 | | 13 | 47 | 46 | 5 <b>6</b> | 56 | | | 49 | 48 | 47 | 47 | 49 | 40<br>48 | | 14 | 47 | 46 | <b>56</b> | 56 | 50 | 48 | 49 | 49 | 47 | 47 | 49 | 40<br>48 | | 15 | 46 | 46 | 56 | 56 | 48 | 48 | 49 | 49 | 47 | 47 | 49 | 40<br>48 | | 16 | 46 | 45 | 5 <b>6</b> | 56 | 48 | 47 | 49 | 49 | 47 | 47 | 49 | | | 17 | 46 | 46 | 56 | 56 | 48 | 47 | 49 | 49 | 47 | 47 | 49<br>49 | 48 | | 18 | 46 | 46 | 56 | 56 | 48 | 47 | 49 | 49 | 47 | 47 | | 48 | | 19 | 45 | 45 | 56 | 56 | 48 | 47 | 49 | 49 | 47 | 47<br>47 | 49 | 48 | | 20 | 45 | 45 | 56 | 56 | 48 | 48 | 49 | 48 | 47 | 47<br>47 | 49<br>40 | 48 | | 21 | 45 | 45 | 57 | 56 | 48 | 48 | 48 | 48 | 47 | 47 | 49 | 48 | | 22 | 45 | 45 | 57 | 57 | 48 | 48 | 48 | 48 | 47 | 47 | 49 | 49 | | 23 | 45 | 45 | 57 | 55 | 48 | 48 | 48 | 48 | 47 | 47<br>47 | | | | 24 | | | 55 | 55 | 48 | 48 | 48 | 48 | 47 | 47<br>47 | | | | 25 | | | 55 | 55 | 48 | 48 | 48 | 48 | 47<br>47 | | | | | 26 | | | 56 | 55 | 48 | 48 | 48 | 47 | | 47 | | | | 27 | | | 55 | 55 | 48 | 48 | 48 | 47 | 47 | 47 | | | | 28 | | | 55 | 54 | 48 | 48 | 46<br>48 | | 47 | 47 | | | | 29 | | | 54 | 54 | 48 | 48 | 48 | 48 | 47 | 47 | | | | 30 | | | <b>~</b> , | J-7 | 48 | 48<br>48 | | 48 | 48 | 48 | | | | 31 | | | | | 48<br>48 | 48<br>48 | 48 | 48 | 48 | 48 | | | | | | | | | 40 | 40 | | | -48 | 48 | | | Daily minimum and maximum temperatures for Sacramento River at Matheson, 1983 | _ | Ma | | | une | J | uly | Au | gust | Septe | ember | Octo | ober | Nove | mber | Dece | ember | |------|------|------|------|------|------|------|------|------|----------|----------|----------|----------|----------|----------------|----------|----------| | Day | Max. | Min. | 1 | | | 48 | 48 | 49 | 49 | 52 | 51 | 51 | 51 | 52 | 52 | 54 | 54 | 54 | 54 | | 2 | | | 48 | 48 | 49 | 48 | 52 | 51 | 52 | 51 | 62 | 52 | 54 | 5 <del>9</del> | 54 | | | 3 | | | 48 | 48 | 49 | 49 | 52 | 51 | 52 | 52 | 54 | 51 | 54 | 54 | 54<br>54 | 54 | | 4 | | | 48 | 48 | 49 | 48 | 52 | 51 | 52 | 51 | 53 | 53 | 54 | 54<br>54 | | 54 | | 5 | | | 48 | 47 | 49 | 49 | 52 | 51 | 52 | 52 | 63 | 53 | 54 | | 54 | 54 | | 6 | | | 48 | 48 | 50 | 49 | 52 | 51 | 52 | 52 | 53 | 53 | 54<br>54 | 52 | 54 | 54 | | 7 | | | 48 | 48 | 50 | 49 | 52 | 51 | 52 | 52 | 61 | 53 | | 54 | 54 | 53 | | 8 | | | 48 | 48 | 50 | 49 | 52 | 51 | 53 | 52<br>52 | 54 | 53 | 55<br>55 | 54 | 53 | 53 | | 9 | 48 | 48 | 48 | 48 | 50 | 49 | 52 | 51 | 53 | 52 | 53 | 53 | 55 | 52<br>50 | 53 | 53 | | 10 | 48 | 48 | 48 | 48 | 50 | 49 | 52 | 51 | 52 | 52 | 54 | 53 | 55<br>54 | 50 | 53 | 53 | | 11 | 48 | 47 | 48 | 48 | 50 | 49 | 52 | 51 | 52 | 52 | 54 | 53 | | 54 | 53 | 53 | | 12 | 48 | 47 | 48 | 48 | 50 | 49 | 52 | 51 | 52<br>52 | 52<br>52 | 54 | 53 | 56 | 56 | 53 | 53 | | 13 | 48 | 48 | 48 | 48 | 50 | 49 | 52 | 51 | 52<br>52 | 52<br>52 | 54 | 53 | 56 | 55<br>55 | 53 | 53 | | 14 | 48 | 47 | 48 | 48 | 50 | 49 | 52 | 51 | 52 | 52 | 54 | 53 | 55 | 55 | 53 | 53 | | 15 | 48 | 47 | 48 | 48 | 51 | 49 | 52 | 51 | 52 | 52 | 54<br>54 | 53 | 55<br>55 | 55 | 53 | 53 | | 16 | 48 | 48 | 48 | 48 | 51 | 51 | 51 | 50 | 52 | 52 | 54 | 53 | 55 | 55<br>55 | 53 | 52 | | 17 | 49 | 48 | 49 | 48 | 51 | 51 | 52 | 51 | 52 | 52 | 54 | 53 | 54 | 55<br>54 | 52 | 52 | | 18 | 49 | 48 | 48 | 48 | 51 | 51 | 51 | 51 | 52 | 52<br>52 | 54 | 54 | 55 | | 52 | 52 | | 19 | 48 | 47 | 48 | 48 | 51 | 51 | 51 | 51 | 52 | 52<br>52 | 54 | 54<br>54 | 55 | 54<br>54 | 52 | 52 | | 20 | 48 | 47 | 50 | 48 | 51 | 51 | 51 | 51 | 52 | 52<br>52 | 54<br>54 | 54 | 55<br>54 | | 52 | 52 | | 21 | 48 | 47 | 49 | 49 | 51 | 50 | 51 | 51 | 52 | 52<br>52 | 54 | 54 | 56 | 54 | 52 | 52 | | 22 | 48 | 47 | 49 | 48 | 51 | 51 | 51 | 51 | 52 | 52<br>52 | | | | 54 | 52 | 52 | | 23 | 48 | 47 | 49 | 49 | 51 | 51 | 51 | 51 | 52<br>52 | 52<br>52 | 54 | 54 | 55 | 55 | 52 | 52 | | 24 | 48 | 47 | 49 | 49 | 51 | 51 | 51 | 51 | 53 | 52<br>52 | 55 | 54<br>50 | 55 | 55 | 51 | 51 | | 25 | 48 | 48 | 49 | 48 | 51 | 51 | 51 | 51 | 53<br>63 | | 55 | 52 | 55 | 55 | 51 | 51 | | 26 | 48 | 48 | 49 | 49 | 51 | 51 | 51 | 51 | 53 | 52 | 55 | 51 | 55 | 55 | 51 | 51 | | 27 | 48 | 48 | 49 | 49 | 51 | 51 | 51 | 51 | 56 | 52<br>50 | 55 | 54 | 55 | 55 | 51 | 51 | | 28 | 48 | 48 | 49 | 49 | 51 | 51 | 51 | 51 | 53 | 52<br>52 | 55 | 50 | 54 | 54 | 51 | 51 | | 29 | 48 | 47 | 49 | 49 | 51 | 51 | 51 | 51 | 53 | 52<br>52 | 54<br>54 | 52 | 54 | 54 | 51 | 51 | | 30 | 49 | 47 | 49 | 49 | 51 | 50 | 51 | 51 | 52 | 52<br>52 | 54<br>54 | 54<br>54 | 54<br>54 | 54 | 51 | 50 | | 31 | 48 | 48 | | | 51 | 50 | 51 | 51 | )2 | 34 | 54 | 54<br>54 | 54 | 54 | 50<br>50 | 50<br>50 | | Av. | 48.1 | 47.4 | 48.4 | 48.2 | 50.4 | 49.9 | 51.5 | 51 | 52.7 | 52 | 54.8 | 53 | 54.7 | 54.1 | 52.3 | 52.2 | | Max. | 49 | 48 | 50 | 49 | 51 | 51 | 52 | 51 | 63 | 52 | 63 | 54 | 56 | 56 | 54 | 54 | | Min. | 48 | 47 | 48 | 47 | 49 | 48 | 51 | 50 | 51 | 51 | 52 | 50 | 54 | 50 | 50 | 50 | Daily minimum and maximum temperatures for Sacramento River at Matheson, 1984 | Day | Jan<br>Max. | Min. | | uary | | rch | | ril | Ma | ıy | Ju | ıne | |------------|-------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|------|------| | <u>Day</u> | riax. | HIII. | Max. | Min. | | 1 | 50 | 50 | 48 | 45 | 46 | 46 | 47 | 47 | 48 | 48 | 49 | | | 2 | 50 | 50 | 48 | 44 | 46 | 46 | 48 | 47 | 48 | 48<br>48 | | 49 | | 3 | 50 | 50 | 48 | 47 | 46 | 46 | 48 | 48 | 48 | 48<br>48 | 49 | 49 | | 4 | 50 | 50 | 47 | 47 | 46 | 46 | 48 | 48 | 48<br>48 | | 49 | 49 | | 5 | ND | ND | 47 | 47 | 46 | 46 | 48 | 48 | 48<br>48 | 48 | 49 | 49 | | 6 | ND | ND | 47 | 47 | 46 | 46 | 48 | 48<br>48 | | 48 | 49 | 49 | | 7 | 50 | 50 | 47 | 47 | 46 | 46 | 48 | | 48 | 48 | 49 | 49 | | 8 | 50 | 50 | 47 | 47 | 46 | 46 | | 48 | 48 | 48 | 49 | 49 | | 9 | 50 | 49 | 47 | 47 | 46 | 46 | 48<br>48 | 48 | 48 | 48 | 49 | 49 | | 10 | 50 | 49 | 47 | 47 | 46 | 46 | 48 | 48 | 48 | 48 | 49 | 49 | | 11 | 50 | 48 | 47 | 47 | 40<br>47 | 46<br>46 | 48 | 48 | 49 | 48 | 49 | 49 | | 12 | 49 | 49 | 47 | 47 | 47<br>47 | | 48 | 48 | 48 | 48 | 49 | 49 | | 13 | 49 | 49 | 47 | 47 | | 47 | 48 | 48 | 48 | 48 | 49 | 49 | | 14 | 49 | 49 | 47 | 47<br>47 | 47 | 47 | 48 | 48 | 48 | 48 | 49 | 49 | | 15 | ND | ND | 47 | | 47 | 47 | 48 | 48 | 49 | 48 | 49 | 49 | | 16 | 49 | 48 | | 47 | 47 | 47 | 48 | 48 | 49 | 48 | 50 | 49 | | 17 | 48 | 48 | 47<br>47 | 47 | 47 | 47 | 48 | 48 | 49 | 48 | 50 | 49 | | 18 | 48 | | 47 | 47 | 47 | 47 | 48 | 48 | 49 | 48 | 50 | 49 | | 19 | 48<br>48 | 48 | 47 | 47 | 47 | 47 | 48 | 48 | 49 | 48 | 50 | 49 | | 20 | | 47 | 47 | 47 | 47 | 47 | 48 | 48 | 49 | 48 | 50 | 49 | | 21 | 47 | 45 | 46 | 46 | 47 | 47 | 49 | 48 | 49 | 48 | 50 | 49 | | | 48 | 43 | 46 | 46 | 47 | 47 | 48 | 48 | 49 | 48 | 50 | 49 | | 22 | 47 | 47 | 46 | 46 | 47 | 47 | 48 | 48 | 49 | 49 | | ., | | 23 | 47 | 47 | 47 | 46 | 47 | 47 | 48 | 48 | 49 | 48 | | | | 24 | ND | ND | 46 | 46 | 48 | 47 | 48 | 48 | 49 | 48 | | | | 25 | ND | ND | 46 | 46 | 47 | 47 | 48 | 48 | 49 | 48 | | | | 26 | 48 | 47 | 46 | 46 | 47 | 47 | 48 | 48 | 49 | 48 | | | | 27 | 48 | 48 | 46 | 46 | 47 | 47 | 48 | 48 | 49 | 48 | | | | 28 | ND | ND | 46 | 46 | 48 | 47 | 48 | 48 | 49 | 48 | | | | 29 | 48 | 48 | 46 | 46 | 47 | 47 | 48 | 48 | 49 | 49 | | | | 30 | | | | | 47 | 47 | 48 | 48 | 49 | 49 | | | | 31 | | | | | 47 | 47 | | 70 | 49 | 49 | | | | | | <del></del> | | | | | | | • | | | | ## ATTACHMENT G ELECTRICAL CONDUCTIVITY DATA FROM THE SACRAMENTO RIVER Daily minimum and maximum electrical conductivity for Sacramento River at Tehama, 1983 | <u>Day</u> | Max. | Min. | Jax. | une<br>Min. | J<br>Max. | uly<br>Min. | Au. | gust<br>Min. | Septo<br>Max. | ember<br>Min. | | ber<br>W2- | | mber | | mber | |------------|------|------|------|------------------------------|---------------|-------------|------------|--------------|---------------|---------------|------|------------|------|------|------|------| | | | | | | | *********** | | | · · | HIII. | Max. | Min. | Max. | Min. | Max. | Min. | | 1 | | | | | 112 | 112 | 162 | 142 | 440 | 110 | 105 | | | | | | | 2 | | | 108 | 108 | 113 | 112 | 205 | 157 | 440 | 110 | 195 | 99 | 118 | 116 | 121 | 121 | | 3 | | | 109 | 108 | 113 | 112 | 215 | 205 | 460 | 109 | 127 | 100 | 118 | 118 | 122 | 121 | | 4 | | | 109 | 109 | 114 | 113 | 262 | 191 | 400 | 118 | 142 | 110 | 118 | 118 | 122 | 99 | | 5 | | | 109 | 109 | 114 | 114 | 425 | 262 | 400<br>485 | 118 | 145 | 110 | 118 | 118 | 109 | 91 | | 6 | | | 109 | 109 | 114 | 114 | 430 | 425 | 510 | 113 | 180 | 120 | 118 | 118 | 118 | 109 | | 7 | | | 109 | 109 | 115 | 114 | 470 | 420 | 210 | 114 | 230 | 128 | 119 | 118 | 119 | 118 | | 8 | | | 108 | 108 | 115 | 115 | 470 | 460 | | | 230 | 155 | 120 | 119 | 120 | 110 | | 9 | | | 108 | 108 | 115 | 115 | 460 | 445 | | | 180 | 111 | 120 | 119 | 115 | 110 | | 10 | | | 108 | 108 | 115 | 115 | 460 | 445 | | | 215 | 101 | | | 119 | 100 | | 11 | | | 108 | 108 | 115 | 115 | 460 | 400 | | | 321 | 220 | | | 103 | 100 | | 12 | | | 110 | 108 | 115 | 115 | 410 | 395 | 139 | 110 | 340 | 180 | | | 105 | 60 | | 13 | | | 110 | 110 | 115 | 115 | 550 | 410 | | 118 | 386 | 180 | | | 80 | 72 | | 14 | | | 110 | 110 | 115 | 111 | 460 | 350 | 139 | 121 | 275 | 140 | | | 99 | 80 | | 15 | | | 110 | 110 | 530 | 111 | 350 | 305 | 126 | 122 | 218 | 136 | | | | | | 16 | | | 112 | 110 | 575 | 530 | 435 | 111 | 126 | 115 | 317 | 215 | | | | | | 17 | | | 112 | 112 | 580 | 575 | 310 | | 119 | 119 | 221 | 212 | | | | | | 18 | | | 112 | 112 | 575 | 500 | 210 | 110<br>112 | 123 | 118 | 220 | 210 | | | | | | 19 | | | 112 | 112 | 560 | 500 | 210 | | 130 | 119 | 221 | 201 | | | | | | 20 | | | 112 | 112 | 580 | 560 | 160 | 112 | 125 | 121 | 112 | 112 | | | | | | 21 | | | 112 | 112 | 585 | 575 | 230 | 109<br>100 | 127 | 117 | 112 | 112 | | | | | | 22 | | | 112 | 112 | 590 | 116 | 320 | - | 167 | 100 | 112 | 112 | | | | | | 23 | | | 112 | 112 | 116 | 116 | 480 | 100<br>104 | 150 | 120 | 112 | 112 | | | | | | 24 | | | 112 | 112 | 116 | 116 | 250 | 104 | 261 | 130 | 112 | 112 | | | | | | 25 | | | 112 | 112 | 116 | 116 | 275 | | 219 | 145 | 112 | 112 | | | | | | 26 | | | 112 | 112 | 127 | 116 | 210 | 110 | 210 | 155 | 112 | 112 | | | | | | 27 | | | 112 | 112 | 127 | 127 | 182 | 111 | 190 | 132 | 112 | 112 | | | | | | 28 | | | 112 | 112 | 130 | 127 | 350 | 100 | 191 | 125 | 112 | 112 | | | | | | 29 | | | 112 | 112 | 131 | 130 | 330<br>495 | 111 | 200 | 131 | 112 | 112 | | | | | | 30 | | | 112 | 112 | 138 | 131 | | 111 | 221 | 111 | 112 | 112 | | | | | | 31 | | | _ | | 143 | 137 | 430<br>441 | 108 | 270 | 150 | 112 | 112 | | | | | | | | | | الگروي<br>ميل الكوميات العال | . <del></del> | 131 | 441 | 105 | | | 116 | 112 | | | | | Daily minimum and maximum electrical conductivity for Sacramento River at Bend Bridge, 1983 | May<br>Day Max, Min. | | | | | July August S | | September Octo | | ober November | | December | | | | | | |----------------------|------|------|------------|------------|---------------|------------|----------------|------------|---------------|------|----------|------|-----------------|-------------|------|-------| | Day | max. | Min. | 1 | | | | | | | | | | | | | | 11111 | max. | riin. | | 2 | | | 100 | 100 | 99 | 99 | 108 | 108 | 104 | 104 | 101 | 101 | 152 | 140 | 155 | 155 | | 3 | | | 100 | 100 | 99 | 99 | 107 | 107 | 104 | 104 | 101 | 101 | 170 | 152 | 155 | 155 | | 4 | | | 100 | 100 | 99 | 99 | 108 | 108 | 104 | 104 | 102 | 102 | 174 | 170 | 155 | 155 | | 5 | | | 100 | 100 | 100 | 99 | 108 | 108 | 104 | 104 | 102 | 102 | 172 | 169 | 155 | 155 | | 6 | | | 100<br>100 | 100 | 105 | 100 | 108 | 107 | 104 | 101 | 102 | 102 | 169 | 169 | 155 | 155 | | 7 | | | 100 | 100 | 105 | 105 | 107 | 106 | 101 | 100 | 102 | 102 | 169 | 170 | 155 | 155 | | 8 | | | 100 | 100 | 106 | 105 | 106 | 106 | 99 | 99 | 102 | 102 | 170 | 145 | 157 | 156 | | 9 | | | 100 | 100 | 110 | 106 | 106 | 106 | 99 | 99 | 102 | 102 | 145 | 120 | 157 | 157 | | 10 | | | 100 | 100<br>100 | 110 | 110 | 106 | 106 | 99 | 99 | 102 | 101 | 120 | 118 | 158 | 157 | | 11 | | | 100 | 100 | 111 | 110 | 106 | 106 | 99 | 99 | 102 | 102 | 133 | 119 | 158 | 158 | | 12 | | | 100 | 100 | 114 | 111 | 106 | 106 | 99 | 99 | 102 | 102 | 169 | 120 | 158 | 158 | | 13 | | | 103 | 100 | 114 | 114 | 106 | 106 | 99 | 99 | 102 | 102 | 171 | 169 | 158 | 158 | | 14 | | | 103 | 103 | 116 | 114 | 105 | 105 | 99 | 99 | 102 | 102 | 181 | 168 | 159 | 158 | | 15 | | | 103 | 103 | 116<br>117 | 115 | 105 | 105 | 98 | 98 | 102 | 102 | 155 | 150 | 159 | 159 | | 16 | | | 103 | 103 | 117 | 117 | 105 | 105 | 97 | 97 | 102 | 102 | 151 | 145 | 159 | 159 | | 17 | | | 102 | 102 | 117 | 117<br>117 | 105 | 105 | 96 | 96 | 102 | 102 | 159 | 140 | 158 | 158 | | 18 | | | 102 | 98 | 116 | 117 | 110 | 109 | 95 | 95 | 102 | 102 | 155 | 140 | 158 | 158 | | 19 | | | 98 | 98 | 116 | 115 | 114 | 108 | 95 | 95 | 102 | 102 | 162 | 155 | 158 | 158 | | 20 | | | 99 | 98 | 115 | 115 | 114 | 114 | 95 | 95 | 102 | 102 | 162 | 159 | 158 | 158 | | 21 | | | 99 | 99 | 115 | 114 | 114<br>345 | 114 | 95 | 95 | 106 | 102 | 179 | 159 | 158 | 158 | | 22 | | | 99 | 99 | 114 | 114 | 338 | 114 | 95 | 95 | 106 | 106 | 17 <del>9</del> | <b>16</b> 5 | 158 | 158 | | 23 | | | 99 | 99 | 114 | 113 | 205 | 222 | 94 | 94 | 106 | 106 | 169 | 169 | | | | 24 | | | 99 | 99 | 113 | 113 | 110 | 110 | 105 | 95 | 106 | 106 | 169 | 162 | | | | 25 | | | 99 | 99 | 112 | 112 | 110 | 110 | 105 | 105 | 195 | 106 | 195 | 135 | | | | 26 | | | 99 | 99 | 112 | 111 | 110 | 110<br>110 | 105 | 100 | 125 | 111 | 157 | 135 | | | | 27 | | | 99 | 99 | 111 | 110 | 110 | 107 | 100 | 100 | 111 | 110 | 171 | 150 | | | | 28 | | | 99 | 99 | 111 | 110 | 107 | 107 | 100 | 100 | 110 | 110 | 221 | 161 | | | | 29 | | | 99 | 99 | 110 | 110 | 107 | 105 | 100 | 100 | 110 | 111 | 250 | 176 | | | | 30 | | | 99 | 99 | 110 | 110 | 105 | 103 | 100 | 100 | 111 | 111 | 250 | 171 | | | | 31 | | | | | 109 | 109 | 103 | 104 | 100 | 100 | 125 | 111 | 155 | 152 | | | | | | | | 100 | | -07 | 104 | 104 | | | 140 | 125 | | | | | Daily minimum and maximum electrical conductivity for Sacramento River at Bend Bridge, 1984 | _ | January February | | Ma | arch | Aı | pril | Ma | 237 | т | | |------------------|------------------|-----------------|------|------|------|------|------|-------|------|------------| | <u>Day</u> | Max. Min. | Max. Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ne<br>Min. | | | | | | | | | | | Hax. | Hill. | | 1 | | | | | 110 | 110 | Ont | of | | | | 2 | | | | | 110 | 110 | Ord | | | | | 3 | | 157 156 | | | 110 | 110 | 120 | 120 | | | | 4 | | 156 154 | | | 110 | 110 | 120 | 120 | | | | 5 | | 154 154 | | | 110 | 110 | 120 | 120 | | | | 6 | | 154 154 | | | 110 | 110 | 120 | 114 | | | | 7 | | 154 154 | | | 110 | 110 | 114 | 114 | | | | 8 | | <b>1</b> 54 154 | | | 109 | 109 | 114 | 114 | | | | 9 | | 154 154 | | | 109 | 109 | 114 | 114 | | | | 10 | • | 154 154 | | | 109 | 109 | 114 | 114 | | | | 11 | | 154 154 | | | 109 | 109 | 114 | 114 | | | | 12 | | 154 154 | | | 109 | 109 | 114 | 114 | | | | 13 | | 154 154 | | | 109 | 109 | 116 | 114 | | | | 14 | • • | 154 154 | | | 109 | 109 | 117 | 116 | | | | 15<br>1 <b>6</b> | | 154 154 | | | 110 | 110 | | 117 | | | | | | 154 154 | | | 110 | 110 | 117 | 117 | | | | 17 | | 154 154 | | | 110 | 110 | 118 | 117 | | | | 18 | | 154 154 | | | 110 | 110 | 118 | 118 | | | | 19 | | 154 154 | | | 114 | 110 | 118 | 118 | | | | 20<br>21 | | 154 154 | | | 114 | 114 | 118 | 118 | | | | 22 | | 154 154 | | | 114 | 114 | 118 | 118 - | | | | 23 | | 154 154 | | | 160 | 114 | 118 | 118 | | | | 23<br>24 | | 154 154 | | | 160 | 160 | 118 | 118 | | | | 24<br>25 | | | • | | 160 | 145 | 118 | 118 | | | | 26 | | | | | 145 | 140 | 120 | 118 | | | | 27 | | | | | 140 | 130 | 120 | 120 | | | | | | | | | 130 | 129 | 120 | 120 | | | | 28 | | | 110 | 110 | 130 | 129 | 120 | 120 | | | | 29 | | | 110 | 110 | 130 | 130 | 120 | 120 | | | | 30 | | | 110 | 110 | 130 | 130 | | | | | | 31 | | | 110 | 110 | | | | | | | Daily minimum and maximum electrical conductivity for Sacramento River above Clear Creek, 1983 | Day | <u>May</u><br>ay Max. Min. | | | ne | | ıly | _ Aug | gust | Septe | mber | 0cto | ber | Nove | mber | Dago | ember | |-----|----------------------------|------|------|------|------|----------------|-------|------------|-------|------|----------|------|------|------|-------|------------| | Day | max. | Min. | 1 | | | | | | | | | | | | | | | 11471 | 11111 | | 2 | | | | | 91 | 90 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 3 | | | | | 92 | 91 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 4 | | | | | 93 | 92 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 5 | | | | | 94 | 93 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 6 | | 90 | | | 95 | 94 | 97 | <b>9</b> 7 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 7 | 90 | | | | 96 | 95 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 8 | 90 | 90 | | | 97 | 96 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 118 | 118 | | 9 | 90 | 90 | | | 97 | 97 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 119 | 118 | | 10 | | 90 | | | 97 | 97 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | 119 | 119 | | 11 | 90 | 90 | | | 97 | 97 | 97 | 97 | 97 | 97 | 90 | 90 | 100 | 90 | 119 | 112 | | 12 | 90 | 90 | | | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | 101 | 100 | 119 | 112 | | 13 | 90 | 90 | | | 97 | <b>9</b> 7 | 97 | 97 | 95 | 95 | 90 | 90 | 101 | 101 | 112 | 112 | | | 90 | 90 | | | 97 | 97 | 97 | 97 - | 95 | 95 | 90 | 90 | 106 | 101 | 112 | 112 | | 14 | 90 | 90 | | | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | 109 | 106 | 112 | | | 15 | 90 | 90 | | | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | 107 | 100 | 112 | 112<br>112 | | 16 | 90 | 90 | | | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | | | 112 | | | 17 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | | | | 112 | | 18 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | | | 112 | 112 | | 19 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 95 | 95 | 90 | 90 | | | 112 | 112 | | 20 | 90 | 90 | 87 | 87 | 97 | <del>9</del> 7 | 97 | 97 | 95 | 95 | 82 | 82 | | | 112 | 112 | | 21 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 87 | 82 | | | 112 | 112 | | 22 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 88 | 87 | | | 112 | 112 | | 23 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 88 | 88 | | | 100 | 100 | | 24 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 88 | 88 | | | 101 | 100 | | 25 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 88 | | | 101 | 101 | | 26 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | | | 101 | 101 | | 27 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | | | 101 | 101 | | 28 | 90 | 90 | 87 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | 90 | | | 102 | 101 | | 29 | 90 | 90 | 88 | 87 | 97 | 97 | 97 | 97 | 90 | 90 | 90 | | | | 102 | 102 | | 30 | 90 | 90 | 89 | 89 | 97 | 97 | 97 | 97 | 90 | 90 | 90<br>90 | 90 | 110 | | 102 | 100 | | 31 | 90 | 90 | | | 97 | 97 | 97 | 97 | 20 | 70 | | 90 | 118 | 118 | 100 | 100 | | | | | | | | | ,, | 91 | | | 90 | 90 | | | 100 | 100 | Daily minimum and maximum electrical conductivity for Sacramento River above Clear Creek, 1984 | | | nuary | | uary | | rch | Ap | ril | Ма | y | Ju | ıne | |------------|------|-------|------|------|------|------|------|------|------|------|------|------| | <u>Day</u> | Max. | Min. | | , | 0.0 | ο. | | | | | | | | | | | | 1 | 99 | 94 | 109 | 109 | | | 119 | 119 | 122 | 121 | 120 | 120 | | 2 | 93 | 89 | 109 | 109 | | | 120 | 119 | 119 | 119 | 120 | 120 | | 3 | 89 | 87 | 124 | 109 | | | 130 | 119 | 119 | 119 | 120 | 120 | | 4 | 88 | 87 | 124 | 123 | | | 140 | 110 | 119 | 119 | 120 | 120 | | 5 | 88 | 88 | 124 | 123 | | | 110 | 110 | 119 | 119 | 120 | 120 | | 6 | 88 | 86 | 124 | 124 | | | 110 | 110 | 119 | 119 | 120 | 120 | | 7 | 87 | 86 | 125 | 124 | | | 110 | 110 | 119 | 119 | 120 | 120 | | 8 | 86 | 86 | 125 | 125 | | | 110 | 110 | 119 | 119 | 120 | 120 | | 9 | 86 | 86 | 125 | 125 | | | 110 | 110 | 119 | 119 | 120 | 120 | | 10 | 86 | 86 | 129 | 125 | | | 110 | 110 | 119 | 119 | 120 | 120 | | 11 | 115 | 86 | 129 | 129 | | | 110 | 110 | 118 | 118 | 120 | 118 | | 12 | 115 | 115 | 130 | 129 | | | 110 | 110 | 118 | 118 | 118 | 116 | | 13 | 115 | 115 | 130 | 130 | | | 110 | 110 | 118 | 118 | 118 | 109 | | 14 | 115 | 115 | 130 | 130 | 130 | 130 | 110 | 110 | 118 | 118 | 109 | 91 | | 15 | 115 | 110 | 130 | 130 | 130 | 130 | 110 | 110 | 118 | 117 | 100 | 60 | | 16 | 110 | 110 | 130 | 130 | 130 | 130 | 110 | 110 | 117 | 117 | 98 | 87 | | 17 | 110 | 110 | 130 | 130 | 130 | 130 | 110 | 110 | 117 | 117 | 112 | 75 | | 18 | 110 | 110 | 130 | 130 | 130 | 130 | 110 | 110 | 117 | 117 | 112 | 112 | | 19 | 110 | 110 | 127 | 122 | 130 | 124 | 110 | 110 | 117 | 117 | 112 | 112 | | 20 | 110 | 110 | 122 | 122 | 126 | 124 | 110 | 110 | 118 | 118 | 112 | 112 | | 21 | 110 | 110 | 122 | 122 | 126 | 118 | 114 | 110 | 118 | 118 | 112 | 112 | | 22 | 110 | 110 | | | 118 | 118 | 120 | 114 | 118 | 118 | 112 | 112 | | 23 | 110 | 110 | | | 118 | 118 | 120 | 118 | 118 | 118 | | | | 24 | 110 | 110 | | | 118 | 118 | 126 | 120 | 118 | 118 | | | | 25 | 110 | 110 | | | 118 | 118 | 126 | 113 | 118 | 118 | | | | 26 | 120 | 110 | | | 118 | 118 | 122 | 118 | 118 | 118 | | | | 27 | 109 | 109 | | | 118 | 118 | 131 | 121 | 118 | 118 | | | | 28 | 109 | 109 | | | 119 | 119 | 121 | 121 | 118 | 118 | | | | 29 | 109 | 109 | | | 119 | 119 | 121 | 121 | 118 | 118 | | | | 30 | 109 | 109 | | | 119 | 119 | 121 | 121 | 120 | 120 | | | | 31 | 109 | 109 | | | 119 | 119 | | | 120 | 120 | | | | | | | | | - | | | | 120 | 120 | | | Daily minimum and maximum electrical conductivity for Sacramento River below Keswick, 1983 | Nav | | lay | | ine . | | ly | | ust | Septe | mber | Octo | ber | Nove | mber | Dece | mber | |------------|------|------|----------|----------|----------|------|------|----------|----------|------|------|------|-------------|------|----------|------| | <u>Day</u> | Max. | Min. | 1 | | | 92 | 70 | 90 | 90 | 90 | 00 | 0.1 | 0.1 | | | <del></del> | | | | | 2 | | | 83 | 79 | 90 | 90 | 90 | 90<br>90 | 91 | 91 | 93 | 93 | 99 | 99 | 109 | 105 | | 3 | | | 83 | 82 | 90 | 90 | 90 | 90 | 91 | 91 | 92 | 91 | 99 | 98 | 115 | 115 | | 4 | | | 85 | 83 | 90 | 90 | 90 | 90 | 98 | 91 | 90 | 90 | 98 | 98 | 115 | 115 | | 5 | 100 | 20 | 85 | 84 | 90 | 90 | 90 | 90 | 98<br>98 | 98 | 90 | 90 | 98 | 98 | 115 | 115 | | 6 | 90 | 18 | 84 | 84 | 90 | 90 | 90 | 90<br>90 | | 98 | 91 | 91 | 98 | 98 | 115 | 115 | | 7 | 82 | 71 | 84 | 84 | 91 | 91 | 90 | | 100 | 98 | 91 | 91 | 98 | 98 | 115 | 115 | | 8 | 84 | 77 | 84 | 84 | 91 | 91 | 83 | 83 | 95 | 91 | 91 | 91 | 101 | 98 | 114 | 113 | | 9 | | | 89 | 84 | 92 | 92 | 83 | 83 | 91 | 91 | 91 | 91 | 101 | 101 | 113 | 105 | | 10 | | | 88 | 77 | 92 | 91 | | 83 | 91 | 91 | 90 | 90 | 101 | 101 | 105 | 105 | | 11 | | | 90 | 84 | 91 | 91 | 82 | 82 | 91 | 91 | 90 | 90 | 101 | 101 | 105 | 100 | | 12 | • | | 90 | 90 | 91 | 91 | 82 | 82 | 91 | 91 | 90 | 90 | 109 | 100 | 105 | 80 | | 13 | ٠. د | | 90 | 90 | 91 | | 83 | 82 | 92 | 90 | 90 | 90 | 105 | 105 | 110 | 95 | | 14 | 0 | | 90 | 90 | 91 | 91 | 84 | 83 | 92 | 92 | 92 | 91 | 200 | 103 | 106 | 92 | | 15 | | | 90 | 90 | 90 | 90 | 84 | 84 | 92 | 92 | 100 | 92 | 109 | 104 | 90 | 81 | | 16 | | | 90 | 90 | 90<br>90 | 90 | 84 | 84 | 97 | 91 | 100 | 100 | 110 | 107 | 90 | 80 | | 17 | | | 90 | 90 | | 90 | 83 | 83 | 97 | 97 | 100 | 100 | 110 | 110 | 89 | 82 | | 18 | | | 90 | 90 | 90 | 90 | 96 | 83 | | | 100 | 100 | 110 | 110 | 110 | 75 | | 19 | | | 90 | 90<br>90 | 90 | 90 | 96 | 96 | | | 97 | 97 | 110 | 110 | 101 | 102 | | 20 | | | 90 | 90 | 90 | 90 | 96 | 90 | | | 97 | 96 | 111 | 111 | 101 | 101 | | 21 | | | 90 | 90 | 90 | 90 | 91 | 91 | | | 98 | 98 | 111 | 111 | 101 | 101 | | 22 | 94 | 93 | 90 | 90 | 90 | 90 | 91 | 91 | 100 | 100 | 610 | 15 | 111 | 111 | 101 | 101 | | 23 | 95 | 94 | 90 | 90 | 90 | 90 | 91 | 91 | 101 | 98 | 102 | 102 | 100 | 100 | 118 | 101 | | 24 | 100 | 94 | 90 | | 90 | 90 | 91 | 91 | 99 | 98 | 102 | 100 | 100 | 100 | 118 | 118 | | 25 | 101 | 94 | 90<br>91 | 90 | 90 | 90 | 91 | 91 | 157 | 100 | 100 | 99 | 100 | 100 | 118 | 115 | | 26 | 105 | 99 | | 90 | 90 | 90 | 91 | 91 | 105 | 105 | 99 | 99 | 100 | 100 | 115 | 111 | | 27 | 103 | | 91 | 91 | 90 | 90 | 91 | 91 | 105 | 105 | 99 | 99 | 100 | 100 | 111 | 110 | | 28 | 93 | 92 | 91 | 91 | 90 | 90 | 91 | 91 | 102 | 101 | 98 | 98 | 100 | 100 | *** | 110 | | 29 | | 92 | 91 | 90 | 90 | 90 | 91 | 91 | 180 | 100 | 98 | 98 | 100 | 100 | | • | | 30 | 92 | 92 | 90 | 90 | 90 | 90 | 91 | 91 | 101 | 101 | 99 | 99 | 100 | 100 | | | | 30<br>31 | 92 | 92 | 90 | 90 | 90 | 90 | 91 | 91 | 101 | 101 | 99 | 99 | 119 | 118 | $\sigma$ | | | 31 | 92 | 92 | | | 90 | 90 | 91 | 91 | | - | 99 | 92 | 117 | 110 | | | Daily minimum and maximum electrical conductivity for Sacramento River below Keswick, 1984 | Day | January<br>Max. Min. | Februa<br>Max. 1 | ary<br>Min. | | rch | | ril | Ma | | Ju | ne | |----------|----------------------|------------------|-------------|------|------|------|----------------|------|------------|--------------------|------------| | <u> </u> | HILL. | riax. | <u> </u> | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | | 1 | , | : | | 110 | 110 | 110 | 108 | 113 | 112 | 116 | 115 | | 2 | . ' | | | 114 | 110 | 119 | 109 | 113 | 113<br>113 | 116 | 115 | | 3 | • | 115 | 114 | 115 | 114 | 111 | 108 | 118 | 115 | 116 | 110 | | 4 | 1 | | 114 | 115 | 115 | 105 | 103 | 118 | | 111 | 109 | | 5<br>6 | | | 123 | 115 | 115 | 102 | 102 | 117 | 118 | 109 | 109 | | | | | 128 | 115 | 115 | 102 | 102 | 117 | 113<br>112 | 109 | 109 | | 7 | | | 128 | 114 | 114 | 102 | 102 | 113 | 112 | 109 | 109 | | 8 | | | 128 | 114 | 114 | 111 | 101 | 113 | 113 | 118 | 109 | | 9 | | | 125 | 114 | 114 | 106 | 106 | 114 | 113 | 119 | 118 | | 10 | | | 132 | 117 | 115 | 100 | 106 | 115 | 113 | 115<br>11 <b>6</b> | 115 | | 11 | • | | 113 | 118 | 117 | 107 | 106 | 115 | 115 | 118 | 115<br>117 | | 12 | | 125 | 120 | 117 | 117 | 106 | 105 | 122 | 115 | 118 | 117 | | 13 | | 125 | 120 | 117 | 117 | 106 | 106 | 122 | 120 | 118 | 118 | | 14 | | 125 | 120 | 113 | 113 | 106 | 104 | 120 | 120 | 118 | 117 | | 15 | | 121 | 119 | 113 | 112 | 106 | 105 | 121 | 120 | 118 | 117 | | 16 | | 118 | 117 | 113 | 111 | 107 | 104 | 121 | 15 | 116 | 114 | | 17 | | 119 | 116 | 111 | 110 | 108 | 106 | 105 | 30 | 117 | 115 | | 18 | | 118 | 116 | 111 | 110 | 106 | 103 | 120 | 78 | 117 | 115 | | 19 | | 117 | 115 | 111 | 110 | 105 | 103 | 130 | 100 | 117 | 115 | | 20 | | 115 | 110 | 110 | 110 | 118 | 112 | 129 | 101 | 117 | 116 | | 21 | | | 105 | 111 | 110 | 116 | 112 | 127 | 113 | 116 | 116 | | 22 | | | 105 | 111 | 110 | 115 | 113 | 122 | 95 | 110 | 110 | | 23 | | | 102 | 111 | 111 | 115 | 115 | 121 | 121 | | | | 24 | | 101 | 98 | 111 | 111 | 116 | 115 | 121 | 121 | | | | 25 | | 101 | 98 | 111 | 111 | 116 | 114 | 191 | 121 | | | | 26 | | 98 | 97 | 111 | 111 | 116 | 113 | 250 | 148 | | | | 27 | | 107 | 97 | 111 | 111 | 115 | 112 | 185 | 80 | | • | | 28 | | | 107 | 110 | 110 | 114 | 111 | 131 | 111 | | | | 29 | | 110 | 107 | 110 | 110 | 115 | 113 | 150 | 131 | | | | 30 | | | | 109 | 109 | 113 | 113 | 115 | 115 | | | | 31 | | | | 110 | 109 | | - <del>-</del> | 115 | 115 | | | | | | | | | | | | | | | |